W981216BH-6 [WINBOND]

Synchronous DRAM, 8MX16, 5ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54;
W981216BH-6
型号: W981216BH-6
厂家: WINBOND    WINBOND
描述:

Synchronous DRAM, 8MX16, 5ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

时钟 动态存储器 光电二极管 内存集成电路
文件: 总41页 (文件大小:1306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W981216BH  
2M  
´ 4 BANKS ´ 16 BIT SDRAM  
GENERAL DESCRIPTION  
W981216BH is a high-speed synchronous dynamic random access memory (SDRAM), organized as  
2M words ´ 4 banks ´ 16 bits. Using pipelined architecture and 0.175 mm process technology,  
W981216BH delivers a data bandwidth of up to 143M words per second (-7). To fully comply with the  
personal computer industrial standard, W981216BH is sorted into three speed grades: -7, -75 and -  
8H. The -7 is compliant to the 143 MHz/CL3 or PC133/CL2 specification, the -75 is compliant to the  
PC133/CL3 specification, the -8H is compliant to the PC100/CL2 specification  
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be  
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE  
command. Column addresses are automatically generated by the SDRAM internal counter in burst  
operation. Random column read is also possible by providing its address at each clock cycle. The  
multiple bank nature enables interleaving among internal banks to hide the precharging time.  
By having a programmable Mode Register, the system can change burst length, latency cycle,  
interleave or sequential burst to maximize its performance. W981216BH is ideal for main memory in  
high performance applications.  
FEATURES  
· 3.3V ±0.3V Power Supply  
· Up to 143 MHz Clock Frequency  
· 2,097,152 Words ´ 4 banks ´ 16 bits organization  
· Auto Refresh and Self Refresh  
· CAS Latency: 2 and 3  
· Burst Length: 1, 2, 4, 8, and full page  
· Burst Read, Single Writes Mode  
· Byte Data Controlled by DQM  
· Power-Down Mode  
· Auto-precharge and Controlled Precharge  
· 4K Refresh cycles / 64 mS  
· Interface: LVTTL  
· Packaged in TSOP II 54 pin, 400 mil - 0.80  
KEY PARAMETERS  
SYM.  
DESCRIPTION  
MIN.  
-7  
-75  
-8H  
/MAX.  
(PC133, CL2)  
(PC133, CL3)  
(PC100)  
tCK  
tAC  
Clock Cycle Time  
Min.  
Max.  
Min.  
Min.  
Max.  
Max.  
Max.  
7 nS  
5.4 nS  
15 nS  
7.5 nS  
5.4 nS  
20 nS  
20 nS  
75 mA  
95 mA  
2 mA  
8 nS  
6 nS  
Access Time from CLK  
tRP  
Precharge to Active Command  
Active to Read/Write Command  
Operation Current (Single bank)  
Burst Operation Current  
20 nS  
20 nS  
70 mA  
90 mA  
2 mA  
tRCD  
ICC1  
15 nS  
80 mA  
100 mA  
2 mA  
CC4  
I
ICC6  
Self-Refresh Current  
Publication Release Date: October 2000  
Revision A1  
- 1 -  
W981216BH  
PIN CONFIGURATION  
VCC  
VSS  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
DQ15  
DQ0  
VSS  
Q
3
VCC  
Q
DQ1  
DQ2  
DQ14  
DQ13  
4
5
VSS  
Q
V CC Q  
6
DQ12  
DQ11  
DQ3  
DQ4  
7
8
VCC  
Q
V
SS Q  
9
DQ10  
DQ9  
DQ5  
DQ6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
VSS  
Q
VCC Q  
DQ8  
VSS  
DQ7  
VCC  
NC  
LDQM  
WE  
UDQM  
CLK  
CKE  
NC  
CAS  
RAS  
CS  
A11  
A9  
BS0  
BS1  
A8  
A10/AP  
A0  
A7  
A6  
A1  
A2  
A5  
A4  
A3  
VCC  
VSS  
- 2 -  
W981216BH  
PIN DESCRIPTION  
PIN NUMBER  
PIN NAME  
FUNCTION  
DESCRIPTION  
Address  
Multiplexed pins for row and column address.  
23 26, 22,  
A0 A11  
-
-
Row address: A0 - A11. Column address: A0 - A8.  
29 - 35  
20, 21  
BS0, BS1  
Bank Select  
Select bank to activate during row address latch time,  
or bank to read/write during address latch time.  
2, 4, 5, 7, 8,  
10, 11, 13, 42,  
44, 45, 47, 48,  
50, 51, 53  
Data Input/  
Output  
Multiplexed pins for data output and input.  
DQ0 -  
DQ15  
19  
Chip Select  
Disable or enable the command decoder. When  
command decoder is disabled, new command is  
ignored and previous operation continues.  
CS  
18  
Row Address  
Strobe  
Command input. When sampled at the rising edge of  
RAS  
the clock,  
,
and WE define the  
RAS CAS  
operation to be executed.  
17  
Column Address  
Strobe  
Referred to  
Referred to  
CAS  
WE  
RAS  
RAS  
16  
Write Enable  
39, 15  
UDQM/  
LDQM  
Input/Output  
Mask  
The output buffer is placed at Hi-Z (with latency of 2)  
when DQM is sampled high in read cycle. In write  
cycle, sampling DQM high will block the write  
operation with zero latency.  
38  
37  
CLK  
CKE  
Clock Inputs  
Clock Enable  
System clock used to sample inputs on the rising edge  
of clock.  
CKE controls the clock activation and deactivation.  
When CKE is low, Power Down mode, Suspend mode  
or Self Refresh mode is entered.  
1, 14, 27  
28, 41, 54  
3, 9, 43, 49  
VCC  
VSS  
Power (+3.3V)  
Ground  
Power for input buffers and logic circuit inside DRAM.  
Ground for input buffers and logic circuit inside DRAM.  
VCCQ  
Power (+3.3V)  
for I/O Buffer  
Separated power from VCC, used for output buffers to  
improve noise.  
6, 12, 46, 52  
36, 40  
VSSQ  
NC  
Ground for I/O  
Buffer  
Separated ground from VSS, used for output buffers to  
improve noise.  
No Connection  
No connection  
Publication Release Date: October 2000  
- 3 -  
Revision A1  
W981216BH  
BLOCK DIAGRAM  
CLK  
CLOCK  
BUFFER  
CKE  
CS  
CONTROL  
SIGNAL  
GENERATOR  
RAS  
COMMAND  
DECODER  
CAS  
COLUMN DECODER  
COLUMN DECODER  
WE  
R
R
O
O
W
W
D
E
C
O
D
E
R
D
E
C
O
D
E
R
CELL ARRAY  
BANK #0  
CELL ARRAY  
BANK #1  
A10  
MODE  
REGISTER  
A0  
SENSE AMPLIFIER  
SENSE AMPLIFIER  
ADDRESS  
BUFFER  
A9  
DMn  
A11  
BS0  
BS1  
DQ0  
DATA CONTROL  
CIRCUIT  
DQ  
DQ15  
BUFFER  
REFRESH  
COUNTER  
COLUMN  
COUNTER  
UDQM  
LDQM  
COLUMN DECODER  
COLUMN DECODER  
R
O
W
R
O
W
CELL ARRAY  
BANK #3  
