SIP21108DR-T1-E3 [VISHAY]

150-mA Low Noise, Low Dropout Regulator; 150 mA的低噪声,低压差稳压器
SIP21108DR-T1-E3
型号: SIP21108DR-T1-E3
厂家: VISHAY    VISHAY
描述:

150-mA Low Noise, Low Dropout Regulator
150 mA的低噪声,低压差稳压器

稳压器
文件: 总19页 (文件大小:570K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
150-mA Low Noise, Low Dropout Regulator  
DESCRIPTION  
FEATURES  
The SiP21106 BiCMOS 150 mA low noise LDO voltage  
regulators are the perfect choice for low battery operated low  
powered applications. An ultra low ground current and low  
dropout voltage of 135 mV at 150 mA load helps to extend  
battery life for portable electronics. Systems requiring a quiet  
voltage source, such as RF applications, will benefit from the  
SiP21106 low output noise.  
The SiP21107 do not require a noise bypass capacitor and  
provides an error flag pin (POK or Power OK). POK output  
requires an external pull-up resistor and goes low when the  
supply has not come up to voltage.  
SC70-5L (2.1 mm x 2.1 mm x 0.95 mm)  
TSOT23-5L (3.05 mm x 2.85 mm x 1.0 mm)  
TSC75-6L package (1.6 mm x 1.6 mm  
x 0.55 mm), TSOT23-5L and SC70-5L  
Package Options  
RoHS  
COMPLIANT  
1.0 % output voltage accuracy at 25 °C  
Low dropout voltage: 135 mV at 150 mA  
SiP21106 low noise: 60 µV(rms) (10 Hz to 100 kHz  
bandwidth) with 10 nF over full load range  
35 µA (typical) ground current at 1 mA load  
1 µA maximum shutdown current at 85 °C  
Output auto discharge at shutdown mode  
Built-in short circuit (330 mA typical) and thermal  
protection (160 °C typical)  
SiP21108 adjustable output voltage  
SiP21107 POK Error Flag  
- 40 °C to + 125 °C junction temperature range for  
operation  
Uses low ESR ceramic capacitors  
The SiP21108 output is adjusted with an external resistor  
network.  
The SiP21106, SiP21107, SiP21108 regulators allow stable  
operation with very small ceramic output capacitors,  
reducing board space and component cost. They are  
designed to maintain regulation while delivering 330 mA  
peak current upon turn-on. During start-up, an active  
pull-down circuit improves the output transient response and  
regulation. In shutdown mode, the output automatically  
discharges to ground through a 100 Ω NMOS.  
The SiP21106, SiP21107, SiP21108 are available in  
TSOT23-5L a super thin lead (Pb)-free TSC75-6L and  
SC70-5L packages for operation over the industrial operation  
range (- 40 °C to 85 °C).  
Fixed voltage output 1.2 V to 5 V in 50 mV steps  
Compliant to RoHS Directive 2002/95/EC  
APPLICATIONS  
Cellular phones, wireless handsets  
PDAs  
MP3 players  
Digital cameras  
Pagers  
Wireless modem  
Noise-sensitive electronic systems  
TYPICAL APPLICATION CIRCUIT  
1
2
3
5
VIN  
VOUT  
VOUT  
EN  
VIN  
BP  
NC  
EN  
C
OUT = 1 µF  
CIN = 1 µF  
CBypass = 10 nF  
GND  
EN  
GND  
VIN  
SiP21106  
SiP21106  
EN  
4
BP  
VIN  
VOUT  
VOUT  
CIN = 1 µF  
CBypass = 10 nF  
COUT = 1 µF  
TSOT23-5L/SC70-5LPackage  
TSC75-6L Package  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
www.vishay.com  
1
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
TYPICAL APPLICATION CIRCUIT  
1
CIN=1µF  
2
5
4
EN  
VIN  
VOUT  
POK  
NC  
POK  
VOUT  
EN  
C
OUT = 1 µF  
GND  
EN  
GND  
VIN  
SiP21107  
POK  
SiP21107  
VOUT  
3
VIN  
POK  
VOUT  
CIN = 1 µF  
COUT =1 µF  
TSOT23-5L/SC70-5LPackage  
TSC75L-6 Package  
EN  
Adj  
1
2
3
5
EN  
VIN  
VOUT  
VIN  
VOUT  
CIN = 1 µF  
COUT =1µF  
GND  
NC  
GND  
EN  
SiP21108  
VOUT  
SiP21108  
EN  
4
VIN  
VIN  
VOUT  
Adj  
CIN = 1 µF  
C
OUT = 1 µF  
TSC75-6L Package  
TSOT23-5L/SC70-5L Package  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Limit  
- 0.3 to 6.5  
- 0.3 to 6.5  
Short Circuit Protected  
- 0.3 to VIN + 0.3  
TSOT23-5L  
305  
Unit  
Input Voltage, VIN to GND  
V
V
EN (See Detailed Description)  
Output Current (IOUT  
Output Voltage (VOUT  
)
V
)
TSC75-6L  
SC70-5L  
187  
Package Power Dissipation (PD)a  
420  
131  
mW  
b
Package Thermal Resistance (θJA  
)
180  
294  
°C/W  
Maximum Junction Temperature, TJ(max)  
