MVTX1100 [ZARLINK]

9-Port Home PNA Packet Concentrator; 9端口PNA家选矿厂包
MVTX1100
型号: MVTX1100
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

9-Port Home PNA Packet Concentrator
9端口PNA家选矿厂包

文件: 总40页 (文件大小:442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
This product is obsolete.  
This information is available for your  
convenience only.  
For more information on  
Zarlink’s obsolete products and  
replacement product lists, please visit  
http://products.zarlink.com/obsolete_products/  
MVTX1100  
9-Port Home PNA Packet Concentrator  
Data Sheet  
November 2003  
Ordering Information  
Features  
8 1/10 Mbps Serial ports direct interface with  
Home PNA PHY or 8 10/100 Mbps RMII ports  
Ideal for MDU (Multiple Dwelling Unit) application  
with Home PNA PHY  
1 10/100 Mbps auto-negotiating MII/serial port  
(port 8) that can be used as uplink port  
Up to 8 port-based VLANs can be configured  
from EEPROM  
Internal 1 k MAC address table  
MVTX1100AL 208 Pin PQFP  
-40°C to +85°C  
Ability to support WinSock 2.0 and Windows 98 &  
Windows 2000 smart applications  
Transmit delay control capabilities  
-
Provides maximum delay guarantee  
(<1 ms)(Last bit in to first bit out)  
-
-
Auto address learning  
Auto address aging  
-
Supports mixed voice-data networks  
Leading edge QoS capabilities provided based on  
802.1 p and IP TOS/DS field  
-
-
Support Concentrator mode  
Ports 0 & 1 can be trunked to provide a  
2 queues per output port  
2x1/10 Mbps link to another switch or server  
Packet scheduling based on Weighted Round-  
Robin (WRR)  
Utilizes a single low-cost external pipelined,  
SyncBurst SRAM (SBRAM) for buffer memory  
-
External I2C EEPROM for power-up configuration  
Support external parallel port for configuration  
updates  
-
Weighted Random Early Detection/Drop  
(WRED) to drop packets during traffic  
congestion  
56 k bytes or 512 k bytes (1 chip)  
-
2 levels of packet drop provided  
Supports both Full/Half duplex ports  
Full wire-speed layer 2 switching on all ports  
Optimized pin-out for easy board layout  
Packaged in a 208 PQFP  
10/100  
MII  
S
S
MVTX1100  
9-Port Home PNA  
CPU  
R
A
Packet Concentrator  
M
1/10MB*  
Serial  
Interface  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
8 Port Home PNA  
+ 1-Port MII Switch  
* also supports 10/100MB RMII Interface  
Figure 1 - System Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved.  
MVTX1100  
Data Sheet  
Description  
The MVTX1100 is a fully integrated 9-port Ethernet packet concentrator designed to support Home Networking. It is  
ideal for Multiple Dwelling Units (MDU) application. The MVTX1100 provides features normally not associated with  
plug-and-play technology without requiring an external processor to facilitate their utilization.  
The MVTX1100 begins operating immediately at power-up, learning addresses automatically and forwarding  
packets at full wire speed to any of its 8 output ports or the uplink expansion port. At power-up, MVTX1100  
configures itself from the EEPROM, and can then provide port trunking, port-based VLANs, and Quality of Service  
(QoS) capabilities, usually associated only with managed switches.  
The proprietary built-in intelligence of the MVTX1100 allows it to recognize and offer packet prioritization QoS.  
Packets are prioritized based on their layer 2 VLAN priority tag or layer 3 Type-Of Service/ Differentiated Services  
(TOS/DS) field. This priority can be defined as transmit and/or drop priority.  
The MVTX1100 can be used to create an 8-port unmanaged switch with one WAN router port by adding a CPU  
(ARM or MPC 850) connected to the additional MII port (port 8). The only external components needed for a low  
cost MDU system are the Home PNA physical layer transceivers and a single SBRAM per MVTX1100.  
Operating at 50 MHz internally, and with a 50 MHz interface to the external SBRAM, the MVTX1100 sustains full  
wire-speed switching on all 9 ports. When the system supports 8 ports of 1 M Home PNA PHY with the 10M Serial  
uplink, the system clock can be operated to 20 MHz and still achieve full wire-speed switching on all nine ports.  
The chip is packaged in a small 208 pin Plastic Quad Flat-Pak (PQFP) package.  
2
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
MVTX1100 Physical Pinout  
208 206 204 202 200 198 196 194 192 190 188 186 184 182 180 178 176 174 172 170 168 166 164 162 160 158  
156  
L_OE#  
L_A[7]  
L_A[8]  
2
L_WE#  
154  
152  
150  
148  
146  
144  
142  
140  
138  
136  
134  
132  
130  
128  
126  
VSS  
VDD_CORE  
L_A[9]  
+
Buffer Mem Interface  
4
L_CLK  
VDD  
L_A[10]  
Pin 1 I.D.  
6
L_A[17]  
L_A[11]  
L_A[2]  
VSS  
8
VSS  
L_A[12]  
SCLK  
L_A[13]  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
VDD  
L_A[14]  
MIR_CTL[3]  
MIR_CTL[2]  
MIR_CTL[1]  
MIR_CTL[0]  
RSTIN#  
VDD  
M0_CLS  
M0_LINK  
M0_DUPLEX  
M1_CLS  
M1_LINK  
M1_DUPLEX  
VSS (CORE)  
M0_TXEN  
M0_TXD  
M0_TXCLK  
M0_CRS_DV  
M0_RXD  
M0_RXCLK  
VDD  
RSTOUT#  
VSS (CORE)  
T_MODE  
TSTOUT[7]  
TSTOUT[6]  
TSTOUT[5]  
TSTOUT[4]  
TSTOUT[3]  
TSTOUT[2]  
TSTOUT[1]  
TSTOUT[0]  
VDD (CORE)  
ACK  
M1_TXEN  
M1_TXD  
M1_TXCLK  
M1_CRS_DV  
M1_RXD  
M1_RXCLK  
VSS  
DATA0  
STROBE  
TRUNK_EN  
TEST#  
SDA  
M2_TXEN  
M2_TXD  
M2_TXCLK  
124  
122  
120  
118  
116  
114  
112  
110  
108  
106  
SCL  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
M_MDIO  
VSS  
M2_CRS_DV  
M2_RXD  
M_MDC  
VDD  
M2_RXCLK  
VDD (CORE)  
M3_TXEN  
M3_TXD  
M8_REFCLK  
VSS  
M8_SPEED  
M8_DUPLEX  
M8_LINK  
M3_TXCLK  
M3_CRS_DV  
M3_RXD  
M8_TXD[3]  
M8_TXD[2]  
M8_TXD[1]  
M8_TXD[0]  
M8_TXEN  
VDD  
M3_RXCLK  
VSS (CORE)  
M2_CLS  
M2_LINK  
M2_DUPLEX  
M3_CLS  
M8_TXCLK  
VSS (CORE)  
M8_RXD[3]  
RMII Port Interfaces  
M3_LINK  
M3_DUPLEX  
54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104  
3
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Pin Reference Table  
35 M2_TXCLK/M2_TXD[1])  
36 M2_CRS_DV  
70 M5_CRS_DV  
71 M5_RXD/(M5_RXD[0])  
Pin #  
Pin Name  
37 M2_RXD/(M2_RXD[0])  
72 M5_RXCLK/  
(M5_RXD[1])  
1
2
3
4
5
6
7
8
9
L_A[7]  
38 M2_RXCLK/  
(M2_RXD[1])  
L_A[8]  
73 VDD (CORE)  
VDD (CORE)  
L_A[9]  
39 VDD (CORE)  
40 M3_TXEN  
74 M6_TXEN  
75 M6_TXD/(M6_TXD[0])  
L_A[10]  
L_A[11]  
VSS  
41 M3_TXD/(M3_TXD[0])  
42 M3_TXCLK/(M3_TXD[1])  
43 M3_CRS_DV  
44 M3_RXD/(M3_RXD[0])  
45 M3_RXCLK/(M3_RXD[1])  
46 VSS (CORE)  
47 M2_CLS  
76 M6_TXCLK/  
(M6_TXD[1])  
77 M6_CRS_DV  
78 M6_RXD/(M6_RXD[0])  
L_A[12]  
L_A[13]  
79 M6_RXCLK/  
(M6_RXD1])  
10 L_A[14]  
80 VSS (CORE)  
81 M7_TXEN  
11 VDD  
12 M0_CLS  
48 M2_LINK  
82 M7_TXD/(M7_TXD[0])  
83 M7_TXCLK/(M7_TXD[1])  
84 M7_CRS_DV  
85 M7_RXD/(M7_RXD[0])  
86 M7_RXCLK/(M7_RXD[1])  
87 VDD  
13 M0_LINK  
49 M2_DUPLEX  
50 M3_CLS  
14 M0_DUPLEX  
15 M1_CLS  
51 M3_LINK  
16 M1_LINK  
52 M3_DUPLEX  
53 M4_CLS  
17 M1_DUPLEX  
18 VSS (CORE)  
54 M4_LINK  
88 M6_CLS  
19 M0_TXEN  
55 M4_DUPLEX  
56 M5_CLS  
89 M6_LINK  
20 M0_TXD/(M0_TXD[0])1  
21 M0_TXCLK/(M0_TXD[1])  
22 M0_CRS_DV  
23 M0_RXD/(M0_RXD[0])  
24 M0_RXCLK/(M0_RXD[1])  
25 VDD  
90 M6_DUPLEX  
91 M7_CLS  
57 M5_LINK  
58 M5_DUPLEX  
59 VDD  
92 M7_LINK  
93 M7_DUPLEX  
94 VSS  
60 M4_TXEN  
61 M4_TXD/(M4_TXD[0])  
62 M4_TXCLK/(M4_TXD[1])  
63 M4_CRS_DV  
64 M4_RXD/(M4_RXD[0])  
65 M4_RXCLK/(M4_RXD[1])  
66 VSS  
95 M_CLK  
26 M1_TXEN  
96 VDD (CORE)  
97 M8_RXDV/S8_CRS_DV  
98 M8_COL/S8_COL  
99 VSS  
27 M1_TXD/(M1_TXD[0])  
28 M1_TXCLK/(M1_TXD[1])  
29 M1_CRS_DV  
30 M1_RXD/(M1_RXD[0])  
31 M1_RXCLK/(M1_RXD[1])  
32 VSS  