CELL ARRAY  
BANK #2  
D
D
E
C
O
D
E
R
C
O
D
E
R
SENSE AMPLIFIER  
SENSE AMPLIFIER  
Note: The cell array configuration is 4096 * 512 * 16.  
- 4 -  
W981216BH  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Input/Output Voltage  
SYMBOL  
RATING  
UNIT  
V
IN, OUT  
V
V
-0.3 - VCC +0.3  
CC  
CCQ  
Power Supply Voltage  
Operating Temperature  
Storage Temperature  
Soldering Temperature (10s)  
Power Dissipation  
V
, V  
V
-0.3 - 4.6  
0 - 70  
-55 - 150  
260  
OPR  
STG  
T
°
°
°
C
C
C
T
SOLDER  
T
D
P
1
W
Short Circuit Output Current  
IOUT  
50  
mA  
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability  
of the device.  
RECOMMENDED DC OPERATING CONDITIONS  
(TA = 0 to 70°C)  
PARAMETER  
Power Supply Voltage  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
VCC  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
Power Supply Voltage (for I/O  
Buffer)  
VCCQ  
Input High Voltage  
Input Low Voltage  
VIH  
VIL  
2.0  
-
-
VCC +0.3  
0.8  
V
V
-0.3  
Note: VIH(max) = VCC/ VCCQ+1.2V for pulse width < 5 nS  
VIL(min) = VSS/ VSSQ-1.2V for pulse width < 5 nS  
CAPACITANCE  
(VCC = 3.3V, f = 1 MHz, TA = 25°C)  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
I
Input Capacitance  
C
-
3.8  
pf  
(A0 to A11, BS0, BS1,  
CKE)  
,
,
, WE , DQM,  
CS RAS CAS  
Input Capacitance (CLK)  
CCLK  
CIO  
-
-
3.5  
6.5  
pf  
pf  
Input/Output capacitance  
Note: These parameters are periodically sampled and not 100% tested.  
Publication Release Date: October 2000  
Revision A1  
- 5 -  
W981216BH  
AC CHARACTERISTICS AND OPERATING CONDITION  
(Vcc = 3.3V ± 0.3V, TA = 0° to 70°C; Notes: 5, 6, 7, 8)  
PARAMETER  
SYM.  
UNIT  
-7  
-75  
-8H  
(PC133, CL2)  
(PC133, CL3)  
(PC100)  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Ref/Active to Ref/Active Command  
Period  
57  
42  
15  
1
65  
45  
20  
1
68  
tRC  
tRAS  
tRCD  
tCCD  
tRP  
Active to precharge Command  
Period  
100000  
100000  
48  
20  
1
100000  
nS  
Active to Read/Write Command  
Delay Time  
Read/Write(a) to  
Read/Write(b)Command Period  
Cycle  
Precharge to Active Command  
Period  
15  
15  
20  
15  
20  
20  
Active(a) to Active(b) Command  
Period  
tRRD  
tWR  
Write Recovery Time  
CL* = 2  
7.5  
7
10  
7.5  
10  
10  
8
CL* = 3  
CL* = 2  
CL* = 3  
CLK Cycle Time  
7.5  
7
1000  
1000  
1000  
1000  
10  
8
1000  
1000  
tCK  
7.5  
2.5  
2.5  
CLK High Level width  
tCH  
tCL  
tAC  
2.5  
2.5  
3
CLK Low Level width  
Access Time from CLK  
3
CL* = 2  
CL* = 3  
5.4  
5.4  
6
6
6
5.4  
nS  
Output Data Hold Time  
3
3
3
3
3
3
tOH  
tHZ  
tLZ  
tSB  
tT  
Output Data High Impedance Time  
Output Data Low Impedance Time  
Power Down Mode Entry Time  
7
7.5  
8
0
0
0
0
7
0
7.5  
10  
0
8
Transition Time of CLK  
(Rise and Fall)  
0.5  
10  
0.5  
0.5  
10  
Data-in Set-up Time  
Data-in Hold Time  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
1.5  
0.8  
2
1
2
1
2
1
2
1
tDS  
tDH  
Address Set-up Time  
Address Hold Time  
CKE Set-up Time  
tAS  
tAH  
tCKS  
tCKH  
tCMS  
tCMH  
tREF  
tRSC  
CKE Hold Time  
Command Set-up Time  
Command Hold Time  
Refresh Time  
64  
64  
64  
mS  
nS  
Mode register Set Cycle Time  
14  
15  
16  
*CL = CAS Latency  
- 6 -  
W981216BH  
DC CHARACTERISTICS  
(VCC = 3.3V ± 0.3V, TA = 0°- 70°C)  
PARAMETER  
SYM.  
UNIT  
NOTES  
-7  
-75  
-8H  
(PC133, CL2)  
(PC133, CL3)  
(PC100)  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Operating Current  
ICC1  
80  
75  
70  
3
1 bank  
operation  
tCK = min., tRC = min.  
Active precharge command  
cycling without burst  
operation  
Standby Current  
CKE = VIH  
ICC2  
40  
1
35  
1
30  
1
3
3
tCK = min,  
= VIH  
CS  
V
IH  
/
L = VIH (min.)/ VIL (max.)  
ICC2P  
CKE = VIL  
(Power  
Down mode)  
Bank: Inactive state  
CKE = VIH  
ICC2S  
10  
1
10  
1
10  
1
Standby Current  
CLK = VIL  
,
= VIH  
CS  
VIH / L = VIH (min.)/ VIL (max.)  
BANK: Inactive state  
ICC2PS  
mA  
CKE = VIL  
(Power down  
mode)  
CKE = VIH  
ICC3  
60  
10  
55  
10  
50  
10  
No Operating Current  
tCK = min.,  
= VIH (min.)  
CS  
ICC3P  
BANK: Active state  
(4 banks)  
CKE = VIL  
(Power down  
mode)  
ICC4  
ICC5  
ICC6  
100  
170  
2
95  
160  
2
90  
150  
2
3, 4  
3
Burst Operating Current  
tCK = min.  
Read/ Write command cycling  
Auto Refresh Current  
tCK = min.  
Auto refresh command cycling  
Self Refresh Current  
Self Refresh Mode  
CKE = 0.2V  
PARAMETER  
SYMBOL  
MIN.  
MAX.  
UNIT  
NOTES  
Input Leakage Current  
II(L)  
-5  
5
mA  
mA  
V
(0V £ V £ VCC, all other pins not under test = 0V)  
IN  
Output Leakage Current  
IO(L)  
VOH  
VOL  
-5  
2.4  
-
5
(Output disable , 0V £ VOUT £ VCCQ  
)
²
²
LVTTL Output H Level Voltage  
-
(IOUT = -2 mA )  
²
²
LVTTL Output L Level Voltage  
0.4  
V
(IOUT = 2 mA )  
Publication Release Date: October 2000  
Revision A1  
- 7 -  
W981216BH  
Notes:  
1. Operation exceeds "ABSOLUTE MAXIMUM RATING" may cause permanent damage to the  
devices.  
2. All voltages are referenced to VSS  
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the  
minimum values of tCK and tRC  
.
4. These parameters depend on the output loading conditions. Specified values are obtained with  
output open.  
5. Power up sequence is further described in the "Functional Description" section.  
6. AC Testing Conditions  
Output Reference Level  
1.4V/1.4V  
Output Load  
See diagram below  
2.4V/0.4V  
2 nS  
Input Signal Levels  
Transition Time (Rise and Fall) of Input Signal  
Input Reference Level  
1.4V  
1.4 V  
50 ohms  
Z = 50 ohms  
Output  
50 pF  
AC TEST LOAD  
7. Transition times are measured between VIH and VIL.  
8. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to  
output level.  
- 8 -  
W981216BH  
OPERATION MODE  
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.  
Table 1 shows the truth table for the operation commands.  
Table 1 Truth Table (Note (1), (2))  
COMMAND  
DEVICE  
STATE  
CKEN-1  
CKEN  
DQM  
BS0, 1  
A10  
A0- A9  
CS  
RAS  
CAS  
WE  
A11  
Bank Active  
Idle  
Any  
H
H
H
H
H
H
H
H
H
H
H
H
H
L
x
x
x
x
x
x
x
x
x
x
x
H
L
H
x
x
x
x
x
x
x
x
x
x
x
x
x
x
v
v
x
v
v
v
v
v
x
x
x
x
x
x
v
L
H
L
H
L
H
v
v
x
x
v
v
v
v
v
x
x
x
x
x
x
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
L
H
H
H
L
L
L
L
L
H
H
x
H
L
Bank Precharge  
Precharge All  
Any  
L
L
Write  
Active (3)  
Active (3)  
Active (3)  
Active (3)  
Idle  
H
H
H
H
L
L
Write with Autoprecharge  
Read  
L
H
H
L
Read with Autoprecharge  
Mode Register Set  
No - Operation  
Burst Stop  
Any  
x
H
H
x
H
L
Active (4)  
Any  
x
Device Deselect  
Auto - Refresh  
Self - Refresh Entry  
Self Refresh Exit  
x
x
Idle  
x
L
L
L
x
H
H
x
Idle  
x
L
idle  
x
x
(S.R.)  
Active  
L
H
L
x
x
x
x
x
x
x
x
L
x
H
x
H
x
x
x
Clock suspend Mode Entry  
Power Down Mode Entry  
H
Idle  
H
L
x
x
x
x
H
x
x
x
Active (5)  
Active  
H
L
L
x
x
x
x
x
x
x
x
L
x
H
x
H
x
x
x
Clock Suspend Mode Exit  
Power Down Mode Exit  
H
Any  
L
H
x
x
x
x
H
x
x
x
(power  
Active  
L
H
x
x
x
x
x
x
x
x
L
x
H
x
H
x
x
x
Data write/Output Enable  
Data Write/Output Disable  
H
L
Active  
H
x
H
x
x
x
x
x
x
x
Notes:  
(1) v = valid  
(2) CKEn signal is input level when commands are provided.  
x = Don't care  
L = Low Level H = High Level  
CKEn-1 signal is the input level one clock cycle before the command is issued.  
(3) These are state of bank designated by BS0, BS1 signals.  
(4) Device state is full page burst operation.  
(5) Power Down Mode can not be entered in the burst cycle.  
When this command asserts in the burst cycle, device state is clock suspend mode.  
Publication Release Date: October 2000  
Revision A1  
- 9 -  
W981216BH  
FUNCTIONAL DESCRIPTION  
Power Up and Initialization  
The default power up state of the mode register is unspecified. The following power up and  
initialization sequence need to be followed to guarantee the device being preconditioned to each user  
specific needs.  
During power up, all Vcc and VccQ pins must be ramp up simultaneously to the specified voltage  
CC  
when the input signals are held in the "NOP" state. The power up voltage must not exceed V  
+0.3V  
on any of the input pins or Vcc supplies. After power up, an initial pause of 200 mS is required followed  
by a precharge of all banks using the precharge command. To prevent data contention on the DQ bus  
during power up, it is required that the DQM and CKE pins be held high during the initial pause period.  
Once all banks have been precharged, the Mode Register Set Command must be issued to initialize  
the Mode Register. An additional eight Auto Refresh cycles (CBR) are also required before or after  
programming the Mode Register to ensure proper subsequent operation.  
Programming Mode Register  
After initial power up, the Mode Register Set Command must be issued for proper device operation.  
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode  
Register Set Command can be issued. The Mode Register Set Command is activated by the low  
signals of RAS, CAS, CS and WE at the positive edge of the clock. The address input data during this  
cycle defines the parameters to be set as shown in the Mode Register Operation table. A new  
command may be issued following the mode register set command once a delay equal to tRSC has  
elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.  
Bank Activate Command  
The Bank Activate command must be applied before any Read or Write operation can be executed.  
The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate  
command is applied to when the first read or write operation can begin must not be less than the RAS  
to CAS delay time (tRCD). Once a bank has been activated it must be precharged before another Bank  
Activate command can be issued to the same bank. The minimum time interval between successive  
Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC).  
The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and vice  
versa) is the Bank to Bank delay time (tRRD). The maximum time that each bank can be held active is  
specified as tRAS (max).  
Read and Write Access Modes  
After a bank has been activated , a read or write cycle can be followed. This is accomplished by  
setting RAS high and CAS low at the clock rising edge after minimum of tRCD delay. WE pin voltage  
level defines whether the access cycle is a read operation (WE high), or a write operation (WE low).  
The address inputs determine the starting column address.  
Reading or writing to a different row within an activated bank requires the bank be precharged and a  
new Bank Activate command be issued. When more than one bank is activated, interleaved bank  
Read or Write operations are possible. By using the programmed burst length and alternating the  
access and precharge operations between multiple banks, seamless data access operation among  
many different pages can be realized. Read or Write Commands can also be issued to the same bank  
or between active banks on every clock cycle.  
- 10 -  
W981216BH  
Burst Read Command  
The Burst Read command is initiated by applying logic low level to CS and CAS while holding RAS  
and WE high at the rising edge of the clock. The address inputs determine the starting column  
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst  