Storage Temperature, TSTG  
125  
- 65 to 150  
260  
°C  
c
Lead Temperature, TL  
Notes:  
a. Derate 7.6 mW/°C for TSC75-6L package, 5.5 mW/°C for TSOT23-5L and 3.4 mW/°C for SC70-5L package above TA = 70 °C.  
b. Device mounted with all leads soldered or welded to multilayer 1S2P PC board.  
c. Soldering for 5 s.  
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating/conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING RANGE  
Parameter  
Limit  
2.2 to 6  
- 40 to 85  
Unit  
V
Input Voltage, VIN  
Operating Ambient Temperature TA  
°C  
www.vishay.com  
2
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions Unless Specified  
IN = VOUT(nom) + 1.0 V = VEN  
V
IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF  
- 40 °C < TA < 85 °C for full  
Parameter  
Symbol  
Temp.a Min.b Typ.c Max.b Unit  
Input Voltage Range  
VIN  
Full  
Room - 1.0  
Full - 2.5  
Room - 1.5  
Full - 4  
Room 1.188  
2.2  
6
1.0  
V
IOUT = 1 mA  
2.5  
Output Voltage Accuracy  
VOUT  
%
1.5  
SiP21106/7 (1.2 V) IOUT = 1 mA  
4
1.2  
1.212  
1.230  
0.2  
Feedback Voltage  
(SiP21108 Version only)  
VAdj  
V
Full  
Full  
1.170  
- 0.2 0.006  
Line Regulation  
Load Regulation  
LNR  
%/V  
VOUT 2.6 V,  
OUT: 1 mA to 150 mA  
Room  
Room  
0.003 0.006  
0.005 0.009  
I
I
LDR  
%/mA  
VOUT < 2.6 V,  
OUT: 1 mA to 150 mA  
Room  
Full  
35  
39  
75  
85  
75  
85  
1
IOUT = 1 mA  
Ground Pin Currente  
IGND  
µA  
µA  
Room  
Full  
I
OUT = 150 mA  
VEN = 0 V  
SiP21106  
Shutdown Supply Current  
ICC(off)  
Full  
0.02  
60  
V
OUT(nom) = 2.8 V, BW = 10 Hz to 100 kHz, Room  
1 mA < IOUT < 150 mA, CBP = 0.01 µF  
Output Noise Voltagef (RMS)  
Output Voltage Turn-On Time  
eN  
µV  
µs  
SiP21107/8  
V
OUT(nom) = 2.8 V, BW = 10 Hz to 100 kHz, Room  
1 mA < IOUT < 150 mA  
350  
EN to VOUT delay; IOUT = 1 mA  
ton  
70  
75  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
f = 1 kHz  
Room  
Room  
Room  
Room  
Room  
Room  
Room 170  
Room  
Room  
Room  
Full  
SiP21106, CBP = 0.01 µF  
56  
I
OUT = 10 mA  
40  
Ripple Rejection  
PSRR  
dB  
72  
SiP21107/8  
SiP21106, CBP = 0 µF  
OUT = 10 mA  
VOUT = 0 V  
f = 10 kHz  
f = 100 kHz  
53  
I
38  
Output Current Limit  
IO_LIM  
RDIS  
330  
100  
120  
45  
600  
mA  
EN = 0 V, VOUT = 1 V  
Auto Discharge Resistance  
Ω
For VOUT < 2.2 V, EN = 0 V, VOUT = 1 V  
IOUT = 50 mA  
55  
Dropout Voltaged  
(2.2 V VOUT(nom) < 2.6 V)  
Room  
Full  
90  
VDO  
I
I
OUT = 100 mA  
OUT = 150 mA  
IOUT = 50 mA  
OUT = 100 mA  
OUT = 150 mA  
106  
135  
160  
45  
Room  
Full  
250  
300  
mV  
Room  
Full  
55  
Dropout Voltage  
(VOUT(nom) 2.6 V)  
Room  
Full  
90  
VDO  
I
I
106  
135  
160  
Room  
Full  
180  
220  
VENH  
VENL  
High = Regulator On (Rising)  
Low = Regulator Off (Falling)  
Full  
Full  
1.2  
EN Pin Input Voltage  
EN Pin Input Current  
V
0.4  
IEN  
Room  
0.009  
µA  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
www.vishay.com  
3
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions Unless Specified  
IN = VOUT(nom) + 1.0 V  
V
IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF  
- 40 °C < TA < 85 °C for full  
Parameter  
Symbol  
TJ(S/D)  
THYST  
Temp.a Min.b Typ.c Max.b Unit  
Thermal Shutdown Junction Temperature  
Thermal Hysteresis  
Room  
Room  
160  
20  
°C  
Error Flag Section (SiP21107 Version only)  
RPU to VOUT or VIN  
POK(OFF) Leakage  
POK(ON) Voltage  
IOFF  
Full  
Full  
1
µA  
V
EN = 0 V, IPOK = 0.5 mA  
VPOKL  
0.4  
VOUT rising, POK goes high  
90  
93  
91  
96  
VOUT(nom) 2.2 V, IOUT = 1 mA  
POK Thresholdg  
VPOKLH  
Full  
VOUT rising, POK goes high  
%
VOUT(nom) < 2.2 V, IOUT = 1 mA  
VIN falling, IOUT = 1 mA, POK goes low  
VOUT to POK delay, IOUT = 1 mA  
POK Hysteresis  
VHYST  
Room  
1.5  
40  
POK Voltage Delay Time  
TP_Delay  
µs  
Notes:  
a. Room = 25 °C, Full = - 40 to 85 °C. Derate 7.6 mW/°C for TSC75 and 5.5 mW/°C for SOT23 above TA = 70 °C.  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
