SIP21107DVP-30-E3 [VISHAY]

150-mA Low Noise, Low Dropout Regulator; 150 mA的低噪声,低压差稳压器
SIP21107DVP-30-E3
型号: SIP21107DVP-30-E3
厂家: VISHAY    VISHAY
描述:

150-mA Low Noise, Low Dropout Regulator
150 mA的低噪声,低压差稳压器

线性稳压器IC 调节器 电源电路 输出元件 信息通信管理
文件: 总13页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
New Product  
SiP21106/7/8  
Vishay Siliconix  
150-mA Low Noise, Low Dropout Regulator  
APPLICATIONS  
FEATURES  
Cellular Phones, Wireless Handsets  
TSC75-6L Package (1.6 x 1.6 x 0.6 mm), and  
TSOT23-5L Package Options  
PDAs  
1.0 % Output Voltage Accuracy at 25 °C  
Low Dropout Voltage: 135 mV at 150 mA  
SiP21106 Low Noise: 60 µV(rms)  
MP3 Players  
Digital Cameras  
Pagers  
RoHS  
COMPLIANT  
(10 Hz to 100 kHz Bandwidth)  
With 10 nF Over Full Load Range  
Wireless Modem  
Noise-Sensitive Electronic Systems  
35 µA (typical) Ground Current at 1 mA Load  
1 µA Maximum Shutdown Current at 85 °C  
Output Auto Discharge at Shutdown Mode  
Built-in Short Circuit (330 mA typical) and Thermal Pro-  
tection (160 °C typical)  
DESCRIPTION  
The SiP21106 BiCMOS 150 mA low noise LDO voltage reg-  
ulators are the perfect choice for low battery operated low  
powered applications. An Ultra low ground current and low  
dropout voltage of 135 mV at 150 mA load helps to extend  
battery life for portable electronics. Systems requiring a quiet  
voltage source, such as RF applications, will benefit from the  
SiP21106 low output noise.  
The SiP21107 do not require a noise bypass cpacitor and  
provides an error flag pin (POK or Power OK). POK output  
requires an external pull-up resistor and goes low when the  
supply has not come up to voltage.  
SiP21108 Adjustable Output Voltage  
SiP21107 POK Error Flag  
- 40 °C to + 125 °C Junction Temperature Range for  
Operation  
Uses Low ESR Ceramic Capacitors  
Fixed Voltage Output 1.3 V to 5 V in 50 mV Steps  
The SiP21108 output is adjusted with an external resistor  
network.  
The SiP21106/7/8 regulators allow stable operation with very  
small ceramic output capacitors, reducing board space and  
component cost. They are designed to maintain regulation  
while delivering 330 mA peak current upon turn-on. During  
start-up, an active pull-down circuit improves the output tran-  
sient response and regulation. In shutdown mode, the output  
automatically discharges to ground through a 100 Ω NMOS.  
The SiP21106/7/8 are available in TSOT23-5L and a super  
thin lead (Pb)-free TSC75-6L packages for operation over  
the industrial operation range (- 40 °C to 85 °C).  
TYPICAL APPLICATION CIRCUIT  
1
2
3
5
4
VIN  
VOUT  
VOUT  
EN  
VIN  
1
2
3
BP  
NC  
6
5
4
EN  
C
OUT = 1 µF  
CIN = 1 µF  
CBypass = 10 nF  
GND  
EN  
GND  
VIN  
SiP21106  
SiP21106  
EN  
BP  
VIN  
VOUT  
VOUT  
CIN = 1 µF  
CBypass = 10 nF  
COUT = 1 µF  
TSOT23-5L Package  
TSC75-6L Package  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
www.vishay.com  
1
New Product  
SiP21106/7/8  
Vishay Siliconix  
1
CIN=1µF  
2
5
4
VIN  
VOUT  
VIN  
VOUT  
OUT = 1 µF  
EN  
1
2
3
POK  
NC  
6
5
4
POK  
EN  
C
GND  
EN  
GND  
VIN  
SiP21107  
POK  
EN  
3
SiP21107  
VOUT  
POK  
VIN  
VOUT  
CIN = 1 µF  
COUT =1 µF  
TSOT23-5L Package  
TSC75L-6 Package  
EN  
1
2
3
Adj  
NC  
