SI7720DN-T1-GE3 [VISHAY]

N-Channel 30-V (D-S) MOSFET with Schottky Diode; N通道30 -V ( D- S)的MOSFET与肖特基二极管
SI7720DN-T1-GE3
型号: SI7720DN-T1-GE3
厂家: VISHAY    VISHAY
描述:

N-Channel 30-V (D-S) MOSFET with Schottky Diode
N通道30 -V ( D- S)的MOSFET与肖特基二极管

肖特基二极管
文件: 总14页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si7720DN  
Vishay Siliconix  
N-Channel 30-V (D-S) MOSFET with Schottky Diode  
FEATURES  
PRODUCT SUMMARY  
Halogen-free  
VDS (V)  
RDS(on) (Ω)  
Qg (Typ.)  
I
D (A)e  
12  
SkyFET™ Monolithic TrenchFET® Power  
MOSFET and Schottky Diode  
Low Thermal Resistance PowerPAK® Package  
with Small Size and Low 1.07 mm Profile  
100 % Rg Tested  
0.0125 at VGS = 10 V  
0.015 at VGS = 4.5 V  
RoHS  
30  
13.7 nC  
12  
COMPLIANT  
PowerPAK 1212-8  
100 % UIS Tested  
APPLICATIONS  
S
3.30 mm  
3.30 mm  
1
S
Notebook PC  
2
S
D
- System Power  
3
G
4
Buck Converter  
Synchronous Rec
D
8
D
7
D
6
D
Schottky Diode  
5
G
Bottom View  
Ordering Information: Si7720DN-T1-GE3 (Lead (Pb)-free and Halogen-free)  
N-Channel MOSFET  
S
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Parameter  
Symbol  
Limit  
30  
Unit  
VDS  
Drain-Source Voltage  
Gate-Source Voltage  
V
VGS  
20  
12e  
12e  
12a, b  
TC = 25 °C  
C = 70 °C  
T
Continuous Drain Current (TJ = 150 °C)  
ID  
TA = 25 °C  
TA = 70 °C  
10a, b  
A
IDM  
IS  
Pulsed Drain Current  
50  
12e  
3.4a, b  
T
C = 25 °C  
Continuous Source-Drain Diode Current  
TA = 25 °C  
Single Pulse Avalanche Current  
Single Pulse Avalanche Energy  
IAS  
EAS  
20  
20  
52  
L = 0.1 mH  
mJ  
W
T
C = 25 °C  
TC = 70 °C  
A = 25 °C  
TA = 70 °C  
33  
PD  
Maximum Power Dissipation  
3.8a, b  
T
2.4a, b  
- 50 to 150  
260  
TJ, Tstg  
Operating Junction and Storage Temperature Range  
Soldering Recommendations (Peak Temperature)c, d  
°C  
Notes:  
a. Surface Mounted on 1" x 1" FR4 board.  
b. t = 10 s.  
c. See Solder Profile (http://www.vishay.com/ppg?73257). The PowerPAK 1212-8 is a leadless package. The end of the lead terminal is exposed  
copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and  
is not required to ensure adequate bottom side solder interconnection.  
d. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.  
e. Package limited.  
Document Number: 68787  
S-81716-Rev. A, 04-Aug-08  
www.vishay.com  
1
Si7720DN  
Vishay Siliconix  
THERMAL RESISTANCE RATINGS  
Parameter  
Maximum Junction-to-Ambienta, b  
Symbol  
Typical  
24  
Maximum  
Unit  
RthJA  
t 10 s  
33  
°C/W  
RthJC  
Maximum Junction-to-Case (Drain)  
Steady State  
1.9  
2.4  
Notes:  
a. Surface Mounted on 1" x 1" FR4 board.  
b. Maximum under Steady State conditions is 81 °C/W.  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
VDS  
VGS(th)  
IGSS  
VGS = 0 V, ID = 1 mA  
Drain-Source Breakdown Voltage  
30  
V
nA  
mA  
A
VDS = VGS, ID = 250 µA  
Gate-Source Threshold Voltage  
Gate-Source Leakage  
1.2  
2.5  
100  
0.2  
35  
VDS = 0 V, VGS  
=
20 V  
VDS = 30 V, VGS = 0 V  
DS = 30 V, VGS = 0 V, TJ = 100 °C  
VDS 5 V, VGS = 10 V  
0.035  
3.5  
IDSS  
ID(on)  
RDS(on)  
gfs  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
V
20  
VGS = 10 V, ID = 10 A  
0.010  
0.012  
38  
0.0125  
0.015  
Drain-Source On-State Resistancea  
Ω
V
GS = 4.5 V, ID = 7 A  
Forward Transconductancea  
VDS = 10 V, ID = 10 A  
S
Dynamicb  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
1790  
310  
130  
30  
13.7  
5
VDS = 15 V, VGS = 0 V, f = 1 MHz  
VDS = 15 V, VGS = 10 V, ID = 10 A  
pF  
45  
21  
Qg  
Total Gate Charge  
nC  
Qgs  
Qgd  
Rg  
Gate-Source Charge  
Gate-Drain Charge  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
V
DS = 15 V, VGS = 4.5 V, ID = 10 A  
f = 1 MHz  
4
0.3  
1.2  
23  
13  
29  
12  
11  
10  
22  
8
2.4  
45  
25  
55  
24  
22  
20  
45  
16  
Ω
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
V
DD = 15 V, RL = 1.5 Ω  
ID 10 A, VGEN = 4.5 V, Rg = 1 Ω  
Turn-Off Delay Time  
Fall Time  
ns  
Turn-On Delay Time  
Rise Time  
V
DD = 15 V, RL = 1.5 Ω  