d. Dropout voltage is defined as the input-to-output differential voltage at which the output voltage drops 2 % below its nominal  
value with constant load. For outputs = 2.2 V, dropout voltage is not applicable due to 2.2 V minimum input voltage requirement.  
e. Ground current is specified for normal operation as well as “drop-out” operation.  
f. Output noise is proportional to output voltage. Use formula eN = 60 µV(rms)*VOUT/2.8 V.  
g. POK threshold percentage is calculated by VIN/VOUT x 100 %. The POK is measured with a differential voltage across VIN and VOUT until POK  
turn on (low threshold) or off (high threshold). For VOUT less than 2.2 V, POK is guaranteed functionality only.  
TIMING WAVEFORMS  
V
IN  
V
EN  
t
r
1 µs  
0 V  
t
ON  
V
NOM  
0.95 V  
NOM  
V
OUT  
Figure 1.  
www.vishay.com  
4
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
PIN CONFIGURATION  
BP/Adj/POK  
EN  
BP/Adj/POK  
EN  
6
5
1
2
NC  
GND  
GND  
NC  
4
3
V
OUT  
V
IN  
V
V
IN  
OUT  
TOP VIEW  
BOTTOM VIEW  
TSC75-6L Package (1.6 mm x 1.6 mm x 0.55 mm)  
V
V
IN  
V
V
1
2
3
5
4
5
4
1
2
IN  
OUT  
OUT  
GND  
EN  
GND  
EN  
3
BP/Adj/POK  
BP/Adj/POK  
TOP VIEW  
BOTTOM VIEW  
TSOT23-5L/SC70-5LPackage  
Figure 2.  
PIN DESCRIPTION  
Pin Number  
Pin Number  
TSC75-6L  
TSOT23-5L/  
SC70-5L  
Name  
Function  
By applying less than 0.4 V to this pin, the device will be turned off. Connect this pin to  
IN if unused. Do not leave floating.  
EN  
1
3
V
2
3
4
5
2
1
5
-
GND  
VIN  
Ground pin. For better thermal capability, directly connected to large ground plane.  
Input supply pin. Bypass this pin with a 1 µF ceramic or tantalum capacitor to ground.  
VOUT  
NC  
Output voltage. Connect COUT between this pin and ground.  
No Connection.  
- BP (SiP21106): Noise bypass pin. For low noise applications, a 10 nF ceramic capacitor  
should be connected from this pin to ground.  
- Adj (SiP21108): Adjust input pin. Connect feedback resistors to program the output  
voltage for trim value of 1.2005 V.  
- POK (SiP21107): Power OK (error flag) pin. Open-drain output, which requires  
connecting a pull-up resistor to VIN or VOUT. POK pin is actively high to indicate an output  
normal operation condition on regulator and goes low to indicate under-voltage fault  
condition.  
6
4
BP/Adj/POK  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
www.vishay.com  
5
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
ORDERING INFORMATION  
Part Number  
Marking  
Voltage  
Temperature Range  
Package  
SiP21108DVP-T1-E3  
AA  
Adjustable  
SiP21106DVP-12-E3  
SiP21106DVP-18-E3  
SiP21106DVP-25-E3  
SiP21106DVP-26-E3  
SiP21106DVP-28-E3  
SiP21106DVP-285-E3  
SiP21106DVP-30-E3  
SiP21106DVP-33-E3  
SiP21106DVP-46-E3  
SiP21106DVP-475-E3  
SiP21107DVP-12-E3  
SiP21107DVP-18-E3  
SiP21107DVP-25-E3  
SiP21107DVP-26-E3  
SiP21107DVP-28-E3  
SiP21107DVP-30-E3  
SiP21107DVP-33-E3  
SiP21107DVP-46-E3  
SiP21107DVP-285-E3  
SiP21108DT-T1-E3  
SiP21106DT-12-E3  
SiP21106DT-18-E3  
SiP21106DT-25-E3  
SiP21106DT-26-E3  
SiP21106DT-28-E3  
SiP21106DT-285-E3  
SiP21106DT-30-E3  
SiP21106DT-33-E3  
SiP21106DT-45-E3  
SiP21106DT-46-E3  
SiP21106DT-475-E3  
SiP21107DT-12-E3  
SiP21107DT-18-E3  
SiP21107DT-25-E3  
SiP21107DT-26-E3  
SiP21107DT-28-E3  
SiP21107DT-285-E3  
SiP21107DT-30-E3  
SiP21107DT-33-E3  
SiP21107DT-46-E3  
BA  
BG  
BP  
BR  
BT  
CT  
BV  
BY  
CM  
CU  
DA  
DG  
DP  
DR  
DT  
DV  
DY  
EM  
ET  
N9  
NP  
N1  
NA  
NC  
N2  
NE  
NG  
N3  
NM  
N4  
NJ  
1.2  
1.8  
2.5  
2.6  
2.8  
2.85  
3
3.3  
4.6  
4.75  
1.2  
1.8  
2.5  
2.6  
2.8  
3
- 40 °C to 85 °C  
TSC75-6L  
3.3  
4.6  
2.85  
Adjustable  
1.2  
1.8  
2.5  
2.6  
2.8  
2.85  
3
3.3  
4.5  
4.6  
4.75  
1.2  
1.8  
2.5  
2.6  
2.8  
2.85  
3
- 40 °C to 85 °C  
TSOT23-5L  
NQ  
N5  
NB  
ND  
N6  
NF  
NH  
N7  
N8  
3.3  
4.6  
www.vishay.com  
6
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
ORDERING INFORMATION  
SiP21108DR-T1-E3  
SiP21106DR-12-E3  
SiP21106DR-18-E3  
SiP21106DR-25-E3  
SiP21106DR-26-E3  
SiP21106DR-28-E3  