100 M8_RXCLK/S8_RXCLK  
101 VDD  
67 M5_TXEN  
68 M5_TXD/(M5_TXD[0])  
69 M5_TXCLK/M5_TXD[1])  
102 M8_RXD[0]/S8_RXD  
103 M8_RXD[1]  
33 M2_TXEN  
34 M2_TXD/(M2_TXD[0])  
4
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
104 M8_RXD[2]  
139 T_MODE  
175 VDD  
105 M8_RXD[3]  
140 VSS (CORE)  
141 RSTOUT#  
142 RSTIN#  
143 (MIRROR_CONTROL[0])  
144 (MIRROR_CONTROL[1])  
145 (MIRROR_CONTROL[2])  
146 (MIRROR_CONTROL[3])  
147 VDD  
176 L_D[11]  
177 L_D[12]  
178 L_D[13]  
179 L_D[14]  
180 VSS  
106 VSS (CORE)  
107 M8_TXCLK/S8_TXCLK  
108 VDD  
109 M8_TXEN[0]/S8_TXEN  
110 M8_TXD[0]/S8_TXD  
111 M8_TXD[1]  
181 L_D[15]  
182 L_D[16]  
183 L_D[17]  
184 VDD (CORE)  
185 L_D[18]  
186 L_D[19]  
187 L_D[20]  
188 L_D[21]  
189 VSS  
112 M8_TXD[2]  
113 M8_TXD[3]  
148 SCLK  
114 M8_LINK/S8_LINK  
149 VSS  
115 M8_DUPLEX/S8_DUPLE  
X
150 L_A[2]  
151 L_A[17]  
116 M8_SPEED  
117 VSS  
152 VDD  
153 L_CLK  
118 M8_REFCLK  
119 VDD  
154 VSS  
190 L_D[22]  
191 L_D[23]  
192 L_D[24]  
193 L_D[25]  
194 VDD  
155 L_WE#  
120 M_MDC  
121 VSS  
156 L_OE#  
157 L_ADSC#  
158 L_A[16]  
122 M_MDIO  
123 SCL  
159 VDD (CORE)  
160 L_A[15]  
195 L_D[26]  
196 L_D[27]  
197 L_D[28]  
198 VSS (CORE)  
199 L_D[29]  
200 L_D[30]  
201 L_D[31]  
202 VDD  
124 SDA  
125 TEST#  
161 L_D[0]  
126 TRUNK_ENABLE  
127 STROBE  
128 DATA0  
162 VSS  
163 L_D[1]  
164 L_D[2]  
129 ACK  
165 L_D[3]  
130 VDD (CORE)  
131 TSTOUT[0]  
132 TSTOUT[1]  
133 TSTOUT[2]  
134 TSTOUT[3]  
135 TSTOUT[4]  
136 TSTOUT[5]  
137 TSTOUT[6]  
138 TSTOUT[7]  
166 VDD  
167 L_D[4]  
203 L_A[18]  
204 L_A[3]  
205 L_A[4]  
206 L_A[5]  
207 VSS  
168 L_D[5]  
169 L_D[6]  
170 L_D[7]  
171 VSS (CORE)  
172 L_D[8]  
208 L_A[6]  
Note 1: Pin names inside ( ) indicate  
RMII pins for ports 0-7.  
173 L_D[9]  
174 L_D[10]  
5
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
10/100  
MII  
S
S
R
A
M
10/100  
RMII  
MVTX1100  
Switch Chip  
PAL  
1-Port MII 10/100  
8-Port 10 MB Serial  
MVTX2604  
Routing Switch  
24 10/100 Ports  
+
1 G GMII  
10 MB  
Serial  
.
.
.
2-1 G Uplinks  
Interface  
Home  
Home  
PNA  
PHY  
PNA  
PHY  
Line Card  
192+2 Port Switch  
MDU System  
10 Mbps Serial  
Interface  
S
S
R
A
M
MVTX1100  
8-Port 1 MB Serial  
MVTX1100  
10/100 MII  
1 MB  
Serial  
Interface  
Home  
Home  
PNA  
PHY  
PNA  
PHY  
Line Card  
64+1 Port Switch  
MDU System  
Figure 2 - System Block Diagram (High Port Density MDU System)  
6
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
1 k  
Figure 3 - MVTX1100 Block Diagram  
7
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
1.0 Functional Operation  
The MVTX1100 was designed to provide a cost-effective layer 2 switching solution, using technology from the  
Zarlink family to offer a highly integrated product for the unmanaged, DiffServ ready, Ethernet switching market.  
Nine 1/10 Media Access Controllers (MAC) provide the protocol interface into the MVTX1100. These MACs perform  
the required packet checks to ensure that each packet provided to the Frame Engine meets all the IEEE 802.1  
standards. Data packets longer than 1518 (1522 with VLAN tag) bytes and shorter than 64 bytes are dropped and  
MVTX1100 has been designed to support minimum inter-frame gaps between incoming packets.  
The PHY addresses for the 8 RMII MACs are from 08h to 0Fh. These eight ports are denoted as ports 0 to 7. The  
PHY address for the uplink MAC is 10h. This port is denoted as port 8.  
The Frame Engine (FE) is the primary packet buffering and forwarding engine within the MVTX1100. As such, the  
FE controls the storage of packets in and out of the external frame buffer memory, keeps track of frame buffer  
availability and schedules output packet transmissions. While packet data is being buffered, the FE extracts the  
necessary information from each packet header and sends it to the Search Engine for processing. Search results  
returned to the FE ensue the scheduling of packet transmission and prioritization. When a packet is chosen for  
transmission, the FE reads the packet from external buffer memory and places it in the output FIFO of the output  
port.  
2.0 Address Learning and Aging  
The MVTX1100 is able to begin address learning and packet forwarding shortly after powerup has been completed.  
The Search Engine examines the contents of its internal Switch Database Memory for each valid packet received  
on an input port.  
Unknown source and destination MAC addresses are detected when the Search Engine does not find a match  
within its database. These unknown source MAC addresses are learned by creating a new entry in the switch  
database memory, and storing the necessary resulting information in that location. Subsequent searches to a  
learned destination MAC address will return the new contents of that MAC Control Table (MCT) entry.  
After each source address search the MCT entry aging flag is updated. MCT entries that have not been accessed  
during a user configurable time period (2 to 67,108 seconds) will be removed. This aging time period can be  
configured using the 16-bit value stored in the registers MAC Address Aging Time Low and High (MATL[7:0],  
MATH[7:0]). The aging period is defined by the following equation:  
{MATH[7:0]&MATL[7:0]} x 1024ms = Tage  
The aging of all MCT entries is checked once during each time period. If the MCT entry has not been utilized before  
the end of the next time period, it will be deleted.  
Note that when the system clock operates at 20 MHz, the aging period will be increased, compared with 50 MHz of  
system clock. One should adjust the MATH and MATHL content variable accordingly.  
3.0 Quality of Service  
The MVTX1100 utilizes Zarlink’s architecture that provides a new level of (QoS) capability to unmanaged switch  
applications. Similar in operation to the QoS capabilities of other Zarlink chipset members, MVTX1100 provides two  
transmit queues per output port.  
The Frame Engine manages the output transmission queues for all the MVTX1100 ports. Once the destination  
address search is complete, and the switch decision is passed back to the FE, the packet is inserted into the  
appropriate output queue. The packet entry into the high or low priority queue is controlled by either the VLAN tag  
information or the Type of Service/Differentiated Service (TOS/DS) field in the IP header. Either of these priority  
fields can be used to select the transmission priority, and the mapping of the priority field values into either the high  
or low priority queue can be configured using the MVTX1100 configuration registers.  
8
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
If the system uses the TOS/DS field to prioritize packets, there are two choices regarding which bits of the TOS/DS  
field are used. Bits [0:2] of the TOS byte (known as the IP precedence field) or bits [3:5] of the TOS byte (known as  
the DRT field) can be used to map the transmission queue priority. Either bits, [0:2] or [3:5], can also be used as a  
packet drop precedence, by using bits 6 and 7 of the FCB Buffer Low Threshold register (FCBST).  
MVTX1100 utilizes Weighted Round Robin (WRR) and Weighted Random Early Detection/Drop (WRED) to  
schedule packets for transmission. To enable MVTX1100’s QoS capabilities requires the use of an external  
EEPROM to change the default register configurations and turn on QoS.  
Weighted Round Robin is an efficient method to ensure that each of the transmission queues gets at least a  