ID 10 A, VGEN = 10 V, Rg = 1 Ω  
Turn-Off Delay Time  
Fall Time  
www.vishay.com  
2
Document Number: 68787  
S-81716-Rev. A, 04-Aug-08  
Si7720DN  
Vishay Siliconix  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Drain-Source Body Diode Characteristics  
Continuous Source-Drain Diode Current  
IS  
ISM  
VSD  
trr  
TC = 25 °C  
12  
50  
0.7  
30  
10  
A
Pulse Diode Forward Currenta  
Body Diode Voltage  
IS = 2 A  
0.53  
17  
5.5  
8
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
Reverse Recovery Rise Time  
ns  
nC  
Qrr  
ta  
IF = 5 A, dI/dt = 100 A/µs, TJ = 25 °C  
ns  
tb  
9
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Document Number: 68787  
S-81716-Rev. A, 04-Aug-08  
www.vishay.com  
3
Si7720DN  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
50  
5
4
3
2
1
0
V
GS  
= 10 thru 4 V  
40  
30  
20  
10  
0
T
C
= 25 °C  
T
C
= 125 °C  
V
GS  
= 3 V  
T
C
= - 55 °C  
4
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
5
V
DS  
- Drain-to-Source Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
0.017  
0.015  
0.013  
0.011  
0.009  
0.007  
2200  
1760  
1320  
880  
440  
0
C
iss  
V
= 4.5 V  
= 10 V  
GS  
V
GS  
C
oss  
C
rss  
0
10  
20  
30  
40  
50  
0
5
10  
15  
20  
25  
30  
I
- Drain Current (A)  
V
DS  
- Drain-to-Source Voltage (V)  
D
On-Resistance vs. Drain Current and Gate Voltage  
Capacitance  
10  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I = 10 A  
D
I
= 10 A  
D
V
= 15 V  
DS  
8
V
GS  
= 10 V  
V
DS  
= 10 V  
6
V
GS  
= 4.5 V  
V
DS  
= 20 V  
4
2
0
0.0  
6.2  
12.4  
18.6  
24.8  
31.0  
- 50 - 25  
0
T
25  
50  
75  
100 125 150  
- Junction Temperature (°C)  
Q
g
- Total Gate Charge (nC)  
J
Gate Charge  
On-Resistance vs. Junction Temperature  
www.vishay.com  
4
Document Number: 68787  
S-81716-Rev. A, 04-Aug-08  
Si7720DN  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
100  
I
= 10 A  
D
10  
T
J
= 150 °C  
T
J
= 25 °C  
1
T
= 125 °C  
J
0.1  
0.01  
T
J
= 25 °C  
6
0.001  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
2
4
8
10  
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Source-Drain Diode Forward Voltage  
On-Resistance vs. Gate-to-Source Voltage  
-1  
150  
120  
90  
60  
30  
0
10  
-2  
10  
30 V  
-3  
10  
10  
20 V  
-4  
10 V  
-5  
10  
10  
-6  
0.001  
0.01  
0.1  
1
10  
0
25  
50  
75  
100  
125  
150  
T
- Junction Temperature (°C)  
Time (s)  
J
Single Pulse Power, Junction-to-Ambient  
Reverse Current (Schottky)  
100  
Limited by R  
*
DS(on)  
10  
1
1 ms  
10 ms  
100 ms  
1 s  
10 s  
0.1  
DC  
T
= 25 °C  
A
BVDSS Limited  
Single Pulse  
0.01  
0.01  
0.1  
1
10  
100  
V
DS  
- Drain-to-Source Voltage (V)  
* V > minimum V at which R is specified  
DS(on)  
GS  
GS  
Safe Operating Area, Junction-to-Ambient  
Document Number: 68787  
S-81716-Rev. A, 04-Aug-08  
www.vishay.com  
5
Si7720DN  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
55  
44  
33  
22  
Package Limited  
11  
0
0
25  
50  
75  
100  
125  
150  
T
C
- Case Temperature (°C)  
Current Derating*  
65  
52  
39  
26  
13  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
T
C
- Case Temperature (°C)  
T
A
- Ambient Temperature (°C)  
Power, Junction-to-Case  
Power, Junction-to-Ambient  
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
www.vishay.com  
6
Document Number: 68787  
S-81716-Rev. A, 04-Aug-08  
Si7720DN  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
Notes:  
P
DM  
0.05  
t
1
t
2
t
t
1
2
0.02  
1. Duty Cycle, D =  
2. Per Unit Base = R  
= 81 °C/W  
thJA  
(t)  
3. T - T = P  
Z
Single Pulse  
JM  
A
DM thJA  
4. Surface Mounted  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
100  
1000  
10  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.1  
0.02  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Case  
10  
1
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see http://www.vishay.com/ppg?68787.  
Document Number: 68787  
S-81716-Rev. A, 04-Aug-08  
www.vishay.com  
7