SiP21106DR-285-E3  
SiP21106DR-30-E3  
SiP21106DR-33-E3  
SiP21106DR-46-E3  
SiP21106DR-475-E3  
SiP21107DR-12-E3  
SiP21107DR-18-E3  
SiP21107DR-25-E3  
SiP21107DR-26-E3  
SiP21107DR-28-E3  
SiP21107DR-285-E3  
SiP21107DR-30-E3  
SiP21107DR-33-E3  
SiP21107DR-46-E3  
N9  
NP  
N1  
NA  
NC  
N2  
NE  
NG  
N3  
N4  
NJ  
Adjustable  
1.2  
1.8  
2.5  
2.6  
2.8  
2.85  
3
3.3  
4.6  
- 40 °C to 85 °C  
SC70-5L  
4.75  
1.2  
NQ  
N5  
NB  
ND  
N6  
NF  
NH  
N7  
N8  
1.8  
2.5  
2.6  
2.8  
2.85  
3
3.3  
4.6  
Note:  
Other fixed output voltage options are available. Please contact your Vishay sales representative or distributor for details.  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
www.vishay.com  
7
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
3.0  
2.5  
1.00  
0.50  
2.0  
IOUT = 1 mA  
IOUT = 0 mA  
0.00  
1.5  
IOUT = 150 mA  
- 0.50  
- 1.00  
- 1.50  
1.0  
0.5  
SiP21106: 2.8 V  
60  
SiP21106: 2.8 V  
0.0  
0
1
2
3
4
5
6
- 40  
- 15  
10  
35  
85  
VIN(V)  
Temperature (°C)  
Output Voltage vs. Input Voltage  
Output Voltage Accuracy vs. Temperature  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
SiP21106: 2.8 V  
TA = + 85 °C  
TA = + 25 °C  
IOUT = 150 mA  
60  
IOUT  
= 100 mA  
40  
TA = - 40 °C  
20  
SiP21106: 2.8 V  
100 125 150  
0
60  
2.0  
0
25  
50  
75  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
6.0  
IOUT (mA)  
V
IN  
Dropout Voltage vs. Input Voltage  
Dropout Voltage vs. Load Current  
180  
160  
140  
120  
100  
80  
41  
40  
39  
38  
37  
36  
35  
34  
IOUT = 150 mA  
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 1 mA  
60  
IOUT = 50 mA  
40  
SiP21106: 2.8 V  
60 85  
SiP21106: 2.8 V  
60 85  
20  
- 40  
- 40  
- 15  
10  
Temperature (°C)  
Ground Current vs. Temperature  
35  
- 15  
10  
Temperature (°C)  
Dropout Voltage vs. Temperature  
35  
www.vishay.com  
8
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
TYPICAL CHARACTERISTICS  
50  
50  
VIN = 5.5 V  
IOUT = 150 mA  
40  
45  
VIN = 3.8 V  
IOUT = 1 mA  
30  
20  
10  
0
40  
35  
30  
25  
SiP21106: 2.8 V  
SiP21106: 2.8 V  
100 125 150  
0
1
2
3
4
5
6
0
25  
50  
75  
(mA)  
IOUT  
VIN (V)  
Ground Current vs. Output Current  
Ground Current vs. Input Voltage at 25 °C  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.820  
2.800  
2.780  
2.760  
2.740  
2.720  
SiP21106  
BP = 10 nF  
IOUT = 10 mA  
SiP21106: 2.8 V  
C
VIN = 3.8 V  
IOUT = 1 mA  
IOUT = 50 mA  
IOUT = 150 mA  
10  
100  
1000  
10 000  
100 000  
1 000 000  
- 40  
- 15  
10  
Temperature (°C)  
Output Voltage Accuracy vs. Load Current  
35  
60  
85  
Frequency (Hz)  
PSRR  
400  
350  
300  
250  
200  
150  
100  
50  
SiP21106: 2.8 V  
0
0.001  
0.0056  
0.01  
0.056  
0.1  
BP Capacitance (µF)  
Output Noise vs. BP Capacitance  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
www.vishay.com  
9
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
I
(100 mA/DIV)  
OUT  
I
(100 mA/DIV)  
OUT  
V
(50 mV/DIV)  
OUT  
V
(50 mV/DIV)  
OUT  
SiP21106: 2.8 V  
SiP21106: 4.6 V  
V
V
C
C
C
= 3.8 V  
= 2.8 V  
= 1 µF  
IN  
OUT  
V
= 5.5 V  
IN  
V
= 4.6 V  
= 1 µF  
OUT  
IN  
C
C
C
IN  
= 1 µF  
OUT  
= 1 µF  
OUT  
= 10 nF  
BP  
= 10 nF  
BP  
50 µs/DIV  
50 µs/DIV  
Load Transient Response  
Load Transient Response  
SiP21106: 2.8 V  
SiP21106: 4.6 V  
V
V
= 3.8 to 4.8 V  
V
V
I
= 5.0 to 5.5 V  
IN  
IN  
= 2.8 V  
= 4.6 V  
OUT  
OUT  
I
= 150 mA  
= 150 mA  
OUT  
OUT  
C
C
= 1 µF  
C
C
C
= 1 µF  
IN  
IN  
OUT  
= 1 µF  
= 1 µF  
COUT= 10 nF  
= 10 nF  
BP  
BP  
V
(1 V/DIV)  
IN  
AC Coupling  
AC Coupling  
V
(200 mV/DIV)  
IN  
V
(10 mV/DIV)  
OUT  
V
(10 mV/DIV)  
OUT  
200 µs/DIV  
200 µs/DIV  
Line Transient Response  
Line Transient Response  
SiP21106: 2.8 V  
= 3.8 to 4.8 V  
SiP21106: 4.6 V  
V
IN  
V
= 5.0 to 5.5 V  
IN  
V
= 2.8 V  
OUT  
V
= 4.6 V  
= 1 mA  
OUT  
I
= 1 mA  
I
OUT  
OUT  
C
C
C
= 1 µF  
= 1 µF  
C
= 1 µF  
IN  
OUT  
IN  
OUT  
C
= 1 µF  
= 10 nF  
= 10 nF  
C
BP  
BP  
V
(1 V/DIV)  
IN  