minimum service level. With two output transmission queues, MVTX1100 will transmit “X” packets from the high  
priority queue before transmitting “Y” packets from the low priority queue. MVTX1100 allows the designer to set the  
high priority weight to a value between 0 and 16. The low priority weight is fixed at the value 1. If the high priority  
weight is set to the value 4, then it will transmit 4 high priority packets before transmitting each low priority packet.  
MVTX1100 also uses a proprietary mechanism to ensure the timely delivery of high priority packets. When the  
latency of high priority packets reaches a threshold, it will override the WRR weights and transmit only high priority  
packets until the high priority packet delays are below the threshold. This threshold limit is set at less than 1 ms  
(last bit in and first bit out).  
The QoS capabilities of the MVTX1100 are enabled by loading the appropriate values into the configuration  
registers. QoS for packet transmission is enabled by performing the following four steps:  
1. Select the TOS/DS or VLAN Priority Tag field as the control for IP packet transmission. The selection is made  
using bit 7 of the Flooding Control (FCR[7]) register.  
-
-
FCR[7]=0, use VLAN Priority Tag field to map the transmission priority if this Tag field exists.  
FCR[7]=1, use TOS/DS field for IP packet transmission priority mapping.  
2. Select which TOS/DS field to use as the control for packet transmission priority if the TOS/DS field was selected  
in step 1. The selection is made using bit 6 of the FCB Buffer Low Threshold (FCBST[6]) register.  
-
-
FCBST[6]=0, use DTR subfield to map the transmission priority.  
FCBST[6]=1, use IP precedence subfield1 to map the transmission priority.  
3. Set the transmission queue weight for the high priority queue in the Transmission Scheduling Control  
(AXSC[3:0]) register.  
4. Set the priority mappings from the TOS/DS or VLAN Priority Tag field to the high or low priority output queue.  
The selection is made using the VLAN Priority Map (AVPM) and TOS Priority Map (TOSPML) registers.  
Note that, for half duplex operation, the priority queues2 must be enabled using bit 7 in the Transmission  
Scheduling Control (AXSC[7]) register to utilize the QoS function.  
When QoS is enabled, MVTX1100 will utilize WRR to schedule packet transmission, and will use Weighted  
Random Early Detection/Drop (WRED) to drop random packets in order to handle buffer memory congestion. In  
this method, only certain packet flows are slowed down while the remaining see no impact from the network traffic  
congestion.  
Weighted Random Early Detection/Drop (WRED) is a method of handling traffic congestion in the absence of flow  
control mechanisms. When flow control is enabled, all devices that are connected to a switch node that is  
exercising flow control are effectively unable to transmit, including nodes that are not directly responsible for the  
congestion problem. This inability to transmit during flow control periods would play havoc with voice packets, or  
other high priority packet flows, and therefore flow control is not recommended for networks that mix voice and data  
traffic.  
1. IP precedence and DTR subfields are referred to as TOS/DS[0:2] and TOS/DS[3:5] in the IP TOS/DS byte.  
2. In Half Duplex mode, the QoS functions are disabled by default.  
9
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
WRED allows traffic to continue flowing into ports on a switch, and randomly drops packets with different  
probabilities based upon each packet’s priority markings. As the switch congestion increases, the probability of  
dropping an input packet increases, and as congestion decreases, the probability of dropping an input packet  
decreases. In this manner, only traffic flows that have had packets dropped will be affected by the congestion. Other  
traffic flows will see no effect.  
The following table summarizes the WRED operation of the MVTX1100. It lists the buffer thresholds at which each  
drop probability takes effect.  
WRED Threshold  
Drop Percentage  
Condition for High  
Priority Queue  
Condition for Low  
Priority Queue  
Drop Percentage for  
High-Drop Packet  
Drop Percentage for  
Low-Drop Packet  
Level 0  
Total buffer space available in device is  
50%  
0%  
LPBT  
Level 1  
Level 2  
24 buffers occupied  
72 buffers occupied  
84 buffers occupied  
75%  
25%  
50%  
100%  
Table 1 - WRED Operation of the MVTX1100  
The WRED packet drop capabilities of MVTX1100 are enabled by performing the following three steps:  
1. Select the TOS/DS or VLAN Tag field as the control for packet dropping. The selection is made using bit 7 of the  
Flooding Control (FCR[7]) register.  
-
-
FCR[7]=0, use VLAN Priority Tag field to map the drop priority if this Tag field exists  
FCR[7]=1, use ToS/DS field for IP packet transmission priority mappin.  
2. Select which TOS/DS Tag field to use for packet dropping provided that the TOS/DS field was selected in step 1.  
The selection is made using bit 7 of the FCB Buffer Low Threshold (FCBST[7]) register.  
-
-
FCBST[7]=0, use DTR subfield to map the drop priority  
FCBST[7]=1, use IP precedence subfield to map the drop priority  
3. Set the drop mappings from the TOS/DS or VLAN Tag field to the high or low drop priority output flag. The selec-  
tion is made using the VLAN Drop Map (AVDM) and TOS Discard Map (TOSDML) registers.  
Note that to utilize the QoS function of the MVTX1100, flow control has to be disabled.  
4.0 Buffer Management  
MVTX1100 stores each input packet into the external frame buffer memory while determining the destination the  
packet is to be forwarded to. The total number of packets that can be stored in the frame buffer memory depends  
upon the size of the external SBRAM that is utilized. For a 256 k byte SBRAM MVTX1100 can buffer 170 packets.  
For a 512 K byte SBRAM MVTX1100 can buffer 340 packets.  
In order to provide good QoS characteristics, MVTX1100 must allocate the available buffer space to low and high  
priority unicast and multicast traffic. This can be accomplished using the external EEPROM to load the appropriate  
values into MVTX1100 configuration registers. To allow the designer to set the minimum number of buffers provided  
for low drop priority unicast traffic, use the Low Drop Priority Buffer Threshold (LPBT[7:0]) register. To set the  
maximum number of buffers allocated for all multicast packets, use the Multicast Buffer Control (MBCR[7:0])  
register. During operation MVTX1100 will continuously monitor the amount of frame buffer memory that is available,  
and when the unused buffer space falls below a designer configurable threshold, MVTX1100 will begin to drop  
incoming packets (WRED). This threshold is set using the FCB Buffer Low Threshold (FCBST[5:0]) register.  
10  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
5.0 Virtual LANs  
MVTX1100 provides the designer the ability to define a single port-based Virtual LAN (VLAN) for each of the nine  
ports. This VLAN is individually defined for each port using the Port Control Registers (ECR1Px[6:4]). Bits [6:4]  
allow the designer to define a VLAN ID (value between 0-7) for each port.  
When packets arrive at an input of MVTX1100, the search engine will determine the VLAN ID for that port, and then  
determine which of the other ports also are members of that VLAN by matching their assigned VLAN Id values. The  
packet will then be transmitted to each port with the same VLAN ID as the source port.  