Package Information  
Vishay Siliconix  
PowerPAK® 1212-8, (SINGLE/DUAL)  
L
H
E2  
E4  
K
W
8
1
1
2
3
4
Z
2
4
5
L1  
E3  
Backside View of Single Pad  
A1  
L
H
K
E2  
E4  
H
2
E1  
E
1
2
3
4
Detail Z  
D1  
D2  
Notes:  
1. Inch will govern  
2
Dimensions exclusive of mold gate burrs  
3. Dimensions exclusive of mold flash and cutting burrs  
E3  
Backside View of Dual Pad  
MILLIMETERS  
INCHES  
NOM.  
0.041  
DIM.  
A
MIN.  
0.97  
0.00  
0.23  
0.23  
3.20  
2.95  
1.98  
0.48  
NOM.  
1.04  
MAX.  
MIN.  
0.038  
0.000  
0.009  
0.009  
0.126  
0.116  
0.078  
0.019  
MAX.  
0.044  
0.002  
0.016  
0.013  
0.134  
0.124  
0.088  
0.035  
1.12  
0.05  
0.41  
0.33  
3.40  
3.15  
2.24  
0.89  
A1  
b
-
-
0.30  
0.012  
c
0.28  
0.011  
D
3.30  
0.130  
D1  
D2  
D3  
D4  
D5  
E
3.05  
0.120  
2.11  
0.083  
-
-
0.47 TYP.  
2.3 TYP.  
3.30  
0.0185 TYP.  
0.090 TYP.  
0.130  
3.20  
2.95  
1.47  
1.75  
3.40  
3.15  
1.73  
1.98  
0.126  
0.116  
0.058  
0.069  
0.134  
0.124  
0.068  
0.078  
E1  
E2  
E3  
E4  
e
3.05  
0.120  
1.60  
0.063  
1.85  
0.073  
0.34 TYP.  
0.65 BSC  
0.86 TYP.  
-
0.013 TYP.  
0.026 BSC  
0.034 TYP.  
-
K
K1  
H
0.35  
0.30  
0.30  
0.06  
0°  
-
0.014  
0.012  
0.012  
0.002  
0°  
-
0.41  
0.51  
0.56  
0.20  
12°  
0.016  
0.020  
0.022  
0.008  
12°  
L
0.43  
0.017  
L1  
θ
0.13  
0.005  
-
-
W
M
0.15  
0.25  
0.36  
0.006  
0.010  
0.014  
0.125 TYP.  
0.005 TYP.  
ECN: S10-0951-Rev. J, 03-May-10  
DWG: 5882  
Document Number: 71656  
Revison: 03-May-10  
www.vishay.com  
1
AN822  
Vishay Siliconix  
®
PowerPAK 1212 Mounting and Thermal Considerations  
Johnson Zhao  
MOSFETs for switching applications are now available  
The PowerPAK 1212-8 has a footprint area compara-  
ble to TSOP-6. It is over 40 % smaller than standard  
TSSOP-8. Its die capacity is more than twice the size  
of the standard TSOP-6’s. It has thermal performance  
an order of magnitude better than the SO-8, and 20  
times better than TSSOP-8. Its thermal performance is  
better than all current SMT packages in the market. It  
will take the advantage of any PC board heat sink  
capability. Bringing the junction temperature down also  
increases the die efficiency by around 20 % compared  
with TSSOP-8. For applications where bigger pack-  
ages are typically required solely for thermal consider-  
ation, the PowerPAK 1212-8 is a good option.  
with die on resistances around 1 mΩ and with the  
capability to handle 85 A. While these die capabilities  
represent a major advance over what was available  
just a few years ago, it is important for power MOSFET  
packaging technology to keep pace. It should be obvi-  
ous that degradation of a high performance die by the  
package is undesirable. PowerPAK is a new package  
technology that addresses these issues. The PowerPAK  
1212-8 provides ultra-low thermal impedance in a  
small package that is ideal for space-constrained  
applications. In this application note, the PowerPAK  
1212-8’s construction is described. Following this,  
mounting information is presented. Finally, thermal  
and electrical performance is discussed.  
Both the single and dual PowerPAK 1212-8 utilize the  
same pin-outs as the single and dual PowerPAK SO-8.  
The low 1.05 mm PowerPAK height profile makes both  
versions an excellent choice for applications with  
space constraints.  
THE PowerPAK PACKAGE  
The PowerPAK 1212-8 package (Figure 1) is a deriva-  
tive of PowerPAK SO-8. It utilizes the same packaging  
technology, maximizing the die area. The bottom of the  
die attach pad is exposed to provide a direct, low resis-  
tance thermal path to the substrate the device is  
mounted on. The PowerPAK 1212-8 thus translates  
the benefits of the PowerPAK SO-8 into a smaller  
package, with the same level of thermal performance.  
PowerPAK 1212 SINGLE MOUNTING  
To take the advantage of the single PowerPAK 1212-8’s  
thermal performance see Application Note 826,  
Recommended Minimum Pad Patterns With Outline  