AC Coupling  
AC Coupling  
(200 mV/DIV)  
V
IN  
V
(10 mV/DIV)  
OUT  
V
(10 mV/DIV)  
OUT  
200 µs/DIV  
200 µs/DIV  
Line Transient Response  
Line Transient Response  
www.vishay.com  
10  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
SiP21106: 2.8 V  
SiP21106: 2.8 V  
V
V
= 3.8 V  
IN  
V
= 3.8 V  
IN  
= 2.8 V  
OUT  
V
= 2.8 V  
= 1 µF  
OUT  
C
C
= 1 µF  
IN  
C
C
C
IN  
= 1 µF  
COUT= 10 nF  
= 1 µF  
OUT  
BP  
= 10 nF  
BP  
I
(100 mA/DIV)  
OUT  
I
(50 mA/DIV)  
OUT  
50 ms/DIV  
Output Short Circuit Current  
50 ms/DIV  
Output Short Thermal Cycling  
SiP21106: 2.8 V  
V
V
C
C
C
= 3.8 V  
IN  
SiP21106: 2.8 V  
IN  
= 2.8 V  
IN = 1 µF  
= 1 µF  
OUT  
V
V
= 3.8 V  
= 2.8 V  
= 1 µF  
OUT  
OUT  
C
C
C
IN  
= 10 nF  
BP  
V
(500 mV/DIV)  
= 1 µF  
EN  
OUT  
BP  
I
= 150 mA  
= 10 nF  
OUT  
V
(1 V/DIV)  
EN  
I
= 150 mA  
OUT  
V
(500 mV/DIV)  
OUT  
V
(500 mV/DIV)  
OUT  
20 µs/DIV  
Output Voltage Power-Down  
20 µs/DIV  
Output Voltage Start-Up  
SiP21107: 1.8 V  
V
(500 mV/DIV)  
OUT  
V
= 2.8 V  
IN  
V
= 1.8 V  
OUT  
C
C
C
IN = 1 µF  
= 1 µF  
OUT  
V
(500 mV/DIV)  
= 10 nF  
OUT  
BP  
I
= 1 mA  
OUT  
POK (1 V/DIV)  
SiP21107: 2.8 V  
V
V
C
C
C
= 3.8 V  
POK (1 V/DIV)  
IN  
= 2.8 V  
IN = 1 µF  
= 1 µF  
OUT  
OUT  
= 10 nF  
BP  
I
= 1 mA  
OUT  
20 ms/DIV  
20 ms/DIV  
POK pin goes low to indicate output under-voltage  
fault condition  
POK pin goes low to indicate output under-voltage  
fault condition  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
www.vishay.com  
11  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
TYPICAL OPERATING WAVEFORMS  
SiP21107: 1.8 V  
V (500 mV/DIV)  
OUT  
V
V
C
C
= 2.8 V  
IN  
OUT  
= 1.8 V  
IN = 1 µF  
= 1 µF  
OUT  
V
(500 mV/DIV)  
OUT  
C
= 10 nF  
= 1 mA  
BP  
I
OUT  
SiP21107: 2.8 V  
V
V
C
C
C
= 3.8 V  
IN  
OUT  
POK (1 V/DIV)  
= 2.8 V  
IN = 1 µF  
= 1 µF  
OUT  
POK (1 V/DIV)  
= 10 nF  
BP  
I
= 1 mA  
OUT  
20 µs/DIV  
20 µs/DIV  
POK pin is actively high to indicate an output normal  
operation condition on regular  
POK pin is actively high to indicate an output normal  
operation condition on regular  
TYPICAL WAVEFORMS  
1
0.1  
SiP21106: 2.8 V  
VIN = 3.8 V  
SiP21106: 2.8 V  
V
V
C
C
C
= 4.5 V  
V
= 2.8 V  
IN  
OUT  
= 2.8 V  
C
C
C
I
IN = 1 µF  
OUT  
OUT  
= 1 µF  
= 1 µF  
IN  
BP = 10 nF  
= 1 µF  
V
(100 µV/DIV)  
OUT  
OUT  
= 100 mA  
= 10 nF  
OUT  
BP  
I
= 150 mA  
V
= 60 µV  
OUT  
NOISE  
RMS  
0.01  
10  
100  
1K  
10K  
100K  
1M  
2 ms/DIV  
Output Noise  
Frequency (Hz)  
Output Noise Spectral Density  
FUNCTIONAL BLOCK DIAGRAM  
VIN  
EN  
Enable  
Error-Amp  
Bandgap  
Reference  
*
** ***  
BP/Adj/POK  
VOUT  
Current Limit and  
Thermal  
+
POK  
-
0.94  
VOUT  
SiP21106: BP  
SiP21107: POK  
SiP21108: Adj  
SiP21106: BP  
SiP21107: POK  
SiP21108: Adj  
*
***  
**  
GND  
Figure 3.  
www.vishay.com  
12  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
DETAILED DESCRIPTION  
V
IN  
As shown in the block diagram, the circuit consists of a  
bandgap reference, error amplifier, P-channel pass  
transistor and an internal feedback resistor voltage divider,  
which is used to monitor and control the output voltage.  
A constant 1.2 V bandgap reference voltage is applied to the  
non-inverting input of the error amplifier. The error amplifier  
compares this reference with the feedback voltage on its  
inverting input and amplifies the difference. If the feedback  
voltage is lower than the reference voltage, the  
pass-transistor gate is pulled low. This increases the  
PMOS's gate to source voltage and allows more current to  
pass through the transistor to the output which increases the  
output voltage. Conversely, if the feedback voltage is higher  
than the reference voltage, the pass transistor gate is pulled  
high, decreasing the gate-to-source voltage, thereby  
allowing less current to pass to the output and causing it to  
drop.  
1.2 V  
Reference  
+
Error-Amp  
V
OUT  
-
R
R
1
2
Figure 4.  