length (1, 2, 4, 8, full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page  
explain the address sequence of interleave mode and sequential mode.  
Burst Write Command  
The Burst Write command is initiated by applying logic low level to CS, CAS and WE while holding  
RAS high at the rising edge of the clock. The address inputs determine the starting column address.  
Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle that the  
Write Command is issued. The remaining data inputs must be supplied on each subsequent rising  
clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes will be  
ignored.  
Read Interrupted by a Read  
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,  
the remaining addresses are overridden by the new read address with the full burst length. The data  
from the first Read Command continues to appear on the outputs until the CAS latency from the  
interrupting Read Command the is satisfied.  
Read Interrupted by a Write  
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output  
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will  
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the  
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM  
masking is no longer needed.  
Write Interrupted by a Write  
A burst write may be interrupted before completion of the burst by another Write Command. When the  
previous burst is interrupted, the remaining addresses are overridden by the new address and data  
will be written into the device until the programmed burst length is satisfied.  
Write Interrupted by a Read  
A Read Command will interrupt a burst write operation on the same clock cycle that the Read  
Command is activated. The DQs must be in the high impedance state at least one cycle before the  
new read data appears on the outputs to avoid data contention. When the Read Command is  
activated, any residual data from the burst write cycle will be ignored.  
Burst Stop Command  
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank open  
for future Read or Write Commands to the same page of the active bank, if the burst length is full page.  
Use of the Burst Stop Command during other burst length operations is illegal. The Burst Stop  
Command is defined by having RAS and CAS high with CS and WE low at the rising edge of the clock.  
The data DQs go to a high impedance state after a delay which is equal to the CAS Latency in a burst  
Publication Release Date: October 2000  
- 11 -  
Revision A1  
W981216BH  
read cycle interrupted by Burst Stop. If a Burst Stop Command is issued during a full page burst write  
operation, then any residual data from the burst write cycle will be ignored.  
Addressing Sequence of Sequential Mode  
A column access is performed by increasing the address from the column address which is input to  
the device. The disturb address is varied by the Burst Length as shown in Table 2.  
Table 2 Address Sequence of Sequential Mode  
DATA  
ACCESS ADDRESS  
BURST LENGTH  
Data 0  
n
BL = 2 (disturb address is A0)  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
n + 1  
n + 2  
n + 3  
n + 4  
n + 5  
n + 6  
n + 7  
No address carry from A0 to A1  
BL = 4 (disturb addresses are A0 and A1)  
No address carry from A1 to A2  
BL = 8 (disturb addresses are A0, A1 and A2)  
No address carry from A2 to A3  
Addressing Sequence of Interleave Mode  
A column access is started in the input column address and is performed by inverting the address bit  
in the sequence shown in Table 3.  
Table 3 Address Sequence of Interleave Mode  
DATA  
Data 0  
Data 1  
ACCESS ADDRESS  
BUST LENGTH  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
BL = 2  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
BL = 4  
BL = 8  
A1 A0  
A8 A7 A6 A5 A4 A3 A2  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
- 12 -  
W981216BH  
Auto-Precharge Command  
If A10 is set to high when the Read or Write Command is issued, then the auto-precharge function is  
entered. During auto-precharge, a Read Command will execute as normal with the exception that the  
active bank will begin to precharge automatically before all burst read cycles have been completed.  
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled  
burst cycle. The number of clocks is determined by CAS latency.  
A Read or Write Command with auto-precharge can not be interrupted before the entire burst  
operation is completed. Therefore, use of a Read, Write, or Precharge Command is prohibited during  
a read or write cycle with auto-precharge. Once the precharge operation has started, the bank cannot  
be reactivated until the Precharge time (tRP) has been satisfied. Issue of Auto-Precharge command is  
illegal if the burst is set to full page length. If A10 is high when a Write Command is issued, the Write  
with Auto-Precharge function is initiated. The SDRAM automatically enters the precharge operation  
one clock delay from the last burst write cycle. This delay is referred to as Write tWR. The bank  
undergoing auto-precharge can not be reactivated until tWR and tRP are satisfied. This is referred to as  
tDAL, Data-in to Active delay (tDAL = tWR + tRP). When using the Auto-precharge Command, the interval  
between the Bank Activate Command and the beginning of the internal precharge operation must  
satisfy tRAS (min).  
Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The  
Precharge Command is entered when CS, RAS and WE are low and CAS is high at the rising edge of  
the clock. The Precharge Command can be used to precharge each bank separately or all banks  
simultaneously. Three address bits, A10, BS0, and BS1, are used to define which bank(s) is to be  