Drawing Access for Vishay Siliconix MOSFETs. Click  
on the PowerPAK 1212-8 single in the index of this  
document.  
(Please refer to application note “PowerPAK SO-8  
Mounting and Thermal Considerations.”)  
In this figure, the drain land pattern is given to make full  
contact to the drain pad on the PowerPAK package.  
This land pattern can be extended to the left, right, and  
top of the drawn pattern. This extension will serve to  
increase the heat dissipation by decreasing the ther-  
mal resistance from the foot of the PowerPAK to the  
PC board and therefore to the ambient. Note that  
increasing the drain land area beyond a certain point  
will yield little decrease in foot-to-board and foot-to-  
ambient thermal resistance. Under specific conditions  
of board configuration, copper weight, and layer stack,  
experiments have found that adding copper beyond an  
2
area of about 0.3 to 0.5 in of will yield little improve-  
ment in thermal performance.  
Figure 1. PowerPAK 1212 Devices  
Document Number 71681  
03-Mar-06  
www.vishay.com  
1
AN822  
Vishay Siliconix  
PowerPAK 1212 DUAL  
To take the advantage of the dual PowerPAK 1212-8’s  
thermal performance, the minimum recommended  
land pattern can be found in Application Note 826,  
Recommended Minimum Pad Patterns With Outline  
Drawing Access for Vishay Siliconix MOSFETs. Click  
on the PowerPAK 1212-8 dual in the index of this doc-  
ument.  
ture profile used, and the temperatures and time  
duration, are shown in Figures 2 and 3. For the lead  
(Pb)-free solder profile, see http://www.vishay.com/  
doc?73257.  
The gap between the two drain pads is 10 mils. This  
matches the spacing of the two drain pads on the Pow-  
erPAK 1212-8 dual package.  
This land pattern can be extended to the left, right, and  
top of the drawn pattern. This extension will serve to  
increase the heat dissipation by decreasing the ther-  
mal resistance from the foot of the PowerPAK to the  
PC board and therefore to the ambient. Note that  
increasing the drain land area beyond a certain point  
will yield little decrease in foot-to-board and foot-to-  
ambient thermal resistance. Under specific conditions  
of board configuration, copper weight, and layer stack,  
experiments have found that adding copper beyond an  
area of about 0.3 to 0.5 in of will yield little improve-  
Ramp-Up Rate  
+ 6 °C /Second Maximum  
2
Temperature at 155 15 °C  
Temperature Above 180 °C  
Maximum Temperature  
Time at Maximum Temperature  
Ramp-Down Rate  
120 Seconds Maximum  
ment in thermal performance.  
70 - 180 Seconds  
240 + 5/- 0 °C  
20 - 40 Seconds  
REFLOW SOLDERING  
+ 6 °C/Second Maximum  
Vishay Siliconix surface-mount packages meet solder  
reflow reliability requirements. Devices are subjected  
to solder reflow as a preconditioning test and are then  
reliability-tested using temperature cycle, bias humid-  
ity, HAST, or pressure pot. The solder reflow tempera-  
Figure 2. Solder Reflow Temperature Profile  
10 s (max)  
210 - 220 °C  
3 °C/s (max)  
4 °C/s (max)  
183 °C  
140 - 170 °C  
50 s (max)  
3° C/s (max)  
60 s (min)  
Reflow Zone  
Pre-Heating Zone  
Maximum peak temperature at 240 °C is allowed.  
Figure 3. Solder Reflow Temperatures and Time Durations  
www.vishay.com  
2
Document Number 71681  
03-Mar-06  
AN822  
Vishay Siliconix  
TABLE 1: EQIVALENT STEADY STATE PERFORMANCE  
Package  
SO-8  
Single  
20  
TSSOP-8  
TSOP-8  
PPAK 1212  
PPAK SO-8  
Single Dual  
1.8 5.5  
Configuration  
Dual  
Single  
Dual  
Single  
40  
Dual  
Single  
Dual  
40  
52  
83  
90  
2.4  
5.5  
Thermal Resiatance RthJC(C/W)  
PowerPAK 1212  
49.8 °C  
Standard SO-8  
Standard TSSOP-8  
TSOP-6  
85 °C  
149 °C  
125 °C  
2.4 °C/W  
20 °C/W  
52 °C/W  
40 °C/W  
PC Board at 45 °C  
Figure 4. Temperature of Devices on a PC Board  
THERMAL PERFORMANCE  
Introduction  
Spreading Copper  
A basic measure of a device’s thermal performance is Designers add additional copper, spreading copper, to  