The SiP21108 has a user-adjustable output that can be set  
through the resistor feedback network consisting of R1 and  
R2. R2 range of 100K to 400K is recommended to be  
consistent with ground current specification. R1 can then be  
determined by the following equation:  
Internal P-Channel Pass Transistor  
VOUT  
A 0.9 Ω (typical) P-channel MOSFET is used as the pass  
transistor for the SiP21106, SiP21107, SiP21108 part series.  
The MOSFET transistor offers many advantages over the  
more, formerly, common PNP pass transistor designs, which  
ultimately result in longer battery lifetime. The main  
disadvantage of PNP pass transistors is that they require a  
certain base current to stay on, which significantly increases  
under heavy load conditions. In addition, during dropout,  
when the pass transistor saturates, the PNP regulators  
waste considerable current. In contrast, P-channel  
MOSFETS require virtually zero-base drive and do not suffer  
from the stated problems. These savings in base drive  
current translate to lower quiescent current which is typical  
around 35 µA as shown in the Typical Characteristics.  
(
)
- 1  
R1 = R2  
x
V
ref  
Where Vref is typically 1.2005 V. Use 1 % or better resistors  
for better output voltage accuracy (see Figure 4).  
Current Limit  
The SiP21106, SiP21107, SiP21108 include a current limit  
block which monitors the current passing through the pass  
transistor through a current mirror and controls the gate  
voltage of the MOSFET, limiting the output current to 330 mA  
(typical). This current limit feature allows for the output to be  
shorted to ground for an indefinite amount of time without  
damaging the device.  
Thermal-Overload Protection  
Shutdown and Auto-Dischage/No-Discharge  
The thermal overload protection limits the total power  
dissipation and protects the device from being damaged.  
When the junction temperature exceeds TJ = 150 °C, the  
device turns the P-channel pass transistor off allowing the  
device to cool down. Once the temperature drops by about  
20 °C, the thermal sensor turns the pass transistor on again  
and resumes normal operation. Consequently, a continuous  
thermal overload condition will result in a pulsed output. It is  
generally recommended to not exceed the junction  
temperature rating of 125 °C for continuous operation.  
Bringing the EN voltage low will place the part in shutdown  
mode where the device output enters a high-impedance  
state and the quiescent current is reduced to below 1 µA,  
reducing the drain on the battery in standby mode and  
increasing standby time. Connect EN pin to input for normal  
operation. The output has an internal pull down to discharge  
the output to ground when the EN pin is low. The internal pull  
down is a 100 Ω typical resistor, which can discharge a 1 µF  
in less than 1 ms. Refer to Typical Operating Waveforms for  
turn-off waveforms.  
Noise Reduction in SiP21106  
Output Voltage Selection  
For the SiP21106, an external 10 nF bypass capacitor at BP  
pin is used to create a low pass filter for noise reduction. The  
startup time is fast, since a power-on circuit pre-charges the  
bypass capacitor. After the power-up sequence the  
pre-charge circuit is switched to standby mode in order to  
save current. It is therefore not recommended to use larger  
bypass capacitor values than 50 nF. When the circuit is used  
without a capacitor, stable operation is guaranteed.  
The SiP21106 has fixed voltage outputs that are preset to  
voltages from 1.2 V to 4.6 V (see Ordering Information).  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
www.vishay.com  
13  
SiP21106, SiP21107, SiP21108  
Vishay Siliconix  
POK Status in SiP21107  
The GND pin of the SiP2110 acts as both the electrical  
connection to GND as well as a path for channeling away  
heat. Connect this pin to a GND plane to maximize heat  
dissipation. Once maximum power dissipation is calculated  
using the equation above, the maximum allowable output  