precharged when the command is issued. After the Precharge Command is issued, the precharged  
bank must be reactivated before a new read or write access can be executed. The delay between the  
Precharge Command and the Activate Command must be greater than or equal to the Precharge time  
(tRP).  
Self Refresh Command  
The Self Refresh Command is defined by having CS, RAS, CAS and CKE held low with WE high at  
the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command. Once  
the command is registered, CKE must be held low to keep the device in Self Refresh mode. When the  
SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are disabled.  
The clock is internally disabled during Self Refresh Operation to save power. The device will exit Self  
Refresh operation after CKE is returned high. A minimum delay time is required when the device exits  
Self Refresh Operation and before the next command can be issued. This delay is equal to the tAC  
cycle time plus the Self Refresh exit time.  
If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly  
distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and  
just after exiting the self refresh mode.  
Power Down Mode  
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are  
gated off to reduce the power. The Power Down mode does not perform any refresh operations,  
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the  
device.  
Publication Release Date: October 2000  
- 13 -  
Revision A1  
W981216BH  
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation  
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be  
enabled with CKE held high for a period equal to tCKS (min) + tCK (min).  
No Operation Command  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to  
prevent the SDRAM from registering any unwanted commands between operations. A No Operation  
Command is registered when CS is low with RAS, CAS, and WE held high at the rising edge of the  
clock. A No Operation Command will not terminate a previous operation that is still executing, such as  
a burst read or write cycle.  
Deselect Command  
The Deselect Command performs the same function as a No Operation Command. Deselect  
Command occurs when CS is brought high, the RAS, CAS, and WE signals become don't cares.  
Clock Suspend Mode  
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low  
while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode  
deactivates the internal clock and suspends any clocked operation that was currently being executed.  
There is a one clock delay between the registration of CKE low and the time at which the SDRAM  
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are  
issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay  
from when CKE returns high to when Clock Suspend mode is exited.  
- 14 -  
W981216BH  
TIMING WAVEFORMS  
Command Input Timing  
t
CL  
tCH  
t
CK  
VIH  
CLK  
CS  
VIL  
t
T
tT  
t
CMS  
tCMH  
t
CMH  
tCMS  
tCMS  
tCMH  
RAS  
tCMS  
tCMH  
CAS  
WE  
tCMS  
tCMH  
tAS  
tAH  
A0-A11  
BS0, 1  
tCKS  
t
CKH  
tCKS  
tCKH  
tCKS  
tCKH  
CKE  
Publication Release Date: October 2000  
Revision A1  
- 15 -  
W981216BH  
Timing Waveforms, continued  
Read Timing  
Read CAS Latency  
CLK  
CS  
RAS  
CAS  
WE  
A0-A11  
BS0, 1  
tAC  
tAC  
tHZ  
tOH  
tOH  
t
LZ  
Valid  
Data-Out  
Valid  
Data-Out  
DQ  
Read Command  
Burst Length  
- 16 -  
W981216BH  
Timing Waveforms, continued  
Control Timing of Input / Output Data  
Control Timing of Input Data  
(Word Mask)  
CLK  
t
CMS  
tCMH  
t
CMH  
tCMS  
DQM  
t
DS  
tDH  
t
DS  
t
DH  
t
DS  
t
DH  
tDS  
tDH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0 -15  
(Clock Mask)  
CLK  
tCKH  
t
CKS  
t
CKH  
tCKS  
CKE  
tDS  
t
DH  
tDS  
tDH  
t
DS  
t
DH  
t
DS  
tDH  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
Valid  
Data-in  
DQ0 -15  
Control Timing of Output Data  
(Output Enable)  
CLK  
t
CMS  
tCMH  
tCMS  
t
CMH  
DQM  
t
AC  
t
HZ  
tAC  
t
AC  
t
AC  
t
LZ  
t
OH  
t
OH  
tOH  
t
OH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
OPEN  
DQ0 -15  
(Clock Mask)  
CLK  
t
CKH  
t
CKS  
tCKH  
tCKS  
CKE  
t
AC  
t
AC  
tAC  
tAC  
tOH  
tOH  
tOH  
tOH  
Valid  
Data-Out  
Valid  
Data-Out  
Valid  
Data-Out  
DQ0 -15  
Publication Release Date: October 2000  
Revision A1  
- 17 -  
W981216BH  
Timing Waveforms, continued  
Mode Register Set Cycle  
t
RSC  
CLK  
t
CMS  
tCMH  
CS  
CMS  
CMH  
t
t
RAS  
CAS  
WE  
t
t
CMS  
CMS  
t
t
CMH  
CMH  
t
AS  
tAH  
A0-A11  
BS0,1  
Register  
set data  
next  
command  
A2 A1A0  
BurstLength  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7
A8  
A9
A10  
A11  
Sequential  
1
Interleave  
Burst Length  
Addressing Mode  
CAS Latency  
0
0
0
0
1
1
1
1
A00  
A00  
A10  
1
A00  
A0  
0
A10  
1
0
1
0
1
0
1
0
1
A10  
A20  
A40  
8
A20  
A40  
8
Reserved  
Reserved  
FullPage  
0
A0  
A3  
Addressing Mode  
SequAe0ntial  
InteArle0ave  
A00  
A10  
"0" (Test Mode)  
"0"  
Reserved  
A6 A50 A4  
CAS ALa0tency  
ResAe0rved  
Reserved  
2
3
Reserved  
0
0
0
0
1
A00  
0
1
1
0
0
1
0
1
0
Write Mode  
"0"  
"0"  
BS0 "0"  
"0"  
Reserved  
A9
0
1
Single Write Mode  
Burst read and Burst write  
Burst read andsingle write  
BS1  
- 18 -  
W981216BH  
OPERATING TIMING EXAMPLE  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
0
CLK  
CS  
tRC  
tRC  
tRC  
tRC  
RAS  
CAS  
tRAS  
tRP  
tRAS  
tRAS  
tRP  
tRP  
tRAS  
WE  
BS0  
BS1  
tRCD  
tRCD  
tRCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
RAc  
RBd  
RBd  
A10  
RAe  
A0-A9,  
A11  
CBx  
RAc  
CAy  
RAe  
CAw  
CBz  
DQM  
CKE  
DQ  
t
AC  
tAC  
tAC  
tAC  
bx3  