6.0 Concentration Mode  
MVTX1100 supports a Concentration Mode, where each of the 0-7 port is only allowed to directly communicate with  
the uplink port 8. This mode ensures that data from any of ports 0-7 cannot be directly seen by any other port. This  
feature is used in MDU applications to provide data privacy to subscribers.  
To use this mode, a CONC (concentration) bit in each ECR1 register of ports 0-8 must be enabled, i.e., ECR1 [7]=1,  
and ports 0-7 must each be set on a separate VLAN. Note that, in concentration mode, the VLAN of port 8 will be  
ignored.  
A more flexible concentration mode can be set up. For this mode, ports 0–7 are partitioned into several groups,  
sharing the same VLAN ID. This will allow traffic within the same group to freely communicate with each other, while  
continuing to communicate outside the group in concentration mode.  
7.0 Port Trunking  
Port trunking allows the designer to configure the MVTX1100, such that ports 0 and 1 are defined as a logical port.  
This provides a 20Mb/s link to a switch or server using two 10Mb/s ports in parallel.  
Ports 0 and 1 can be trunked by pulling the TRUNK_EN pin to the high state. In this mode, the source MAC address  
of all packets received from the trunk are checked against the MCT database to ensure that they have a port ID of  
0 or 1. Packets that have a port ID other than 0 and 1 will effect the MVTX1100 to learn the new MAC address for  
this port change.  
On transmission, the selected trunk port is determined by hashing the source and destination MAC addresses. This  
provides a one-to-one mapping between the trunk port and the MAC addresses. Subsequent packets with the  
same MAC addresses will always utilize the same trunk port.  
MVTX1100 also provides a safe fail-over mode for port trunking. If one of the two ports goes down, via the ports link  
signal, MVTX1100 will switch all traffic destined to the failed port over to the remaining port in the trunk. Thus  
maintaining the trunk link, albeit at a lower effective bandwidth.  
11  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
8.0 Port Mirroring  
The port mirroring function is only supported in RMII mode. Using the 4 port mirroring control pins provides the  
ability to enable or disable port mirroring, select which of the remaining 7 ports is to be mirrored and whether the  
received or transmitted data is being mirrored. The control for this function is shown in the following table.  
Mirrored Port  
Mirror_Control [3]  
Mirror_Control [2]  
Mirror_Control [1]  
Mirror_Control [0]  
Port 0 RX  
Port 0 TX  
Port 1 RX  
Port 1 TX  
Port 2 RX  
Port 2 TX  
Port 3 RX  
Port 3 TX  
Port 4 RX  
Port 4 TX  
Port 5 RX  
Port 5 TX  
Port 6 RX  
Port 6 TX  
Disabled  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
Table 2 - Port Mirroring Configuration  
When enabled, port mirroring will allow the user to monitor traffic going through the switch on output Port 7. If the  
port mirroring control pins, Mirror_Control[3:0], are left floating, MVTX1100 will operate with the port mirroring  
function disabled.  
When port mirroring is enabled, the user must configure Port 7 to operate in the same mode as the port it is  
mirroring (autoneg, duplex, speed, flow control).  
9.0 Power Saving Mode in MAC  
The power saving mode is activated only in RMII mode. MVTX1100 was designed to be power efficient. When the  
internal RMII MAC sections detect that the external port is not receiving or transmitting packets, it will shut down  
and conserve power. When new packet data is loaded into the output transmit FIFO of a MAC in power saving  
mode, the MAC will return to life and begin operating immediately.  
When the MAC is in power saving mode and new packet data is received on the RMII interface, the MAC will return  
to life and receive data normally into the receive FIFO. This wake up occurs when the MAC sees the CRS_DV  
signal asserted.  
Using this method, the switch will turn off all MAC sections during periods when there is no network activity (at night  
for example), and save power. For large networks this power savings can be significant. To achieve the maximum  
power efficiency, the designer should use a physical layer transceiver that utilizes “Wake-On-LAN” technology.  
12  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
2
10.0 EEPROM I C Interface  
A simple 2 wire serial interface is provided to allow the configuration of the MVTX1100 via an external EEPROM.  
MVTX1100 utilizes a 1 K bit EEPROM with an I2C interface.  
11.0 Management Interface  
MVTX1100 uses a standard parallel port interface to provide external CPU access to the internal registers. This  
parallel interface consists of 3 pins: DATA0, STROBE and ACK. The DATA0 pin provides the address and data  
content input to MVTX1100, while the ACK pin provides the corresponding output to the external CPU. The  
STROBE pin is provided as the clock for both serial data streams. Any of its internal registers can be modified  
through this parallel port interface.  
Figure 4 - Write Command  
Figure 5 - Read Command  
Each management interface transfer consists of four parts:  
1. A START pulse – occurs when DATA is sampled high when STROBE is rising followed by DATA being sampled  
low when STROBE falls.  
2. Register Address strobed into DATA0 pin by the high level of the STROBE pin.  
3. Either a Read or Write Command (see waveforms above).  
4. Data to be written provided on DATA0, or data to be read back provided on ACK.  
Any command can be aborted in the middle by sending an ABORT pulse to MVTX1100. An ABORT pulse occurs  
when DATA is sampled low and STROBE is rising, then DATA is sampled high when STROBE falls.  
13  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.0 Configuration Register Definitions  
MVTX1100 registers can be accessed via the parallel interface and/or the I2C interface. Some registers are only  
accessible through the parallel interface. The access method for each register is listed in the individual register  
definitions. Each register is 8-bit wide.  
12.1 GCR - Global Control Register  
Access: parallel interface, Write Only  
Address: h30  
Bit 0  
Bit 1  
Save configuration into EEPROM  
(Default = 0)  
(Default = 0)  
Write '1' followed by a '0'  
Save configuration into EEPROM and reset  
system  
Write '1' (self-clearing due to reset)  
Bit 2  
Start Built-In Self-Test (BIST)  
Write '1' followed by a '0'  
(Default = 0)  
(Default = 0)  
Bit 3  
Reset system  
Write '1' (self-clearing due to reset)  
Bit [7:4]  
Reserved  
12.2 DCR - Device Status and Signature Register  
Access: parallel interface, Read Only  
Address: h31  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Busy writing configuration from I2C  
1: Activity  
0: No Activity  
Busy reading configuration from I2C  
1: Activity  
0: No Activity  
Built-In Self-Test (BIST) in progress  
1: BIST In-Progress  
0: Normal Mode  
RAM error during BIST  
1: RAM Error  
0: No Error  
Bit [5:4]  
Bit [7:6]  
Reserved  
Revision number  
00: Initial Silicon  
01: Second Silicon  
14  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.3 DA – DA Register  
Access: parallel interface, Read Only  
Address: h36  
Always returns 8-bit value hDA. Indicates the (Default DA) parallel port connection is good.  
12.4 MBCR – Multicast Buffer Control Register (Address H00)  
Access: parallel interface and I2C, Read/Write  
Address: h00  
Bit [7:0]  
MAX_CNT_LMT  
Maximum number of  
(Default = 80)  