6
5
4
1
2
3
5
EN  
VIN  
VOUT  
VIN  
VOUT  
CIN = 1 µF  
COUT =1µF  
GND  
VIN  
GND  
EN  
SiP21108  
VOUT  
SiP21108  
EN  
4
VIN  
CIN = 1 µF  
VOUT  
Adj  
C
OUT = 1 µF  
TSC75-6L Package  
TSOT23-5L Package  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Limit  
Unit  
Input Voltage, VIN to GND  
- 0.3 to 6  
- 0.3 to 6  
V
V
EN (See Detailed Description)  
Output Current (IOUT  
Output Voltage (VOUT  
)
Short Circuit Protected  
- 0.3 to VIN + 0.3  
V
)
TSC75-6L  
TSOT23-5L  
440  
Package Power Dissipation (PD)a  
420  
131  
mW  
b
Package Thermal Resistance (θJA  
)
180  
°C/W  
Maximum Junction Temperature, TJ(max)  
125  
- 65 to 150  
260  
Storage Temperature, TSTG  
°C  
c
Lead Temperature, TL  
Notes:  
a. Derate 7.6 mW/°C for TSC75-6L package and 5.5 mW/°C for TSOT23-5L package above TA = 70 °C.  
b. Device mounted with all leads soldered or welded to PC board.  
c. Soldering for 5 sec.  
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating/conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING RANGE  
Parameter  
Limit  
Unit  
V
Input Voltage, VIN  
2.2 to 5.5  
- 40 to 85  
Operating Ambient Temperature TA  
°C  
www.vishay.com  
2
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
New Product  
SiP21106/7/8  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions Unless Specified  
V
IN = VOUT(nom) + 1.0 V = VEN  
IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF  
- 40 °C < TA < 85 °C for full  
Parameter  
Symbol  
Tempa Minb Typc Maxb Unit  
Input Voltage Range  
VIN  
Full  
2.2  
5.5  
1.0  
2.5  
V
Room - 1.0  
Output Voltage Accuracy  
Line Regulation  
VOUT  
VDO  
VDO  
IOUT = 1 mA  
%
Full  
Full  
- 2.5  
All others  
- 0.2 0.006 0.2  
%/V  
mV  
For 4.6 V to 5.0 V  
- 0.4  
0.4  
Room  
Full  
45  
55  
IOUT = 50 mA  
Dropout Voltaged  
(2.2 V VOUT(nom) < 2.6 V)  
Room  
Full  
90  
I
I
OUT = 100 mA  
OUT = 150 mA  
IOUT = 50 mA  
OUT = 100 mA  
OUT = 150 mA  
IOUT = 1 mA  
106  
135  
160  
45  
Room  
Full  
250  
300  
Room  
Full  
55  
Dropout Voltage  
(VOUT(nom) 2.6 V)  
Room  
Full  
90  
I
I
mV  
µA  
106  
135  
160  
35  
Room  
Full  
180  
220  
75  
Room  
Full  
85  
Ground Pin Currente  
IGND  
Room  
Full  
39  
75  
I
OUT = 150 mA  
SiP21106  
85  
V
V
OUT(nom) = 2.8 V, BW = 10 Hz to 100 kHz, Room  
1 mA < IOUT < 150 mA, CBP = 0.01 µF  
60  
µV  
µV  
Output Noise Voltagef (RMS)  
Ripple Rejection  
eN  
SiP21107/8  
OUT(nom) = 2.8 V, BW = 10 Hz to 100 kHz, Room  
1 mA < IOUT < 150 mA  
350  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
Room  
Room  
Room  
70  
55  
25  
PSRR  
LDR  
IOUT = 150 mA  
dB  
VOUT 2.6 V,  
OUT : 1 mA to 150 mA  
OUT < 2.6 V,  
Room  
0.003 0.006  
I
I
Load Regulation  
%/mA  
V
Room  
Room  
Room  
Room  
0.005 0.009  
OUT : 1 mA to 150 mA  
Auto Discharge Resistance  
RDIS  
VOUT = 2 V  
100  
160  
20  
Ω
Thermal Shutdown Junction  
Temperature  
TJ(S/D)  
°C  
Thermal Hysteresis  
THYST  
IO_LIMIT  
ICC(off)  
VENH  
Output Current Limit  
Shutdown Supply Current  
VOUT = 0 V  
VEN = 0 V  
Room 170  
Full  
330  
600  
1
mA  
µA  
0.02  
High = Regulator ON (Rising)  
Low = Regulator OFF (Falling)  
Full  
Full  
1.2  
5.5  
0.4  
EN Pin Input Voltage  
V
VENL  