bx1  
aw0  
aw2  
aw3  
bx0  
bx2  
cy0  
cy1  
cy2 cy3  
aw1  
tRRD  
t
RRD  
tRRD  
tRRD  
Precharge  
Read  
Active  
Read  
Active  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Read  
Active  
Precharge  
Read  
Precharge  
Active  
Active  
Idle  
Publication Release Date: October 2000  
Revision A1  
- 19 -  
W981216BH  
Operating Timing Example, contined  
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Autoprecharge)  
(CLK = 100 MHz)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
0
CLK  
CS  
tRC  
tRC  
tRC  
RC  
t
RAS  
CAS  
tRAS  
tRP  
RAS  
t
RAS  
t
RP  
t
t
RP  
tRAS  
WE  
BS0  
BS1  
A10  
RCD  
t
tRCD  
RCD  
t
tRCD  
RAe  
RBd  
RAa  
RBb  
RAc  
RAc  
A0-A9,  
A11  
CBz  
RAa  
CAw  
CAy  
RAe  
CBx  
RBb  
RBd  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
aw0  
aw1 aw2  
aw3  
bx0  
bx1  
bx2  
bx3  
cy0  
cy1  
cy2  
cy3  
dz0  
DQ  
tRRD  
tRRD  
tRRD  
tRRD  
Read  
AP*  
Active  
AP*  
Read  
Active  
AP*  
Active  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Read  
Active  
Read  
Active  
Idle  
* AP is the internal precharge start timing  
- 20 -  
W981216BH  
Operating Timing Example, contined  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
1
2
3
4
5
0
CLK  
CS  
tRC  
tRC  
tRC  
RAS  
tRAS  
tRP  
tRAS  
tRP  
tRAS  
tRP  
CAS  
WE  
BS0  
BS1  
tRCD  
tRCD  
tRCD  
RAa  
RAa  
RAc  
RAc  
A10  
RBb  
RBb  
A0-A9,  
A11  
CAx  
CBy  
CAz  
DQM  
CKE  
tAC  
tAC  
tAC  
ax0  
ax1  
ax2  
ax3  
ax4  
ax5  
ax6  
by0  
by1  
by4  
by5  
by6  
by7  
DQ  
CZ0  
tRRD  
tRRD  
Read  
Active  
Precharge  
Active  
Read  
Precharge  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Precharge  
Read  
Idle  
Publication Release Date: October 2000  
Revision A1  
- 21 -  
W981216BH  
Operating Timing Example, contined  
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Autoprecharge)  
(CLK = 100 MHz)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15 16  
17  
18  
19  
20 21  
22  
23  
0
CLK  
CS  
tRC  
tRC  
RAS  
CAS  
tRAS  
t
RP  
tRAS  
t
RAS  
tRP  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
t
RCD  
RBb  
RBb  
RAc  
RAc  
RAa  
A0-A9,  
A11  
CAz  
CAx  
RAa  
CBy  
DQM  
CKE  
DQ  
tCAC  
tCAC  
tCAC  
ax3  
ax4  
ax0  
ax2  
ax5  
ax6  
ax7  
by0  
by1  
by4  
by5  
by6  
ax1  
CZ0  
tRRD  
tRRD  
AP*  
Read  
Active  
Bank #0  
Bank #1  
Active  
Idle  
Read  
Active  
Read  
AP*  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
- 22 -  
W981216BH  
Operating Timing Example, contined  
Interleaved Bank Write (Burst Length = 8)  
(CLK = 100 MHz)  
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
0
1
2
3
4
5
CLK  
CS  
t
RC  
RAS  
CAS  
RAS  
t
t
RAS  
t
RP  
t
RP  
t
RAS  
RCD  
RCD  
RCD  
t
t
t
WE  
BS0  
BS1  
RBb  
RAc  
RAc  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAx  
RBb  
CBy  
CAz  
DQM  
CKE  
DQ  
ax0  
ax1  
ax4  
ax5  
ax6  
ax7  
by0  
by1  
by2  
by3  
by4  
by5  
by6  
by7  
CZ0  
CZ1  
CZ2  
t
RRD  
tRRD  
Active  
Write  
Precharge  
Active  
Write  
Bank #0  
Active  
Write  
Precharge  
Bank #1  
Bank #2  
Bank #3  
Idle  
Publication Release Date: October 2000  
Revision A1  
- 23 -  
W981216BH  
Operating Timing Example, contined  
Interleaved Bank Write (Burst Length = 8, Autoprecharge)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
CLK  
CS  
tRC  
RAS  
CAS  
tRAS  
t
RP  
tRAS  
t
RAS  
tRP  
WE  
BS0  
BS1  
tRCD  
tRCD  
tRCD  
RAa  
RAa  
RBb  
RAb  
RAc  
A10  
A0-A9,  
A11  
CAx  
CBy  
CAz  
RBb  
DQM  
CKE  
DQ  
ax4  
by2  
by5  
ax0  
ax1  
ax5  
ax6  
ax7  
by0  
by1  
by3  
by4  
by6  
by7  
CZ0  
CZ1  
CZ2  
tRRD  
tRRD  
AP*  
Write  
Write  
AP*  
Active  
Active  
Write  
Bank #0  
Active  
Bank #1  
Bank #2  
Bank #3  
Idle  
* AP is the internal precharge start timing  
- 24 -  
W981216BH  
Operating Timing Example, contined  
Page Mode Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15 16 17  
18 19  
20 21  
22 23  
CLK  
CS  
tCCD  
tCCD  
tCCD  
tRAS  
tRP  
tRAS  
tRP  
RAS  
CAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
RAa  
RAa  
RBb  
RBb  
A0-A9,  
A11  
CBx  
CAy  
CAm  
CBz  
CAI  
DQM  
CKE  
tAC  
tAC  
tAC  
tAC  
tAC  
am1  
am2  
bz0  
bz1  
bz2  
bz3  
a0  
a1  
a3  
bx0  
Ay0  
Ay1  
Ay2  
am0  
a2  
bx1  
DQ  
tRRD  
Read  
Bank #0 Active  
Bank #1  
Read  
Read  
Precharge  
Active  
Read  
Read  
AP*  
Bank #2  
Idle  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date: October 2000  
Revision A1  
- 25 -  
W981216BH  
Operating Timing Example, contined  
Page Mode Read / Write (Burst Length = 8, CAS Latency = 3)  
(CLK = 100 MHz)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
0
1
2
3
4
5
CLK  
CS  
tRAS  
tRP  
RAS  
CAS  
WE  
BS0  
BS1  
tRCD  
RAa  
RAa  
A10  
A0-A9,  
A11  
CAx  
CAy  
DQM  
CKE  
tAC  
tWR  
ax5  
ay1  
ax0  
ax1  
ax3  
ay0  
ay2  
ay4  
ax2  
ax4  
ay3  
DQ  
Q
Q
Q
Q
Q
Q
D
D
D
D
D
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Active  
Idle  
Read  
Write  
Precharge  
- 26 -  
W981216BH  
Operating Timing Example, contined  
Auto Precharge Read (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
t
RC  
tRC  
RAS  
t
RAS  
tRP  
t
RAS  
tRP  
CAS  
WE  
BS0  
BS1  
A10  
tRCD  
tRCD  
RAa  
RAb  
A0-A9,  
A11  
CAx  
RAa  
CAw  
RAb  
DQM  
CKE  
DQ  
t
AC  
t
AC  
aw0  
aw1 aw2  
aw3  
bx0  
bx1  
bx2 bx3  
Bank #0  
AP*  
Active  
Idle  
Read  
Active  
Read  
AP*  
Bank #1  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
Publication Release Date: October 2000  
Revision A1  
- 27 -  
W981216BH  
Operating Timing Example, contined  
Auto Precharge Write (Burst Length = 4)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