current for any input/output potential can be calculated as  
The POK comparator monitors the output until the supply  
comes up to specified percentage of VIN. This open drain  
NMOS output requires an external pull-up resistor to either  
VOUT or VIN. The internal NMOS can drive up to 0.5 mA  
loads. POK pin is active high to indicate that output is within  
percentage tolerance. POK goes low when output is outside  
of this tolerance as when in dropout, over current and  
thermal shutdown.  
P(max)  
IOUT(max)  
=
V - VOUT  
IN  
APPLICATION INFORMATION  
PCB Layout  
The component placement around the LDO should be done  
carefully to achieve good dynamic line and load response.  
The input and noise capacitor should be kept close to the  
LDO. The rise in junction temperature depends on how  
efficiently the heat is carried away from junction-to-ambient.  
The junction-to-lead thermal impedance is a characteristic of  
the package and is fixed. The thermal impedance between  
lead-to-ambient can be reduced by increasing the copper  
area on PCB. Increase the input, output and ground trace  
area to reduce the junction-to-ambient thermal impedance.  
Input/Output Capacitor Selection and Regulator Stability  
It is recommended that a low ESR 1 µF capacitor be used on  
the SiP21106, SiP21107, SiP21108 input. A larger input  
capacitance with lower ESR would improve noise rejection  
and line-transient response. A larger input bypass capacitor  
may be required in applications involving long inductive  
traces between the source and LDO. The circuit is stable with  
only a small output capacitor equal to 6 nF/mA (1 µF at  
150 mA) of load. Since the bandwidth of the error amplifier is  
around 1 MHz - 3 MHz and the dominant pole is at the output  
node, the capacitor should be capacitive in this range, i.e., for  
150 mA load current, an ESR < 0.4 Ω is necessary. Parasitic  
inductance of about 10 nH can be tolerated. Applying a larger  
output capacitor would increase power supply rejection and  
improve load-transient response. Some ceramic dielectrics  
such as the Z5U and Y5V exhibit large capacitance and ESR  
variation over temperature. If such capacitors are used, a  
2.2 µF or larger value may be needed to ensure stability over  
the industrial temperature range. If using higher quality  
ceramic capacitors, such as those with X7R and Y7R  
dielectrics, a 1 µF capacitor will be sufficient at all operating  
temperatures.  
Operating Region and Power Dissipation  
An important consideration when designing power supplies  
is the maximum allowable power dissipation of a part. The  
maximum power dissipation in any application is dependant  
on the maximum junction temperature, TJ(max) = 125 °C, the  
ambient temperature, TA, and the junction-to-ambient  
thermal resistance for the package, which is the summation  
of θJ-C, the thermal resistance of the package, and θC-A, the  
thermal resistance through the PC board and copper traces.  
Power dissipation may be expressed as:  
T
- T  
A
(max)  
J
P
(max)  
=
θ J-C + θ C-A  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?74442.  
www.vishay.com  
14  
Document Number: 74442  
S09-1047-Rev. G, 08-Jun-09  
Package Information  
Vishay Siliconix  
THIN SOT-23 : 5- AND 6-LEAD (POWER IC ONLY)  
e1  
e1  
5
1
4
3
6
1
5
2
4
3
E1  
E1  
E
E
2
B−  
B−  
e
e
M
M
0.15  
0.15  
C
B
A
C
B
A
b
b
SOT23-5L Format  
SOT23-6L Format  
0.17 Ref  
4xq1  
A−  
D
C
R
A2  
A
L
2
R
Gauge Plane  
Seating Plane  
Q
Seating Plane  
L
(L1)  
0.08 C  
C−  
A1  
4xq1  
MILLIMETERS  
INCHES  
Dim  
Min  
Nom  
Max  
Min  
Nom  
Max  
0.91  
0.01  
0.90  
0.30  
0.10  
2.90  
2.70  
1.525  
1.00  
0.05  
1.10  
0.10  
1.00  
0.45  
0.20  
3.10  
2.98  
1.70  
0.036  
0.0004  
0.035  
0.012  
0.004  
0.114  
0.106  
0.060  
0.039  
0.002  
0.043  
0.004  
0.039  
0.018  
0.008  
0.122  
0.117  
0.067  
A
A1  
A2  
b
c
D
E
E1  
e
e1  
L
0.95  
0.037  
0.32  
0.013  
0.15  
0.006  
3.05  
0.120  
2.85  
0.112  
1.65  
0.065  
0.95 BSC  
1.90  