EN Pin Input Current  
IEN  
ton  
Room  
0.009  
70  
µA  
µs  
EN to VOUT delay; IOUT = 1 mA  
Output Voltage Turn-On Time  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
www.vishay.com  
3
New Product  
SiP21106/7/8  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions Unless Specified  
V
IN = VOUT(nom) + 1.0 V  
I
OUT = 1 mA, CIN = 1 µF, COUT = 1 µF  
- 40 °C < TA < 85 °C for full  
Parameter  
Symbol  
Tempa Minb Typc Maxb Unit  
Adjustable Voltage Section (SiP21108 Version only)  
Room 1.188 1.2 1.212  
V
Feedback Voltage  
VAdj  
Full 1.170  
1.230  
Error Flag Section (SiP21107 Version only)  
RPU to VOUT or VIN  
ISINK = 0.5 mA  
POK(OFF) Leakage  
IOFF  
Full  
Full  
1
µA  
V
POK(ON) Voltage  
POK Thresholdg  
POK Hysteresis  
VPOKL  
VPOKLH  
VHYST  
0.4  
96  
VIN rising, IOUT = 1 mA, POK goes high  
VIN falling, IOUT = 1 mA, POK goes low  
Full  
90  
%
Room  
1.5  
Notes:  
a. Room = 25 °C, Full = - 40 to 85 °C. Derate 7.6 mW/°C for TSC75 and 5.5 mW/°C for SOT23 above TA = 70 °C  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
d. Dropout voltage is defined as the input-to-output differential voltage at which the output voltage drops 2 % below its nominal  
value with constant load. For outputs = 2.2 V, dropout voltage is not applicable due to 2.2 V minimum input voltage requirement.  
e. Ground current is specified for normal operation as well as “drop-out” operation.  
f. Output noise is proportional to output voltage. Use formula eN = 60 µV(rms)*VOUT/2.8 V.  
g. POK threshold percentage is calculated by VIN/VOUT x 100 %.  
TIMING WAVEFORMS  
V
V
IN  
V
EN  
t
r
1 µs  
0 V  
t
ON  
NOM  
0.95 V  
NOM  
V
OUT  
Figure 1.  
www.vishay.com  
4
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
New Product  
SiP21106/7/8  
Vishay Siliconix  
PIN CONFIGURATION  
BP/Adj/POK  
NC  
EN  
BP/Adj/POK  
NC  
EN  
1
6
5
GND  
GND  
2
4
3
V
OUT  
V
IN  
V
V
IN  
OUT  
TOP VIEW  
BOTTOM VIEW  
TSC75-6L PACKAGE (1.6 x 1.6 x 0.6 mm)  
V
V
IN  
V
V
1
2
3
5
4
5
4
1
2
IN  
OUT  
OUT  
GND  
EN  
GND  
EN  
3
BP/Adj/POK  
BP/Adj/POK  
TOP VIEW  
BOTTOM VIEW  
TSOT23-5L Package  
Figure 2.  
PIN DESCRIPTION  
Pin Number  
TSC75-6L  
Pin Number  
TSOT23-5L  
Name  
Function  
By applying less than 0.4 V to this pin, the device will be turned off. Connect this pin to  
EN  
1
3
V
IN if unused. Do not leave floating.  
2
3
4
5
2
1
5
-
GND  
VIN  
Ground pin. For better thermal capability, directly connected to large ground plane.  
Input supply pin. Bypass this pin with a 1 µF ceramic or tantalum capacitor to ground.  
VOUT  
NC  
Output voltage. Connect COUT between this pin and ground.  
No Connection.  
- BP (SiP21106): Noise bypass pin. For low noise applications, a 10 nF ceramic capacitor  
should be connected from this pin to ground.  
- Adj (SiP21108): Adjust input pin. Connect feedback resistors to program the output  
voltage for trim value of 1.2005 V.  
- POK (SiP21107): Power OK (Error Flag) pin. Open-drain output, which requires  
connecting a pull-up resistor to VIN or VOUT. POK pin is actively high to indicate an output  
normal operation condition on regulator and goes low to indicate under-voltage fault  
condition.  
6
4
BP/Adj/POK  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