tRC  
tRC  
RAS  
CAS  
tRAS  
tRP  
tRAS  
tRP  
WE  
BS0  
BS1  
tRCD  
tRCD  
RAc  
A10  
RAa  
RAa  
RAb  
A0-A9,  
A11  
CAw  
RAb  
CAx  
RAc  
DQM  
CKE  
DQ  
bx0  
aw1 aw2  
bx1  
bx3  
bx2  
aw0  
aw3  
Active  
Idle  
Bank #0  
Write  
Active  
Write  
AP*  
Active  
AP*  
Bank #1  
Bank #2  
Bank #3  
* AP is the internal precharge start timing  
- 28 -  
W981216BH  
Operating Timing Example, contined  
Auto Refresh Cycle  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
CLK  
CS  
t
RP  
t
RC  
tRC  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
CKE  
DQ  
All Banks  
Prechage  
Auto  
Refresh  
Auto Refresh (Arbitrary Cycle)  
Publication Release Date: October 2000  
Revision A1  
- 29 -  
W981216BH  
Operating Timing Example, contined  
Self Refresh Cycle  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
tRP  
RAS  
CAS  
WE  
BS0,1  
A10  
A0-A9,  
A11  
DQM  
tCKS  
tCKS  
tSB  
CKE  
DQ  
tCKS  
tRC  
Self Refresh Cycle  
No Operation Cycle  
All Banks  
Precharge  
Self Refresh  
Entry  
Arbitrary Cycle  
- 30 -  
W981216BH  
Operating Timing Example, contined  
Burst Read and Single Write (Burst Length = 4, CAS Latency = 3)  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15 16 17 18 19  
20 21 22 23  
CLK  
CS  
RAS  
CAS  
tRCD  
WE  
BS0  
BS1  
A10  
RBa  
A0-A9,  
A11  
CBz  
RBa  
CBv  
CBw  
CBx CBy  
DQM  
CKE  
tAC  
tAC  
DQ  
av0  
av1  
av3  
aw0  
ax0  
ay0  
az1  
az2  
az3  
az0  
av2  
Q
Q
Q
Q
D
D
D
Q
Q
Q
Q
Read  
Active  
Single Write  
Read  
Bank #0  
Bank #1  
Bank #2  
Bank #3  
Idle  
Publication Release Date: October 2000  
Revision A1  
- 31 -  
W981216BH  
Operating Timing Example, contined  
PowerDown Mode  
(CLK = 100 MHz)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
CLK  
CS  
RAS  
CAS  
WE  
BS  
RAa  
RAa  
RAa  
A10  
A0-A9  
A11  
CAa  
RAa  
CAx  
DQM  
t
SB  
tSB  
CKE  
DQ  
t
CKS  
t
CKS  
CKS  
CKS  
t
t
ax0  
ax1  
ax2  
ax3  
Active  
NOP Read  
Precharge  
NOPActive  
Precharge Standby  
Power Down mode  
Active Standby  
Power Down mode  
Note: The PowerDown Mode is entered by asserting CKE "low".  
All Input/Output buffers (except CKE buffers) are turned off in the PowerDown mode.  
When CKE goes high, command input must be No operation at next CLK rising edge.  
- 32 -  
W981216BH  
Operating Timing Example, contined  
Autoprecharge Timing (Read Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS Latency=2  
( a ) burst length = 1  
Command  
Read AP  
Read  
Act  
t
RP  
DQ  
Q0  
( b ) burst length = 2  
Command  
AP  
Q0  
Act  
tRP  
DQ  
Q1  
( c ) burst length = 4  
Command  
Read  
AP  
Q2  
Act  
Q4  
t
RP  
DQ  
Q0  
Q0  
Q1  
Q1  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q6  
Act  
t
RP  
DQ  
Q2  
Act  
Q3  
Act  
Q5  
Q7  
(2) CAS Latency=3  
( a ) burst length = 1  
Command  
Read AP  
Read  
tRP  
DQ  
Q0  
Q0  
Q0  
Q0  
( b ) burst length = 2  
Command  
AP  
tRP  
DQ  
Q1  
AP  
Q1  
( c ) burst length = 4  
Command  
Read  
Act  
Q4  
tRP  
DQ  
Q2  
Q2  
Q3  
Q3  
( d ) burst length = 8  
Command  
Read  
AP  
Q5  
Act  
tRP  
DQ  
Q1  
Q6  
Q7  
Note )  
represents the Read with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
Read  
AP  
Act  
When the Auto precharge command is asserted, the period from Bank Activate command to  
the start of internal precgarging must be at least t RAS(min).  
Publication Release Date: October 2000  
Revision A1  
- 33 -  
W981216BH  
Operating Timing Example, contined  
Autoprecharge Timing (Write Cycle)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) CAS Latency=2  
( a ) burst length = 1  
Command  
Write AP  
Act  
tWR  
tRP  
DQ  
( b ) burst length = 2  
Command  
D0  
Write  
D0  
AP  
Act  
AP  
WR  
t
RP  
t
DQ  
( c ) burst length = 4  
Command  
D1  
D1  
D1  
Write  
D0  
Act  
D6  
t
WR  
t
RP  
DQ  
D2  
D2  
D3  
D3  
( d ) burst length = 8  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
D4  
D5  
D7  
(2) CAS Latency=3  
( a ) burst length = 1  
Command  
Write AP  
Act  
tWR  
tRP  
DQ  
D0  
( b ) burst length = 2  
Command  
Write  
D0  
AP  
Act  
tWR  
tRP  
DQ  
( c ) burst length = 4  
Command  
D1  
D1  
D1  
Write  
D0  
AP  
D4  
Act  
D7  
t
WR  
tRP  
DQ  
D2  
D2  
D3  
D3  
( d ) burst length = 8  
Command  
Write  
D0  
AP  
Act  
t
WR  
tRP  
DQ  
D5  
D6  
Note )  
Write  
represents the Write with Auto precharge command.  
represents the start of internal precharging.  
represents the Bank Activate command.  
AP  
Act  
When the Auto precharge command is asserted, the period from Bank Activate  
command to the start of internal precgarging must be at least tRAS (min).  
- 34 -  
W981216BH  
Operating Timing Example, contined  
Timing Chart of Read to Write Cycle  
In the case of Burst Length = 4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
( a ) Command  
Read Write  
DQM  
DQ  
D0  
D1  
D2  
D1  
D3  
D2  
( b ) Command  
Read  
Write  
DQM  
DQ  
D0  
D3  
(2) CAS Latency=3  
( a ) Command  
DQM  
Read Write  
DQ  
D0  
D1  
D2  
D1  
D3  
D2  
( b ) Command  
Read  
Write  
DQM  
DQ  
D0  
D3  
Note: The Output data must be masked by DQM to avoid I/O conflict  
Timing Chart of Write to Read Cycle  
In the case of Burst Length=4  
1
2
3
4
5
6
7
8
9
10  
11  
0
(1) CAS Latency=2  
Write Read  
( a ) Command  
DQM  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Read  
Write  
DQ  
D0  
D1  
Q3  
(2) CAS Latency=3  
( a ) Command  
DQM  
Write Read  
DQ  
D0  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q2  
( b ) Command  
DQM  
Write  
Read  
DQ  
Q3  
D0  
D1  
Publication Release Date: October 2000  