the junction-to-case thermal resistance, Rθjc, or the the drain pad to aid in conducting heat from a device. It  
junction to- foot thermal resistance, Rθjf. This parameter is helpful to have some information about the thermal  
is measured for the device mounted to an infinite heat performance for a given area of spreading copper.  
sink and is therefore a characterization of the device  
only, in other words, independent of the properties of the  
object to which the device is mounted. Table 1 shows a  
comparison of the PowerPAK 1212-8, PowerPAK SO-8,  
standard TSSOP-8 and SO-8 equivalent steady state  
performance.  
Figure 5 and Figure 6 show the thermal resistance of a  
PowerPAK 1212-8 single and dual devices mounted on  
a 2-in. x 2-in., four-layer FR-4 PC boards. The two inter-  
nal layers and the backside layer are solid copper. The  
internal layers were chosen as solid copper to model the  
large power and ground planes common in many appli-  
By minimizing the junction-to-foot thermal resistance, the cations. The top layer was cut back to a smaller area and  
MOSFET die temperature is very close to the tempera- at each step junction-to-ambient thermal resistance  
ture of the PC board. Consider four devices mounted on measurements were taken. The results indicate that an  
a PC board with a board temperature of 45 °C (Figure 4)  
.
area above 0.2 to 0.3 square inches of spreading copper  
gives no additional thermal performance improvement.  
A subsequent experiment was run where the copper on  
the back-side was reduced, first to 50 % in stripes to  
mimic circuit traces, and then totally removed. No signif-  
icant effect was observed.  
Suppose each device is dissipating 2 W. Using the junc-  
tion-to-foot thermal resistance characteristics of the  
PowerPAK 1212-8 and the other SMT packages, die  
temperatures are determined to be 49.8 °C for the Pow-  
erPAK 1212-8, 85 °C for the standard SO-8, 149 °C for  
standard TSSOP-8, and 125 °C for TSOP-6. This is a  
4.8 °C rise above the board temperature for the Power-  
PAK 1212-8, and over 40 °C for other SMT packages. A  
4.8 °C rise has minimal effect on r  
whereas a rise  
DS(ON)  
of over 40 °C will cause an increase in r  
as 20 %.  
as high  
DS(ON)  
Document Number 71681  
03-Mar-06  
www.vishay.com  
3
AN822  
Vishay Siliconix  
130  
120  
110  
100  
90  
105  
Spreading Copper (sq. in.)  
Spreading Copper (sq. in.)  
95  
85  
75  
65  
55  
45  
80  
50 %  
100 %  
70  
100 %  
0 %  
60  
50 %  
0 %  
50  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
Figure 6. Spreading Copper - Junction-to-Ambient Performance  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
Figure 5. Spreading Copper - Si7401DN  
CONCLUSIONS  
As a derivative of the PowerPAK SO-8, the PowerPAK The PowerPAK 1212-8 combines small size with attrac-  
1212-8 uses the same packaging technology and has tive thermal characteristics. By minimizing the thermal  
been shown to have the same level of thermal perfor- rise above the board temperature, PowerPAK simplifies  
mance while having a footprint that is more than 40 % thermal design considerations, allows the device to run  
smaller than the standard TSSOP-8.  
cooler, keeps r  
low, and permits the device to  
DS(ON)  
handle more current than a same- or larger-size MOS-  
FET die in the standard TSSOP-8 or SO-8 packages.  
Recommended PowerPAK 1212-8 land patterns are  
provided to aid in PC board layout for designs using this  
new package.  
www.vishay.com  
4
Document Number 71681  
03-Mar-06  
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR PowerPAK® 1212-8 Single  
0.152  
(3.860)  
0.039  
0.068  
0.010  
(0.255)  
(0.990)  
(1.725)  
0.016  
(0.405)  
0.026  
(0.660)  
0.025  
0.030  
(0.635)  
(0.760)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
Document Number: 72597  
Revision: 21-Jan-08  
www.vishay.com  
7
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