www.vishay.com  
5
New Product  
SiP21106/7/8  
Vishay Siliconix  
ORDERING INFORMATION  
Part Number  
Marking  
AA  
BG  
BP  
BR  
BT  
Voltage  
Adjustable  
1.8  
Temperature Range  
Package  
SiP21108DVP-T1-E3  
SiP21106DVP-18-E3  
SiP21106DVP-25-E3  
SiP21106DVP-26-E3  
SiP21106DVP-28-E3  
SiP21106DVP-30-E3  
SiP21106DVP-33-E3  
SiP21106DVP-46-E3  
SiP21106DVP-285-E3  
SiP21107DVP-18-E3  
SiP21107DVP-25-E3  
SiP21107DVP-26-E3  
SiP21107DVP-28-E3  
SiP21107DVP-30-E3  
SiP21107DVP-33-E3  
SiP21107DVP-46-E3  
SiP21107DVP-285-E3  
SiP21108DT-T1-E3  
SiP21106DT-18-E3  
SiP21106DT-25-E3  
SiP21106DT-26-E3  
SiP21106DT-28-E3  
SiP21106DT-285-E3  
SiP21106DT-30-E3  
SiP21106DT-33-E3  
SiP21106DT-46-E3  
SiP21107DT-18-E3  
SiP21107DT-25-E3  
SiP21107DT-26-E3  
SiP21107DT-28-E3  
SiP21107DT-285-E3  
SiP21107DT-30-E3  
SiP21107DT-33-E3  
SiP21107DT-46-E3  
2.5  
2.6  
2.8  
BV  
BY  
CM  
CT  
DG  
DP  
DR  
DT  
DV  
DY  
3.0  
3.3  
4.6  
2.85  
1.8  
- 40 °C to 85 °C  
TSC75-6L  
2.5  
2.6  
2.8  
3.0  
3.3  
EM  
ET  
4.6  
2.85  
Adjustable  
1.8  
N9  
N1  
NA  
NC  
N2  
2.5  
2.6  
2.8  
NE  
NG  
N3  
2.85  
3.0  
3.3  
N4  
4.6  
- 40 °C to 85 °C  
TSOT23-5L  
N5  
1.8  
NB  
ND  
N6  
2.5  
2.6  
2.8  
NF  
NH  
N7  
2.85  
3.0  
3.3  
N8  
4.6  
Note:  
Other fixed output voltage options are available. Please contact your Vishay sales representative or distributor for details.  
www.vishay.com  
6
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
New Product  
SiP21106/7/8  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
3.00  
1.00  
2.50  
0.50  
0.00  
2.00  
IOUT = 1 mA  
IOUT = 0 mA  
1.50  
IOUT = 150 mA  
- 0.50  
- 1.00  
- 1.50  
1.00  
0.50  
0.00  
SiP21106: 2.8 V  
SiP21106: 2.8 V  
- 40  
- 15  
10  
Temperature (°C)  
Output Voltage Accuracy vs. Temperature  
35  
60  
85  
0.00  
1.00  
2.00  
3.00  
IN(V)  
4.00  
5.00  
V
Output Voltage vs. Input Voltage  
180  
180  
160  
140  
120  
100  
80  
SiP21106: 2.8 V  
160  
140  
120  
100  
80  
TA = + 85 °C  
IOUT = 150 mA  
TA = + 25 °C  
60  
IOUT = 100 mA  
40  
TA = - 40 °C  
20  
SiP21106: 2.8 V  
100 125 150  
0
60  
2
2.5  
3
3.5  
4
4.5  
5
0
25  
50  
75  
IOUT (mA)  
(V)  
VOUT  
Dropout Voltage vs. Output Voltage  
Dropout Voltage vs. Load Current  
180  
160  
140  
120  
100  
80  
41  
40  
39  
38  
37  
36  
35  
34  
IOUT = 150 mA  
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 1 mA  
60  
IOUT = 50 mA  
40  
SiP21106: 2.8 V  
60  
SiP21106: 2.8 V  
60 85  
20  
- 40  
- 40  
- 15  
10  
Temperature (°C)  
Ground Current vs. Temperature  
35  
85  
- 15  
10  
Temperature (°C)  
Dropout Voltage vs. Temperature  
35  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
www.vishay.com  
7
New Product  
SiP21106/7/8  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
50  
40  
30  
20  
10  
0
50  
VIN = 5.5 V  
IOUT = 150 mA  
IOUT = 1 mA  
45  
VIN = 3.8 V  
40  
35  
30  
25  
SiP21106: 2.8 V  
SiP21106: 2.8 V  
0
25  
50  
75  
100  
125  
150  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
(mA)  
IOUT  
VIN (V)  
Ground Current vs. Output Current  
Ground Current vs. Input Voltage at 25 °C  
2.820  
2.800  
2.780  
2.760  
2.740  
2.720  
80  