Revision A1  
- 35 -  
W981216BH  
Operating Timing Example, contined  
Timing Chart of Burst Stop Cycle (Burst Stop Command)  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
( a ) CAS latency =2  
Command  
Read  
BST  
Q3  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q4  
Q3  
( b )CAS latency = 3  
Command  
Read  
BST  
Q2  
DQ  
Q4  
(2) Write cycle  
Command  
Write  
Q0  
BST  
DQ  
Q1  
Q2  
Q3  
Q4  
Note: BST  
represents the Burst stop command  
Timing Chart of Burst Stop Cycle (Precharge Command)  
In the case of Burst Lenght = 8  
0
1
2
3
4
5
6
7
8
9
10  
11  
(1) Read cycle  
( a )CAS latency =2  
Command  
Read  
PRCG  
DQ  
Q0  
Q1  
Q0  
Q2  
Q1  
Q3  
Q4  
Q3  
( b )CAS latency = 3  
Command  
PRCG  
Read  
DQ  
Q2  
Q4  
(2) Write cycle  
PRCG  
PRCG  
( a ) CAS latency =2  
Command  
Write  
t
WR  
DQM  
DQ  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
( b )CAS latency = 3  
Command  
Write  
t
WR  
DQM  
DQ  
D0  
- 36 -  
W981216BH  
Operating Timing Example, contined  
CKE/DQM Input Timing (Write Cycle)  
1
CLK cycle No.  
2
3
4
5
7
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D5  
D6  
DQM MASK  
CKE MASK  
( 1 )  
CLK cycle No.  
2
3
4
5
7
1
6
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D5  
D6  
DQM MASK  
( 2 )  
CKE MASK  
1
2
3
4
5
6
7
CLK cycle No.  
External  
CLK  
Internal  
CKE  
DQM  
DQ  
D1  
D2  
D3  
D4  
D5  
D6  
CKE MASK  
( 3 )  
Publication Release Date: October 2000  
Revision A1  
- 37 -  
W981216BH  
Operating Timing Example, contined  
CKE/DQM Input Timing (Read Cycle)  
1
CLK cycle No.  
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q1  
Q2  
Q3  
Q4  
Open  
Open  
( 1 )  
1
2
3
4
5
7
CLK cycle No.  
External  
6
CLK  
Internal  
CKE  
DQM  
DQ  
Q3  
Q4  
Q6  
Q1  
Q2  
Open  
( 2 )  
1
CLK cycle No.  
2
3
4
5
6
7
External  
CLK  
Internal  
CKE  
DQM  
DQ  
Q6  
Q3  
Q1  
Q5  
Q4  
Q2  
( 3 )  
- 38 -  
W981216BH  
Operating Timing Example, contined  
Self Refresh/Power Down Mode Exit Timing  
Asynchronous Control  
Input Buffer turn on time ( Power down mode exit time ) is specified by tCKS(min) + tCK(min)  
A ) tCK < tCKS(min)+tCK(min)  
tCK  
CLK  
CKE  
t
CKS(min)+tCK(min)  
Command  
Command  
NOP  
Input Buffer Enable  
B) tCK >= tCKS(min) + tCK (min)  
t
CK  
CLK  
CKE  
t
CKS(min) +tCK(min)  
Command  
Command  
Note )  
Input Buffer Enable  
All Input Buffer(Include CLK Buffer) are turned off in the Power Down mode  
and Self Refresh mode  
NOP  
Represents the No-Operation command  
Command  
Represents one command  
Publication Release Date: October 2000  
Revision A1  
- 39 -  
W981216BH  
PACKAGE DIMENSION  
54L TSOP (II)-400 mil  
54  
28  
H E  
E
1
27  
e
b
C
D
L
A2  
A1  
A
L1  
ZD  
Y
SEATING PLANE  
Controlling Dimension: Millimeters  
DIMENSION  
DIMENSION  
(INCH)  
(MM)  
SYM.  
MIN.  
MAX.  
MIN.  
NOM.  
MAX.  
NOM.  
1.20  
0.15  
0.047  
0.006  
A
A1  
0.10  
0.004  
0.039  
0.05  
0.24  
0.002  
0.009  
1.00  
0.32  
0.15  
A2  
b
0.40  
0.016  
0.012  
0.006  
c
D
E
22.12  
10.06  
22.62  
10.26  
11.96  
0.871  
0.396  
0.455  
0.875  
0.400  
0.905  
0.404  
22.22  
10.16  
11.76  
0.471  
0.024  
0.004  
H E  
e
11.56  
0.463  
0.0315  
0.020  
0.80  
0.50  
0.80  
0.60  
0.10  
L
0.40  
0.016  
0.032  
L1  
Y
0.71  
0.028  
ZD  
- 40 -  
W981216BH  
Winbond Electronics (H.K.) Ltd.  
Winbond Electronics North America Corp.  
Headquarters  
Winbond Memory Lab.  
Unit 9 -15, 22F, Millennium City,  
No. 378 Kwun Tong Rd;  
Kowloon, Hong Kong  
TEL: 852 -27513100  
No. 4, Creation Rd. III,  
Science -Based Industrial Park,  
Hsinchu, Taiwan  
Winbond Microelectronics Corp.  
Winbond Systems Lab.  
TEL: 886 -3-5770066  
FAX: 886 -3-5796096  
2727 N. First Street, San Jose,  
CA 95134, U.S.A.  
FAX: 852 -27552064  
http://www.winbond.com.tw/  
TEL: 408 -9436666  
FAX: 408 -5441798  
Voice & Fax -on -demand: 886 -2-27197006  
Taipei Office  
11F, No. 115, Sec. 3, Min  
Taipei, Taiwan  
-Sheng East Rd.,  
TEL: 886 -2-27190505  
FAX: 886 -2-27197502  
Note: All data and specifications are subject to change withou  
t notice.  
Publication Release Date: October 2000  
Revision A1  
- 41 -  

相关型号:

W981216BH-75

Synchronous DRAM, 8MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W981216BH-8H

Synchronous DRAM, 8MX16, 6ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W981216BH75I

Synchronous DRAM, 8MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W981216DH-7

Synchronous DRAM, 8MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W981216DH-75

Synchronous DRAM, 8MX16, 5.4ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W981216DH-8H

Synchronous DRAM, 8MX16, 6ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, TSOP2-54

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W981232DB-75

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, TFBGA-90

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W981232DB75E

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, TFBGA-90

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9812G21B-6I

Synchronous DRAM, 4MX32, 5ns, CMOS, PBGA90, 8 X 13 MM, ROHS COMPLIANT, TFBGA-90

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9812G21B-75

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 8 X 13 MM, ROHS COMPLIANT, TFBGA-90

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9812G2DB-75

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-90

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND

W9812G2DB75E

Synchronous DRAM, 4MX32, 5.4ns, CMOS, PBGA90, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-90

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
WINBOND