multicast frames allowed  
12.5 FCBST – FCB Buffer Low Threshold  
Access: parallel interface and I2C, Read/Write  
Address: h01  
Bits [5:0]  
BUF_LOW_TH  
Buffer Low Threshold –  
number of FCB left before  
triggering WRED  
Use IP precedence field  
(TOS[0:2]) for Priority  
(Default = 3F)  
(Default = 0)  
Bit 6  
Bit 7  
Use IP precedence subfield (Default = 0)  
(TOS[0:2]) for Drop  
Note that, for Bits 6 and 7, Default = 0 means to  
use DTR filed (TOS[3:5]).  
12.6 LPBT – Low Drop Priority Buffer Threshold  
Access: parallel interface and I2C, Read/Write  
Address: h02  
Bit [7:0]  
LOW_PRI_CNT  
Number of frame buffers  
reserved for low-dropping  
traffic  
(Default 3F)  
12.7 FCR – Flooding Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h03  
Bits [3:0]  
Bits [6:4]  
U2MR  
TimeBase  
Unicast to Multicast Rate  
(Default = 8)  
(Default = 000)  
000 = 100 µs 001 = 200 µs  
010 = 400 µs 011 = 800 µs  
100 = 1.6 ms 101 = 3.2 ms  
110 = 6.4 ms 111 = 100 µs  
Bit 7  
USE_TOS  
Pick TOS over VLAN  
priority for IP Packet.  
(Default = 0)  
15  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.8 AVTCL – VLAN Type Code Register Loq  
Access: parallel interface and I2C, Read/Write  
Address: h04  
Bit [7:0]  
VLANType_LOW  
Lower 8 bits of VLAN type  
code.  
(Default 00)  
(Default 81)  
12.9 AVTCH – VLAN Type Code Register High  
Access: parallel interface and I2C, Read/Write  
Address: h05  
Bit [7:0]  
VLANType_HIGH  
Upper 8 bits of the VLAN  
type code  
12.10 AVPM – VLAN Priority Map  
Access: parallel interface and I2C, Read/Write  
Address: h06  
Map VLAN tag into 2 transmit queues (0 = low priority, 1 = high priority)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Mapped priority of tag value 0  
Mapped priority of tag value 1  
Mapped priority of tag value 2  
Mapped priority of tag value 3  
Mapped priority of tag value 4  
Mapped priority of tag value 5  
Mapped priority of tag value 6  
Mapped priority of tag value 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
12.11 AVDM – VLAN Discard Map  
Access: parallel interface and I2C, Read/Write  
Address: h07  
Map VLAN tag into frame discard when low priority buffer usage is above threshold  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Frame discard for tag value 0  
Frame discard for tag value 1  
Frame discard for tag value 2  
Frame discard for tag value 3  
Frame discard for tag value 4  
Frame discard for tag value 5  
Frame discard for tag value 6  
Frame discard for tag value 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
16  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.12 TOSPML – TOS/DS Priority Map Low  
Access: parallel interface and I2 C, Read/Write  
Address: h08  
Map TOS field in IP packet into 2 transmit queues (0 = low priority, 1 = high priority).  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Mapped priority when TOS is 0  
Mapped priority when TOS is 11  
Mapped priority when TOS is 2  
Mapped priority when TOS is 3  
Mapped priority when TOS is 4  
Mapped priority when TOS is 5  
Mapped priority when TOS is 6  
Mapped priority when TOS is 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
1. TOS = 1 means the appropriate 3-bit TOS subfield is “001.  
12.13 TOSDML – TOS/DS Discard Map  
Access: parallel interface and I2C, Read/Write  
Address: h0A  
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Frame discard when TOS is 0  
Frame discard when TOS is 1  
Frame discard when TOS is 2  
Frame discard when TOS is 3  
Frame discard when TOS is 4  
Frame discard when TOS is 5  
Frame discard when TOS is 6  
Frame discard when TOS is 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
12.14 AXSC – Transmission Scheduling Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h0B  
Bits [3:0]: Transmission Queue Service Weight for high  
priority queue  
(Default F)  
Bit [4]  
Bit [5]  
Bit [6]:  
Bit [7]:  
Reserved  
Reserved  
Global Flow Control  
Half Duplex Priority Enable  
(Default 0, enable)  
(Default 0)  
17  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.15 MII_OP0 – MII Register Option 0  
Access by parallel interface and I2C, Read/Write  
Address: h0C  
To provide a non-standard address for the Phy Status Register. When low and high Address bytes are 0,  
MVTX1100 will use the standard address. Bit [7:0] Low order address byte (Default 00)  
12.16 MII_OP1 – MII Register Option 1  
Access: parallel interface and I2C, Read/Write  
Address: h0D  
Bit [7:0]  
High order address byte  
(Default 00)  
(Default 25)  
12.17 AGETIME_LOW – Mac Address Aging Timer Low  
Access: parallel interface and I2C, Read/Write  
Address: h0E  
Bit [7:0]  
Low byte of the MAC address aging timer.  
12.18 AGETIME_HIGH – Mac Address Aging Timer High  
Access: parallel interface and I2C, Read/Write  
Address: h0F  
Bit [7:0]  
High byte of the MAC address aging timer.  
(Default 01)  
The aging time is based on the following formula:  
{AGETIME_HIGH, AGETIME_LOW} x 1024 ms.  
12.19 ECR1P0 – Port 0 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h10  
Bits [3:0]  
Bit [0]  
RMII Port Mode Only for RMII mode, (Default 0000)  
Serial Mode DON’T CARE  
1 – Flow Control Off  
0 – Flow Control On  
Bit [1]  
1 – Half Duplex  
0 – Full Duplex  
Bit [2]  
1 – 10 Mbps  
0 – 100 Mbps  
Bit [3]  
1 – Force configuration based on  
Bits [2:0]  
0 – Auto and advertise based on Bits  
[2:0]  
Bits [6:4]  
Bit [7]  
PVID  
CONC:  
Port-based VLAN ID  
Enable Concentration Mode  
(Default 000)  
18  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.20 ECR1P1 – Port 1 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h11  
Bits [3:0]  
RMII Port Mode  
Only for RMII mode,  
(Default 0000)  
Serial Mode DON’T CARE  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Flow Control Off  
0 – Flow Control On  
1 – Half Duplex  
0 – Full Duplex  
1 – 10 Mbps  
0 – 100 Mbps  
1 – Force configuration based on  
Bits [2:0]  
0 – Auto and advertise based on  
Bits [2:0]  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
CONC:  
Enable Concentration Mode  
12.21 ECR1P2 – Port 2 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h12  
Bits [3:0]  
RMII Port Mode  
Only for RMII mode,(Default  
0000)  
(Default 0000)  
Serial Mode DON’T CARE  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Flow Control Off  
0 – Flow Control On  
1 – Half Duplex  
0 – Full Duplex  
1 – 10 Mbps  
0 – 100 Mbps  
1 – Force configuration based on  
Bits [2:0]  
0 – Auto and advertise based on  
Bits [2:0]  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
CONC:  
Enable Concentration Mode  
19  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.22 ECR1P3 – Port 3 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h13  
Bits [3:0]  
RMII Port Mode  
Only for RMII mode,  
(Default 0000)  
Serial Mode DON’T CARE  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Flow Control Off  
0 – Flow Control On  
1 – Half Duplex  
0 – Full Duplex  
1 – 10 Mbps  
0 – 100 Mbps  
1 – Force configuration based on  
Bits [2:0]  
0 – Auto and advertise based on  
Bits [2:0]  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
CONC:  
Enable Concentration Mode  
12.23 ECR1P4 – Port 4 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h14  
Bits [3:0]  
RMII Port Mode  
Only for RMII mode, (Default  
0000)  
(Default 0000)  
Serial Mode DON’T CARE  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Flow Control Off  
0 – Flow Control On  
1 – Half Duplex  
0 – Full Duplex  
1 – 10 Mbps  
0 – 100 Mbps  
1 – Force configuration based on  