70  
60  
50  
40  
30  
20  
10  
IOUT = 150 mA  
SiP21106: 2.8 V  
IN = 3.8 V  
SiP21106: 2.8 V  
IN = 3.8 V  
OUT = 3.0 V  
V
V
V
C
IN = 1 µF  
IOUT = 1 mA  
COUT = 1 µF  
CBP = 10 nF  
IOUT = 0 mA  
IOUT = 100 mA  
IOUT = 50 mA  
IOUT = 150 mA  
0
-10  
- 40  
- 15  
10  
35  
60  
85  
0.01K  
0.1K  
1K  
100K  
10K  
1000K  
Temperature (°C)  
Output Voltage Accuracy vs. Load Current  
Frequency (Hz)  
PSRR  
400  
SiP21106: 2.8 V  
350  
300  
250  
200  
150  
100  
50  
0
0.001  
0.0056  
0.01  
0.056  
0.1  
BP Capacitance (µF)  
Output Noise vs. BP Capacitance  
www.vishay.com  
8
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
New Product  
SiP21106/7/8  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
I
(100 mA/DIV)  
OUT  
I
(100 mA/DIV)  
OUT  
V
(50 mV/DIV)  
OUT  
V
(50 mV/DIV)  
OUT  
SiP21106: 2.8 V  
SiP21106: 4.6 V  
V
V
C
C
C
= 3.8 V  
= 2.8 V  
= 1 µF  
IN  
OUT  
V
= 5.5 V  
IN  
V
= 4.6 V  
= 1 µF  
OUT  
IN  
C
C
C
IN  
= 1 µF  
OUT  
= 1 µF  
OUT  
= 10 nF  
BP  
= 10 nF  
BP  
50 µS/DIV  
50 µS/DIV  
Load Transient Response  
Load Transient Response  
SiP21106: 2.8 V  
SiP21106: 4.6 V  
V
V
= 3.8 to 4.8 V  
V
V
I
= 5.0 to 5.5 V  
IN  
IN  
= 2.8 V  
= 4.6 V  
OUT  
OUT  
I
= 150 mA  
= 150 mA  
OUT  
OUT  
C
C
= 1 µF  
C
C
C
= 1 µF  
IN  
IN  
OUT  
= 1 µF  
= 1 µF  
COUT= 10 nF  
= 10 nF  
BP  
BP  
V
(1 V/DIV)  
IN  
AC Coupling  
AC Coupling  
V
(200 mV/DIV)  
IN  
V
(10 mV/DIV)  
OUT  
V
(10 mV/DIV)  
OUT  
200 µS/DIV  
200 µS/DIV  
Line Transient Response  
Line Transient Response  
SiP21106: 2.8 V  
= 3.8 to 4.8 V  
SiP21106: 4.6 V  
V
IN  
V
= 5.0 to 5.5 V  
IN  
V
= 2.8 V  
OUT  
V
= 4.6 V  
= 1 mA  
OUT  
I
= 1 mA  
I
OUT  
OUT  
C
C
C
= 1 µF  
= 1 µF  
C
= 1 µF  
IN  
OUT  
IN  
OUT  
C
= 1 µF  
= 10 nF  
= 10 nF  
C
BP  
BP  
V
(1 V/DIV)  
IN  
AC Coupling  
AC Coupling  
(200 mV/DIV)  
V
IN  
V
(10 mV/DIV)  
OUT  
V
(10 mV/DIV)  
OUT  
200 µS/DIV  
200 µS/DIV  
Line Transient Response  
Line Transient Response  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
www.vishay.com  
9
New Product  
SiP21106/7/8  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
SiP21106: 2.8 V  
SiP21106: 2.8 V  
V
V
= 3.8 V  
IN  
V
= 3.8 V  
IN  
= 2.8 V  
OUT  
V
= 2.8 V  
= 1 µF  
OUT  
C
C
= 1 µF  
IN  
C
C
C
IN  
= 1 µF  
COUT= 10 nF  
= 1 µF  
OUT  
BP  
= 10 nF  
BP  
I
(100 mA/DIV)  
OUT  
I
(50 mA/DIV)  
OUT  
50 mS/DIV  
Output Short Circuit Current  
50 mS/DIV  
Output Short Thermal Cycling  
SiP21106: 2.8 V  
V
V
C
C
C
= 3.8 V  
IN  
SiP21106: 2.8 V  
IN  
= 2.8 V  
OUT  
V
V
= 3.8 V  
= 1 µF  
IN  
= 2.8 V  
= 1 µF  
OUT  
= 1 µF  
OUT  
C
C
C
= 10 nF  
IN  
BP  
= 1 µF  
OUT  
BP  
I
= 150 mA  
OUT  
V
(1 V/DIV)  
EN  
= 10 nF  
V
(500 mV/DIV)  
EN  
I
= 150 mA  
OUT  
V
(500 mV/DIV)  
OUT  
V
(500 mV/DIV)  
OUT  
20 µS/DIV  
Output Voltage Power-Down  
20 µS/DIV  
Output Voltage Start-Up  
TYPICAL WAVEFORMS  
1
0.1  
SiP21106: 2.8 V  
SiP21106: 2.8 V  
V
V
= 3.8 V  
V
V
C
C
C
I
= 4.5 V  
IN  
IN  
= 2.8 V  
= 2.8 V  
OUT  
OUT  
C
= 1 µF  
= 1 µF  
IN  
IN  
C
C
= 1 µF  
= 10 nF  
= 1 µF  
OUT  
V
V
(100 µV/DIV)  
= 60 µV  
OUT  
OUT  
= 10 nF  
= 150 mA  
BP  
BP  
I
= 100 mA  
OUT  
OUT  
NOISE  
RMS  
0.01  
10  
2 ms/DIV  
Output Noise  