SI7732DP-T1-E3

TRANSISTOR 42 A, 20 V, 0.0024 ohm, N-CHANNEL, Si, POWER, MOSFET, ROHS COMPLIANT, LEADLESS, POWERPAK, SOP-8, FET General Purpose Power
VISHAY

SI7738DP

Dual N-Channel 150-V (D-S) MOSFET
VISHAY

SI7738DP-T1-E3

MOSFET N-CH D-S 150V PPAK 8SOIC
VISHAY

SI7748DP

N-Channel 30-V (D-S) MOSFET with Schottky Diode
VISHAY

SI7748DP-T1-GE3

N-Channel 30-V (D-S) MOSFET with Schottky Diode
VISHAY

SI7758DP-T1-GE3

Trans MOSFET N-CH 30V 34.6A 8-Pin PowerPAK SO T/R
VISHAY

SI7768DP-T1-GE3

TRANSISTOR 30 A, 30 V, 0.007 ohm, N-CHANNEL, Si, POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, LEADLESS, POWERPAK, SOP-8, FET General Purpose Power
VISHAY

SI7772DP

N-Channel 30-V (D-S) MOSFET with Schottky Diode
VISHAY

SI7772DP-T1-GE3

N-Channel 30-V (D-S) MOSFET with Schottky Diode
VISHAY

SI7774DP

N-Channel 30 V (D-S) MOSFET with Schottky Diode
VISHAY

SI7774DP-T1-GE3

N-Channel 30 V (D-S) MOSFET with Schottky Diode
VISHAY

SI7780DP-T1-GE3

TRANSISTOR 60 A, 40 V, 0.0055 ohm, N-CHANNEL, Si, POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, LEADLESS, POWERPAK, SOP-8, FET General Purpose Power
VISHAY