Bit [2:0]  
0 – Auto and advertise based on  
Bit [2:0]  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
Reserved  
Enable Concentration Mode  
20  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.24 ECR1P5 – Port 5 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h15  
Bits [3:0]  
RMII Port Mode  
Only for RMII mode,  
(Default 0000)  
Serial Mode DON’T CARE  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Flow Control Off  
0 – Flow Control On  
1 – Half Duplex  
0 – Full Duplex  
1 – 10 Mbps  
0 – 100 Mbps  
1 – Force configuration based on  
Bit [2:0]  
0 – Auto and advertise based on  
Bits [2:0]  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
CONC:  
Enable Concentration Mode  
12.25 ECR1P6 – Port 6 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h16  
Bits [3:0]  
Bit [0]  
RMII Port Mode  
Only for RMII mode,  
(Default 0000)  
Serial Mode DON’T CARE  
1 – Flow Control Off  
0 – Flow Control On  
Bit [1]  
1 – Half Duplex  
0 – Full Duplex  
Bit [2]  
1 – 10 Mbps  
0 – 100 Mbps  
Bit [3]  
1 – Force configuration based on  
Bit [2:0]  
0 – Auto and advertise based on  
Bit [2:0]  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
CONC:  
Enable Concentration Mode  
21  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.26 ECR1P7 – Port 7 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h17  
Bits [3:0]  
RMII Port Mode  
Only for RMII mode,  
(Default 0000)  
Serial Mode DON’T CARE  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Flow Control Off  
0 – Flow Control On  
1 – Half Duplex  
0 – Full Duplex  
1 – 10 Mbps  
0 – 100 Mbps  
1 – Force configuration based on  
Bit [2:0]  
0 – Auto and advertise based on  
Bit [2:0]  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
CONC:  
Enable Concentration Mode  
12.27 ECR1P8 – Port 8 Control Register  
Access: parallel interface and I2C, Read/Write  
Address: h18  
Bits [3:0]  
Bit [3]  
Port Mode  
(Default 0000)  
1 – Force configuration based on  
Bit [2:0]  
0 – Autonegotiate and advertise  
based on Bit[2:0]  
Bit [2]  
Bit [1]  
Bit [0]  
1 – 10 Mbps  
0 – 100 Mbps  
1 – Half Duplex  
0 – Full Duplex  
1 – Flow Control Off  
0 – Flow Control On  
Bits [6:4]  
Bit [7]  
PVID  
Port-based VLAN ID  
(Default 000)  
(Default 0)  
CONC:  
Enable Concentration Mode  
22  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
12.28 FC_0 – Flow Control Byte 0  
Access: parallel interface and I2C, Read/Write  
Address: h19  
The flow control hold time parameter is the length of time a flow control message is effectual (i.e. halts  
incoming traffic) after being received. The hold time is measured in units of “slots,” the time it takes to  
transmit 64 bytes at wire speed. The default setting is 32 slots, or for a 100 Mbps port, approximately 164 s.  
Bits [7:0] Flow control hold time byte 0  
(Default FF)  
12.29 FC_1 – Flow Control Byte 1  
Access: parallel interface and I2C, Read/Write  
Address: h1A  
Bits [7:0] Flow control hold time byte 1  
(Default 00)  
12.30 FC_2 – Flow Control CRC Byte 0  
Access: parallel interface and I2C, Read/Write  
Address: h1B  
Bits [7:0] Flow control frame CRC byte 0 (Default 96)  
12.31 FC_3 – Flow Control CRC Byte 1  
Access: parallel interface and I2C, Read/Write  
Address: h1C  
Bits [7:0] Flow control frame CRC byte 1 (Default 8E)  
12.32 FC_4 – Flow Control CRC Byte 2  
Access: parallel interface and I2C, Read/Write  
Address: h1D  
Bits [7:0] Flow control frame CRC byte 2 (Default 99)  
12.33 FC_5 – Flow Control CRC Byte 3  
Access: parallel interface and I2C, Read/Write  
Address: h1E  
Bits [7:0] Flow control frame CRC byte 3 (Default 9A)  
12.34 CHECKSUM - EEPROM Checksum  
• Access: parallel interface and I2C, Read/Write  
• Address: h24  
The calculation is [0x100 - ((sum of registers 0x00~0x23) & 0xFF)]. For example, based on the default  
register settings, the CHECKSUM value would be 0xEE.  
Bits [7:0] Checksum  
(Default 00)  
23  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
13.0 MVTX1100 Pin Descriptions  
Note:  
#
I
Active low signal  
Input signal  
S
O
Input signal with Schmitt-Trigger  
Output signal  
OD Open-Drain driver  
I/O Input & Output signal  
SL Slew Rate Controlled  
D
U
5
Pulldown  
Pullup  
5V Tolerance  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Frame Buffer Memory Interface  
201, 200, 199, 197, 196, 195, L_D[31:0]  
193, 192, 191, 190, 188, 187,  
186, 185, 183, 182, 181, 179,  
178, 177, 176, 174, 173, 172,  
170, 169, 168, 167, 165, 164,  
163, 161  
I/O, U, SL  
Databus to Frame Buffer Memory  
203, 151, 158, 160, 10, 9, 8, L_A[18:2]  
6, 5, 4, 2, 1, 208, 206, 205,  
204, 150  
I/O, U, SL  
Address Pins for Buffer Memory  
Frame Buffer Memory Clock  
153  
L_CLK  
O
155  
L_WE#  
L_OE#  
O, SL  
O
Frame Buffer Memory Write Enable  
Frame Buffer Memory Output Enable  
Address Status Control  
156  
157  
L_ADSC#  
O, SL  
MII Management Interface  
120  
M_MDC  
M_MDIO  
O
MII Management Data Clock  
MII Management Data I/O  
122  
I/O, U  
I2C Interface (Serial EEPROM Interface)  
123  
124  
SCL  
SDA  
O, U, 5  
I/O, U, OD, 5 I2C Data I/O  
I2C Data Clock  
Parallel Port Management Interface  
127  
STROBE  
I, U, S, 5  
I, U, 5  
Strobe Pin  
128  
DATA0  
ACK  
Data Pin  
129  
O, U, OD, 5  
Acknowledge Pin  
Port 0 Serial Interface  
23  
M0_RXD  
I, U  
Port 0 Receive Data  
24  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 0 Receive Clock  
24  
22  
20  
21  
19  
12  
13  
14  
M0_RXCLK  
M0_CRS_DV  
M0_TXD  
I, U  
I, D  
O
Port 0 Carrier Sense and Data Valid  
Port 0 Transmit Data  
M0_TXCLK  
M0_TXEN  
M0_CLS  
I
Port 0 Transmit Clock  
O
Port 0 Transmit Enable  
I, U  
I, U  
I, U  
Port 0 Collision Detection  
Port 0 Link Status  
M0_LINK  
M0_DUPLEX  
Port 0 Full Duplex Select (half-duplex = 0)  
Port 1 Serial Interface  
30  
M1_RXD  
I, U  
I, U  
I, D  
O
Port 1 Receive Data  
31  
M1_RXCLK  
M1_CRS_DV  
M1_TXD  
Port 1 Receive Clock  
29  
Port 1 Carrier Sense and Data Valid  
Port 1 Transmit Data  
27  
28  
M1_TXCLK  
M1_TXEN  
M1_CLS  
I
Port 1 Transmit Clock  
26  
O
Port 1 Transmit Enable  
Port 1 Collision Detection  
Port 1 Link Status  
15  
I, U  
I, U  
I, U  
16  
M1_LINK  
17  
M1_DUPLEX  
Port 1 Full-Duplex Select (half-duplex = 0)  
Port 2 Serial Interface  
37  
M2_RXD  
I, U  
I, U  
I, D  
O
Port 2 Receive Data  
38  
M2_RXCLK  
M2_CRS_DV  
M2_TXD  
Port 2 Receive Clock  
36  
Port 2 Carrier Sense and Data Valid  
Port 2 Transmit Data  
34  
35  
M2_TXCLK  
M2_TXEN  
M2_CLS  
I
Port 2 Transmit Clock  
33  
O
Port 2 Transmit Enable  
Port 2 Collision Detection  
Port 2 Link Status  
47  
I, U  
I, U  
I, U‘  
48  
M2_LINK  
49  
M2_DUPLEX  
Port 2 Full-Duplex Select (half-duplex = 0)  
Port 3 Serial Interface  
44  
M3_RXD  
I, U  
Port 3 Receive Data  
25  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 3 Receive Clock  
45  
43  
41  
42  
40  
50  
51  
52  
M3_RXCLK  
M3_CRS_DV  
M3_TXD  
I, U  
I, D  
O
Port 3 Carrier Sense and Data Valid  
Port 3 Transmit Data  
M3_TXCLK  
M3_TXEN  
M3_CLS  
I
Port 3 Transmit Clock  
O
Port 3 Transmit Enable  
I, U  
I, U  
I, u  
Port 3 Collision Detection  
Port 3 Link Status  
M3_LINK  
M3_DUPLEX  
Port 3 Full-Duplex Select (half-duplex = 0)  
Port 4 Serial Interface  
64  
M4_RXD  
I, U  
I, U  
I, U  
O
Port 4 Receive Data  
65  
M4_RXCLK  
M4_CRS_DV  
M4_TXD  
Port 4 Receive Clock  
63  
Port 4 Carrier Sense and Data Valid  
Port 4 Transmit Data  
61  
62  
M4_TXCLK  
M4_TXEN  
M4_CLS  
I
Port 4 Transmit Clock  