100  
1K  
Frequency (Hz)  
Output Noise Spectral Density  
10K  
100K  
1M  
www.vishay.com  
10  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
New Product  
SiP21106/7/8  
Vishay Siliconix  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
EN  
Enable  
Error-Amp  
Bandgap  
Reference  
*
** ***  
BP/Adj/POK  
VOUT  
Current Limit &  
Thermal  
POK  
Ref  
SiP21106: BP  
SiP21107: POK  
SiP21108: Adj  
SiP21106: BP  
SiP21107: POK  
SiP21108: Adj  
*
***  
**  
GND  
Figure 3.  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
www.vishay.com  
11  
New Product  
SiP21106/7/8  
Vishay Siliconix  
DETAILED DESCRIPTION  
Output Voltage Selection  
The SiP21106 has fixed voltage outputs that are preset to  
voltages from 1.8 V to 4.6 V (see Ordering Information).  
As shown in the block diagram, the circuit consists of a band-  
gap reference, error amplifier, P-Channel pass transistor and  
an internal feedback resistor voltage divider, which is used to  
monitor and control the output voltage.  
V
IN  
A constant 1.2 V bandgap reference voltage is applied to the  
non-inverting input of the error amplifier. The error amplifier  
compares this reference with the feedback voltage on its  
inverting input and amplifies the difference. If the feedback  
voltage is lower than the reference voltage, the pass-transis-  
tor gate is pulled low. This increases the PMOS's gate to  
source voltage and allows more current to pass through the  
transistor to the output which increases the output voltage.  
Conversely, if the feedback voltage is higher than the refer-  
ence voltage, the pass transistor gate is pulled high,  
decreasing the gate-to-source voltage, thereby allowing less  
current to pass to the output and causing it to drop.  
1.2 V  
Reference  
+
Error-Amp  
V
OUT  
-
R
R
1
2
Figure 4.  
The SiP21108 has a user-adjustable output that can be set  
through the resistor feedback network consisting of R1 and  
R2. R2 range of 100K to 400K is recommended to be  
consistent with ground current specification. R1 can then be  
determined by the following equation:  
Internal P-Channel Pass Transistor  
A 0.9 Ω (typical) P-Channel MOSFET is used as the pass  
transistor for the SiP21106/7/8 part series. The MOSFET  
transistor offers many advantages over the more, formerly,  
common PNP pass transistor designs, which ultimately  
result in longer battery lifetime. The main disadvantage of  
PNP pass transistors is that they require a certain base cur-  
rent to stay on, which significantly increases under heavy  
load conditions. In addition, during dropout, when the pass  
transistor saturates, the PNP regulators waste considerable  
current. In contrast, P-Channel MOSFETS require virtually  
zero-base drive and do not suffer from the stated problems.  
These savings in base drive current translate to lower quies-  
cent current which is typical around 35 µA as shown in the  
Typical Characteristics.  
VOUT  
(
)
- 1  
R1 = R2 x  
Vref  
Where Vref is typically 1.2005 V. Use 1 % or better resistors  
for better output voltage accuracy (see Figure 4).  
Current Limit  
The SiP21106/7/8 include a current limit block which moni-  
tors the current passing through the pass transistor through  