0.0374 BSC  
0.075  
1.80  
0.30  
2.00  
0.60  
0.070  
0.012  
0.080  
0.024  
0.40  
0.016  
0.60 REF  
0.25 BSC  
0.024 REF  
0.010 BSC  
L1  
L2  
R
Q
Q1  
0.10  
0_  
0.004  
0_  
4_  
8_  
4_  
8_  
4_  
10_ NOM  
12_  
4_  
10_ NOM  
12_  
ECN: S-40083—Rev. A, 02-Feb-04  
DWG: 5926  
Document Number: 72821  
29-Jan-04  
www.vishay.com  
1
Package Information  
Vishay Siliconix  
SC-70: 3/4/5/6-LEADS (PIC ONLY)  
0.15 (0.006)  
C
D
e1  
A
A
D
E
N5  
N4  
N3  
E/2  
E1/2  
C
E/1  
0.15 (0.006)  
Pin 1  
N1  
N2  
B
e
See Detail A  
M
b
C
0.10 (0.004)  
C
A
B
U1  
A2  
A1  
A
SEATING  
PLANE  
C
0.10 (0.004)  
C
H
(b)  
b1  
0.15 (0.0059)  
GAGE PLANE  
c1  
c
Base Metal  
U
L
SECTIION A-A  
DETAIL A  
LEAD COUNT  
NOTES:  
Pin  
Code  
1.  
2.  
Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3
2
3
4
2
3
4
5
2
3
4
5
6
2
3
4
5
6
N1  
N2  
N3  
N4  
N5  
Controlling dimensions: millimeters converted to inch dimensions are  
not necessarily exact.  
3.  
4.  
Dimension “D” does not include mold flash, protrusion or gate burr.  
Mold flash, protrusion or gate burr shall not exceed 0.15 mm  
(0.006 inch) per side.  
The package top shall be smaller than the package bottom.  
Dimension “D” and “E1” are determined at the outer most extremes  
of the plastic body exclusive of mold flash, tie bar burrs, gate burrs  
and interlead flash, but including any mismatch between the top and  
bottom of the plastic body.  
Document Number: 73201  
19-Nov-04  
www.vishay.com  
1
Package Information  
Vishay Siliconix  
MILLIMETERS  
INCHES  
Dim  
A
Min  
0.80  
0.00  
0.80  
0.15  
0.15  
0.08  
0.08  
1.90  
2.00  
1.15  
Nom  
Max  
1.10  
0.10  
1.00  
0.30  
0.25  
0.25  
0.20  
2.15  
2.20  
1.35  
Min  
0.031  
0.000  
0.031  
0.006  
0.006  
0.003  
0.003  
0.074  
0.078  
0.045  
Nom  
Max  
0.043  
0.004  
0.040  
0.012  
0.010  
0.010  
0.008  
0.084  
0.086  
0.055  
A1  
A2  
b
0.90  
0.035  
0.20  
0.008  
b1  
c
0.13  
2.10  
2.10  
1.25  
0.65 BSC  
1.30 BSC  
0.36  
0.005  
0.082  
0.082  
0.050  
0.0255 BSC  
0.0512 BSC  
0.014  
c1  
D
E
E1  
e
e1  
L
0.26  
0_  
0.46  
8_  
0.010  
0_  
0.018  
8_  
U
4_  
10_  
4_  
10_  
U1  
ECN: S-42145—Rev. A, 22-Nov-04  
DWG: 5941  
Document Number: 73201  
19-Nov-04  
www.vishay.com  
2
Package Information  
Vishay Siliconix  
PowerPAK® TSC75-6L (Power IC only)  
D1  
Exposed pad  
e
b
D
Pin4  
Pin 5 Pin6  
K
K
PPAK TSC75  
(1.6 x 1.6 mm)  
E1  
E
Exposed pad  
L
Pin3  
Pin 2  
e1  
Pin1  
K2  
K2  
Pin 1 Dot  
By Marking  
Top View  
Bottom View  
A
C
A1  
Side View  
MILLIMETERS  
INCHES  
DIM  
A
Min  
0.50  
0
Nom  
0.55  
-
Max  
0.65  
0.05  
0.30  
0.20  
1.65  
1.05  
1.65  
0.65  
Min  
0.020  
0
Nom  
0.022  
-
Max  
0.026  
0.002  
0.012  
0.010  
0.065  
0.041  
0.065  
0.026  
A1  
b
0.20  
0.10  
1.55  
0.95  
1.55  
0.55  
0.25  
0.15  
1.60  
1.00  
1.60  
0.60  
0.50 BSC  
1.00 BSC  
-
0.008  
0.006  
0.0061  
0.037  
0.061  
0.022  
0.010  
0.008  
0.063  
0.039  
0.063  
0.024  
0.020 BSC  
0.039 BSC  
-
C
D
D1  
E
E1  
e
e1  
K
0.15  
0.20  
0.20  
-
-
0.006  
0.008  
0.008  
-
K2  
L
-
0.25  
0.30  
0.010  
0.012  
ECN: S-61919-Rev. A, 02-Oct-06  
DWG: 5955  
Document Number: 74416  
02-Oct-06  
www.vishay.com  
1
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

SIP21108DT-T1-E3

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21108DVP-T1-E3

150-mA Low Noise, Low Dropout Regulator
VISHAY

SIP21110

250-mA Adjustable, Low Dropout Regulator
VISHAY

SiP21110DT-T1-E3

250-mA Adjustable, Low Dropout Regulator
VISHAY

SIP21301LH-15-E3

Analog Circuit, CMOS, PDSO8
VISHAY

SIP21301LH-AD-E3

Analog Circuit, CMOS, PDSO8
VISHAY
VISHAY

SIP2210DMP-DD-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY

SIP2210DMP-DE-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY

SIP2210DMP-DF-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY
VISHAY

SIP2210DMP-DG-E3

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, LEAD FREE, MLP-10, Fixed Positive Multiple Output LDO Regulator
VISHAY