60  
O
Port 4 Transmit Enable  
Port 4 Collision Detection  
Port 4 Link Status  
53  
I, U  
I, U  
I, U  
54  
M4_LINK  
55  
M4_DUPLEX  
Port 4 Full-Duplex Select (half-duplex = 0)  
Port 5 Serial Interface  
71  
M5_RXD  
I, U  
I, U  
I, D  
O
Port 5 Receive Data  
72  
M5_RXCLK  
M5_CRS_DV  
M5_TXD  
Port 5 Receive Clock  
70  
Port 5 Carrier Sense and Data Valid  
Port 5 Transmit Data  
68  
69  
M5_TXCLK  
M5_TXEN  
M5_CLS  
I
Port 5 Transmit Clock  
67  
O
Port 5 Transmit Enable  
Port 5 Collision Detection  
Port 5 Link Status  
56  
I, U  
I, U  
I, U  
57  
M5_LINK  
58  
M5_DUPLEX  
Port 5 Full-Duplex Select (half-duplex = 0)  
Port 6 Serial Interface  
78  
M6_RXD  
I, U  
Port 6 Receive Data  
26  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 6 Receive Clock  
79  
77  
75  
76  
74  
88  
89  
90  
M6_RXCLK  
M6_CRS_DV  
M6_TXD  
I, U  
I, D  
O
Port 6 Carrier Sense and Data Valid  
Port 6 Transmit Data  
M6_TXCLK  
M6_TXEN  
M6_CLS  
I
Port 6 Transmit Clock  
O
Port 6 Transmit Enable  
I, U  
I, U  
I, U  
Port 6 Collision Detection  
Port 6 Link Status  
M6_LINK  
M6_DUPLEX  
Port 6 Full-Duplex Select (half-duplex = 0)  
Port 7 Serial Interface  
85  
M7_RXD  
I, U  
I, U  
I, D  
O
Port 7 Receive Data  
86  
M7_RXCLK  
M7_CRS_DV  
M7_TXD  
Port 7 Receive Clock  
84  
Port 7 Carrier Sense and Data Valid  
Port 7 Transmit Data  
82  
83  
M7_TXCLK  
M7_TXEN  
M7_CLS  
I
Port 7 Transmit Clock  
81  
O
Port 7 Transmit Enable  
Port 7 Collision Detection  
Port 7 Link Status  
91  
U
92  
M7_LINK  
I, U  
I, U  
93  
M7_DUPLEX  
Port 7 Full-Duplex Select (half-duplex = 0)  
Port 0 RMII Interface  
24, 23  
M0_RXD[1:0]  
M0_CRS_DV  
M0_TXD[1:0]  
M0_TXEN  
I, U  
I, D  
O
Port 0 Receive Data  
22  
Port 0 Carrier Sense and Data Valid  
Port 0 Transmit Data  
21, 20  
19  
O
Port 0 Transmit Enable  
Port 1 RMII Interface  
31, 30  
M1_RXD[1:0]  
M1_CRS_DV  
M1_TXD[1:0]  
M1_TXEN  
I, U  
I, D  
O
Port 1 Receive Data  
29  
Port 1 Carrier Sense and Data Valid  
Port 1 Transmit Data  
28, 27  
26  
O
Port 1 Transmit Enable  
Port 2 RMII Interface  
38, 27  
M2_RXD[1:0]  
I, U  
Port 2 Receive Data  
27  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Pin No(s).  
Symbol  
Type  
Name & Functions  
36  
M2_CRS_DV  
M2_TXD[1:0]  
M2_TXEN  
I, D  
O
Port 2 Carrier Sense and Data Valid  
Port 2 Transmit Data  
35, 34  
34  
O
Port 2 Transmit Enable  
Port 3 RMII Interface  
45, 44  
M3_RXD[1:0]  
M3_CRS_DV  
M3_TXD[1:0]  
M3_TXEN  
I, U  
I, D  
O
Port 3 Receive Data  
43  
Port 3 Carrier Sense and Data Valid  
Port 3 Transmit Data  
42, 41  
40  
O
Port 3 Transmit Enable  
Port 4 RMII Interface  
65, 64  
M4_RXD[1:0]  
M4_CRS_DV  
M4_TXD[1:0]  
M4_TXEN  
I, U  
I, D  
O
Port 4 Receive Data  
63  
Port 4 Carrier Sense and Data Valid  
Port 4 Transmit Data  
62, 61  
60  
O
Port 4 Transmit Enable  
Port 5 RMII Interface  
72, 71  
M5_RXD[1:0]  
M5_CRS_DV  
M5_TXD[1:0]  
M5_TXEN  
I, U  
I, D  
O
Port 5 Receive Data  
70  
Port 5 Carrier Sense and Data Valid  
Port 5 Transmit Data  
69, 68  
67  
O
Port 5 Transmit Enable  
Port 6 RMII Interface  
79, 78  
M6_RXD[1:0]  
M6_CRS_DV  
M6_TXD[1:0]  
M6_TXEN  
I, U  
I, D  
O
Port 6 Receive Data  
77  
Port 6 Carrier Sense and Data Valid  
Port 6 Transmit Data  
76, 75  
74  
O
Port 6 Transmit Enable  
Port 7 RMII Interface  
86, 85  
M7_RXD[1:0]  
M7_CRS_DV  
M7_TXD[1:0]  
M7_TXEN  
I, U  
I, D  
O
Port7 Receive Data  
84  
Port 7 Carrier Sense and Data Valid  
Port 7 Transmit Data  
83, 82  
81  
O
Port 7 Transmit Enable  
Port 8 MII Interface  
105, 104, 103, 102  
M8_RXD[3:0]  
I, U  
Port 8 Receive Data  
28  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 8 Transmit Data  
113, 112, 111, 110  
M8_TXD[3:0]  
M8_TXEN  
O
109  
97  
O
Port 8 Transmit Enable  
Port 8 Receive Data Valid  
Port 8 Receive Clock  
M8_RXDV  
M8_RXCLK  
M8_TXCLK  
M8_LINK  
I, D  
I, U  
I/O, U  
I, U  
I/O, U  
I, U  
I, U  
O, U  
100  
107  
114  
116  
115  
98  
Port 8 Transmit Clock  
Port 8 Link Status  
M8_SPEED  
M8_DUPLEX  
M8_COL  
Port 8 Speed Select (100Mb = 1)  
Port 8 Full-Duplex Select (half-duplex = 0)  
Port 8 Collision Detect  
118  
M8_REFCLK  
Port 8 Reference Clock  
M8_REFCLK=1/2 M_CLK  
Port 8 Serial Interface  
102  
S8_RXD  
I, U  
I, U  
I, D  
O
Port 8 Serial Receive Data  
100  
S8_RXCLK  
S8_CRS_DV  
S8_TXD  
Port 8 Serial Receive Clock  
Port 8 Serial Carrier Sense and Data Valid  
Port 8 Serial Transmit Data  
97  
110  
107  
S8_TXCLK  
S8_TXEN  
S8_COL  
I
Port 8 Serial Transmit Clock  
Port 8 Serial Transmit Enable  
Port 8 Serial Collision Detect  
Port 8 Link Status  
109  
O
98  
I, U  
I, U  
I, U  
114  
S8_LINK  
115  
S8_DUPLEX  
Port 8 Full-Duplex Select (half-duplex = 0)  
Miscellaneous Control Pins  
95  
M_CLK  
I
Reference Clock for Serial interface =  
50 MHz±50 ppm  
148  
SCLK  
I
System Clock (50 - 80 MHz)  
Port Trunking Enable  
126  
TRUNK_EN  
RESIN#  
I, D  
I, S  
O
142  
Reset Pin  
141  
RESETOUT#  
MIR_CTL[3:0]  
PHY Reset Pin  
146, 145, 144, 143  
I/O, U  
Port Mirroring Control (only for RMII mode)  
29  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Pin No(s).  
Test Pins  
Symbol  
Type  
Name & Functions  
125  
TEST#  
Manufacturing Pin.  
Leave as No Connect (NC)  
139  
TMODE#  
I/O, U  
Manufacturing Pin. Puts device into test mode  
for ATE test.  
Leave as No Connect (NC)  
138, 137, 136, 135  
134, 133, 132, 131  
Power Pins  
TSTOUT[7:4]  
TSTOUT[3:0]  
O
Test Outputs  
Test Outputs  
I/O, U  
3, 39, 73, 96, 130, 159, 184  
VDD (Core)  
Input  
Input  
+3.3 Volt DC Supply for Core Logic (7 pins)  
+3.3 Volt DC Supply for I/O Pads (13 pins)  
11, 25, 59, 87, 101, 108, 119, VDD  
147, 152, 166, 175, 194, 202  
18, 46, 80, 106, 140, 171,  
198  
VSS (Core)  
Input  
Input  
Ground for Core Logic (7 pins)  
Ground for I/O Pads (13 pins)  
7, 32, 66, 94, 99, 117, 121,  
149, 154, 162, 180, 189, 207  
VSS  
30  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
13.1 STRAP Options  
The Strap options are relevant during the initial power-on period, when reset is asserted. During reset, MVTX1100  
will examine the boot strap address pin to determine its value and modify the internal configuration of the chip  
accordingly.  
“1” means Pull Up  
“0” means Pull Down with an external 1 K Ohm  
Default value is 1, (all boot strap pins have internal pull up resistor).  
Pin No(s)  
206 (L_A[5])  
Symbol  
Name & Functions  
Memory Size  
1 - Memory size = 256 KB,  
0 - Memory size = 512 KB  
208 (L_A [6])  
1 (L_A [7])  
EEPROM  
1 - NO EEPROM Installed  
0 - EEPROM Installed1  
MII Management  
via MDIO  
1 - Enable  
0 - Disable  
5, 4 (L_A [10:9])  
XLINK Speed  
11 - 100 Mbps  
10 - 200 Mbps  
01 - 300 Mbps  
00 - 400 Mbps (0 - Pull down, 1 - Pull up)  
160 (L_A[15])  
151 (L_A[17])  
150 (L_A[2])  
Ports 0-7 RMII/Serial 1 - RMII Mode for ports 0-7  
0 - Serial mode for ports 0-7  
Port 8 MII/Serial  
Link Polarity  
1 - MII Mode for port 8  
0 - Serial mode for port 8  
Link Polarity for serial interface  
1 - Active Low  
0 - Active High  
204 (L_A[3])  
205 (L_A[4])  
FDX Polarity  
Full/Half Duplex Polarity for serial interface  
1 - Active Low  
0 - Active High  
SPD100 Polarity  
Speed polarity for serial interface  
1 - Active Low  
0 - Active High  
2 (L_A[8])  
133 (TST[2])  
Device ID  
SBRAM Self Test  
Use in cascade mode only  
For Board/System Manufacturing Test2  
1 - Disable  
0 - Enable  
Note 1: 1. If the MVTX1100 is configured from EEPROM preset (L_A[6] pulled down at reset), it will try to load its configuration from  