a current mirror and controls the gate voltage of the MOS-  
FET, limiting the output current to 330 mA (typical). This cur-  
rent limit feature allows for the output to be shorted to ground  
for an indefinite amount of time without damaging the device.  
Shutdown and Auto-Dischage/No-Discharge  
Bringing the EN voltage low will place the part in shutdown  
mode where the device output enters a high-impedance  
state and the quiescent current is reduced to below 1 µA,  
reducing the drain on the battery in standby mode and  
increasing standby time. Connect EN pin to input for normal  
operation. The output has an internal pull down to discharge  
the output to ground when the EN pin is low. The internal pull  
down is a 100 Ω typical resistor, which can discharge a 1 µF  
in less than 1 ms. Refer to Typical Operating Waveforms for  
turn-off waveforms.  
Thermal-Overload Protection  
The thermal overload protection limits the total power dissi-  
pation and protects the device from being damaged. When  
the junction temperature exceeds TJ = 150 °C, the device  
turns the P-Channel pass transistor off allowing the device to  
cool down. Once the temperature drops by about 20 °C, the  
thermal sensor turns the pass transistor on again and  
resumes normal operation. Consequently, a continuous ther-  
mal overload condition will result in a pulsed output. It is gen-  
erally recommended to not exceed the junction temperature  
rating of 125 °C for continuous operation.  
www.vishay.com  
12  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
New Product  
SiP21106/7/8  
Vishay Siliconix  
Noise Reduction in SiP21106  
Operating Region and Power Dissipation  
For the SiP21106, an external 10 nF bypass capacitor at BP  
pin is used to create a low pass filter for noise reduction. The  
startup time is fast, since a power-on circuit pre-charges the  
bypass capacitor. After the power-up sequence the pre-  
charge circuit is switched to standby mode in order to save  
current. It is therefore not recommended to use larger  
bypass capacitor values than 50 nF. When the circuit is used  
without a capacitor, stable operation is guaranteed.  
An important consideration when designing power supplies  
is the maximum allowable power dissipation of a part. The  
maximum power dissipation in any application is dependant  
on the maximum junction temperature, TJ(max) = 125 °C, the  
ambient temperature, TA, and the junction-to-ambient ther-  
mal resistance for the package, which is the summation of  
θJ-C, the thermal resistance of the package, and θC-A , the  
thermal resistance through the PC board and copper traces.  
Power dissipation may be formulaically expressed as:  
POK Status in SiP21107  
The POK comparator monitors the output until the supply  
comes up to specified percentage of VIN. This open drain  
NMOS output requires an external pull-up resistor to either  
VOUT or VIN. The internal NMOS can drive up to 0.5 mA  
loads. POK pin is actively high to indicate an output normal  
operation condition on regulator and goes low to indicate  
under-voltage on regulator.  
T
- T  
A
(max)  
J
P
(max)  
=
θ J-C + θ C-A  
The GND pin of the SiP21106/7/8 acts as both the electrical  