the EEPROM. If the EEPROM is blank or not preset, it will not boot up. The parallel port can be used to program the EEPROM  
at any time.  
Note 2: During normal power-up the MVTX1100 will run through an external SBRAM memory test to ensure that there are no memory  
interface problems. If a problem is detected, the chip will stop functioning. To facilitate board debug in the event that a system  
stops functioning, the MVTX1100 can be put into a continuous SBRAM self test mode to allow an operator to determine if  
there are stuck pins in the memory interface (using network analyzer).  
31  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
14.0 DC Electrical Characteristics  
14.1 Absolute Maximum Ratings  
Storage Temperature  
-65°C to +150C  
-40°C to +85C  
Operating Temperature  
Maximum Junction Temperature  
Supply Voltage VDD with Respect to VSS  
Voltage on 5V Tolerant Input Pins  
Voltage on Other Pins  
+125C  
+3.0 V to +3.6 V  
-0.5 V to (VDD + 3.3 V)  
-0.5 V to (VDD + 0.3 V)  
Caution: Stresses above those listed may cause permanent device failure. Functionality at or above these limits is  
not implied. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability.  
14.2 DC Electrical Characteristics  
VDD = 3.0 V to 3.6 V (3.3v +/- 10%) TAMBIENT = -40C to +85C  
14.3 Recommended Operating Conditions  
Symbol  
Parameter Description  
Min.  
Typ.  
Max.  
Unit  
fOSC  
Frequency of Operation  
Supply Current - @ 55 MHz, 8x100 M, 100%  
Full Duplex Traffic (VDD = 3.3V)  
Output High Voltage (CMOS)  
Output Low Voltage (CMOS)  
Input High Voltage (TTL 5 V tolerant)  
50  
66  
580  
80  
MHz  
mA  
IDD  
VOH  
VOL  
2.4  
2.0  
V
V
V
0.4  
VDD +  
2.0  
VIH-TTL  
VIL-TTL  
IIL  
Input Low Voltage (TTL 5 V tolerant)  
0.8  
10  
V
µA  
Input Leakage Current (0.1 V < VIN < VDD)  
(all pins except those with internal pull-up/ pull-  
down resistors)  
IOL  
Output Leakage Current (0.1 V < VOUT  
<
10  
µA  
VDD)  
CIN  
COUT  
CI/O  
θja  
θja  
θja  
Input Capacitance  
Output Capacitance  
I/O Capacitance  
Thermal resistance with 0 air flow  
Thermal resistance with 1 m/s air flow  
Thermal resistance with 2 m/s air flow  
5
5
7
29.7  
28.8  
26.8  
12.6  
pF  
pF  
pF  
C/W  
C/W  
C/W  
C/W  
θjc  
Thermal resistance between junction and case  
32  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
14.4 Clock Frequency Specifications  
Symbol  
Parameter  
(Hz)  
Note:  
C1  
C2  
C3  
C4  
C5  
C6  
SCLK - Core System Clock Input  
M_CLK - RMII Port Clock  
50 M  
50 M  
M8_REFCLK - MII Reference Clock  
L_CLK - Frame Buffer Memory Clock  
M_MDC - MII Management Data Clock  
SCL - I2C Data Clock  
25 M  
50 M  
L_CLK = SCLK  
1.56 M M_MDC = SCLK/32  
50 K  
SCL = M_CLK/1000  
Suggestion Clock rate for various configurations:  
Input  
Output  
Configuration  
M_CLK  
(RMII)  
SCLK  
M8_REF  
L_CLK  
M_MDC  
SCL  
Port 0-7  
Port 8  
10 M RMII  
10/100 M MII  
Not Used  
50 M  
55 M  
50 M  
50 M  
50 M  
50 M  
50 M  
50 M  
--  
--  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
50 K  
50 K  
50 K  
50 K  
50 K  
50 K  
100 M RMII  
100 M RMII  
100 M RMII  
100 M RMII  
100 M RMII  
10/100 M MII  
200 M MII  
300 M MII  
400 M MII  
60 M  
--  
66.66 M  
75 M  
50 M  
75 M  
100 M  
80 M  
33  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
15.0 AC Timing Characteristics  
15.1 Frame Buffer Memory Interface:  
L_D[31:0]  
Figure 6 - Framer Buffer Memory Interface Timing  
50 MHz  
Parameter  
Symbol  
Note  
Min. (ns) Max. (ns)  
L1  
L2  
L3  
L4  
L6  
L8  
L9  
L_D[31:0] input setup time  
L_D[31:0] input hold time  
L_D[31:0] output valid delay  
L_A[18:2] output valid delay  
L_ADSC# output valid delay  
L_WE# output valid delay  
L_OE# output valid delay  
5
0
1
1
1
1
1
8
8
8
8
8
CL = 30 pF  
CL = 50 pF  
CL = 50 pF  
CL = 30 pF  
CL = 30 pF  
Table 3 - Frame Buffer Memory Interface Timing  
34  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
15.2 Serial Timing Requirements  
50 MHz  
Symbol  
Parameter  
M_[8:0]_[TX/RX]CLK  
Note:  
Min. (ns) Max. (ns)  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
Serial Input Clock  
M[8:0]_RXD input setup time  
M[8:0]_RXD input hold time  
M[8:0]_CRS_DV input setup time  
M[8:0]_TXEN output delay time  
M[8:0]_TXD output delay time  
M[8:0]_LINK input setup time  
4
1
4
1
1
4
11  
11  
CL = 30 pF  
CL = 30 pF  
Table 4 - Serial Timing Requirements  
15.3 RMII Timing Requirements  
50 MHz  
Symbol  
Parameter  
Note:  
Min. (ns) Max. (ns)  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M_CLK  
Reference Input Clock  
M[7:0]_RXD[1:0] input setup time  
M[7:0]_RXD[1:0] input hold time  
M[7:0]_CRS_DV input setup time  
M[7:0]_TXEN output delay time  
M[7:0]_TXD[1:0] output delay time  
M[7:0]_LINK input setup time  
4
1
4
1
1
4
11  
11  
CL = 30 pF  
CL = 30 pF  
Table 5 - RMII Timing Requirements  
35  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
15.4 MII Timing Requirements  
Figure 7 - Transmit Timing  
Time  
Symbol  
Parameter  
M8_TXCLK rise to M8_TXD[3:0] inactive delay  
Unit  
Min.  
Max.  
1
2
3
4
5
5
5
5
20  
20  
20  
20  
ns  
ns  
ns  
ns  
M8_TXCLK rise to M8_TXD[3:0] active delay  
M8_TXCLK rise to M8_TXEN active delay  
M8_TXCLK rise of last M8_TXD bit to  
M8_TXEN inactive delay  
5
6
M8_TXCLK high wide  
25  
25  
Inf.  
Inf.  
5
ns  
ns  
ns  
ns  
M8_TXCLK low wide  
M8_TXCLK input rise time require  
M8_TXCLK input fall time require  
5
*Inf. = infinite  
Table 6 - Transmit Timing Requirements  
36  
Zarlink Semiconductor Inc.  
MVTX1100  
Data Sheet  
Figure 8 - Receive Timing  
Time  
Symbol  
Parameter  
Unit  
Min.  
Max.  
1
2
M8_RXD[3:0] low input setup time  
M8_RXD[3:0] low input hold time  
M8_RXD[3:0] high input setup time  
M8_RXD[3:0] high input hold time  
M8_RXDV low input setup time  
M8_RXDV low input hold time  
M8_RXDV high input setup time  
M8_RXDV high input hold time  
M8_RXCLK high wide  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
5
5
3
4
5
6
7
8
5
Inf.  
Inf.  
5
9
25  
25  
10  
M8_RXCLK low wide  
M8_RXCLK input rise time require  
M8_RXCLK input fall time require  
5
Table 7 - Receive Timing Requirements  
37  
Zarlink Semiconductor Inc.  
D
D1  
= 0°-7°  
A
A2  
A1  
E1  
E
L
INDEX CORNER  
Notes:  
PIN 1  
1. Pin 1 indicator may be a corner chamfer, dot or both.  
2. Controlling dimensions are in millimeters.  
3. The top package body size may be smaller than the bottom package body size by a max. of 0.15 mm.  
4. Dimension D1 and E1 do not include mould protusion.  
Package Code  
c
Zarlink Semiconductor 2003 All rights reserved.  
Previous package codes:  
ISSUE  
ACN  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX1100AL

9-Port Home PNA Packet Concentrator
ZARLINK

MVTX1100AL/Q0C/TAV/1

Telecom Circuit, 1-Func, PQFP208, PLASTIC, QFP-208
ZARLINK

MVTX1100AL/Q0C/TAV/1

Telecom Circuit, 1-Func, PQFP208, PLASTIC, QFP-208
MICROSEMI

MVTX2601

Unmanaged 24-Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2601A

Unmanaged 24 port 10/100Mb Ethernet switch
ETC

MVTX2601AG

Unmanaged 24-Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2601AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, MS-034, HSBGA-553
MICROSEMI

MVTX2601AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FRFEE, MS-034, HSBGA-553
MICROSEMI

MVTX2602

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602A

MVTX260x Port Mirroring
ETC

MVTX2602AG

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
MICROSEMI