connection to GND as well as a path for channeling away  
heat. Connect this pin to a GND plane to maximize heat dis-  
sipation.Once maximum powChanneler dissipation is calcu-  
lated using the equation above, the maximum allowable  
output current for any input/output potential can be calcu-  
lated as  
APPLICATION INFORMATION  
Input/Output Capacitor Selection and Regulator  
Stability  
It is recommended that a low ESR 1 µF capacitor be used on  
the SiP21106/7/8 input. A larger input capacitance with lower  
ESR would improve noise rejection and line-transient  
response. A larger input bypass capacitor may be required in  
applications involving long inductive traces between the  
source and LDO. The circuit is stable with only a small output  
capacitor equal to 6 nF/mA (1 µF at 150 mA) of load. Since  
the bandwidth of the error amplifier is around 1 - 3 MHz and  
the dominant pole is at the output node, the capacitor should  
be capacitive in this range, i.e., for 150 mA load current, an  
ESR < 0.4 Ω is necessary. Parasitic inductance of about  
10 nH can be tolerated. Applying a larger output capacitor  
would increase power supply rejection and improve load-  
transient response. Some ceramic dielectrics such as the  
Z5U and Y5V exhibit large capacitance and ESR variation  
over temperature. If such capacitors are used, a 2.2 µF or  
larger value may be needed to ensure stability over the  
industrial temperature range. If using higher quality ceramic  
capacitors, such as those with X7R and Y7R dielectrics, a  
1 µF capacitor will be sufficient at all operating temperatures.  
P(max)  
IOUT(max)  
=
VIN - VOUT  
PCB Layout  
The component placement around the LDO should be done  
carefully to achieve good dynamic line and load response.  
The input and noise capacitor should be kept close to the  
LDO. The rise in junction temperature depends on how effi-  
ciently the heat is carried away from junction-to-ambient. The  
junction-to-lead thermal impedance is a characteristic of the  
package and is fixed. The thermal impedance between lead-  
to-ambient can be reduced by increasing the copper area on  
PCB. Increase the input, output and ground trace area to  
reduce the junction-to-ambient thermal impedance.  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Tech-  
nology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability  
data, see http://www.vishay.com/ppg?74442.  
Document Number: 74442  
S-70067–Rev. B, 22-Jan-07  
www.vishay.com  
13  

相关型号:

SIP21107DVP-33-E3

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21107DVP-46-E3

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21108

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21108DR-T1-E3

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21108DT-T1-E3

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21108DVP-T1-E3

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21110

250-mA Adjustable, Low Dropout Regulator
VISHAY

SiP21110DT-T1-E3

250-mA Adjustable, Low Dropout Regulator
VISHAY

SIP21301LH-15-E3

Analog Circuit, CMOS, PDSO8
VISHAY

SIP21301LH-AD-E3

Analog Circuit, CMOS, PDSO8
VISHAY
VISHAY

SIP2210DMP-DD-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY