AD620BRZ-R7 [ADI]

Low Cost Low Power Instrumentation Amplifier; 低成本低功耗仪表放大器
AD620BRZ-R7
型号: AD620BRZ-R7
厂家: ADI    ADI
描述:

Low Cost Low Power Instrumentation Amplifier
低成本低功耗仪表放大器

仪表放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:1000K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost Low Power  
Instrumentation Amplifier  
AD620  
FEATURES  
Easy to use  
CONNECTION DIAGRAM  
Gain set with one external resistor  
(Gain range 1 to 10,000)  
1
2
3
4
8
7
6
5
R
R
G
G
+V  
–IN  
+IN  
S
Wide power supply range ( 2.3 V to 18 V)  
Higher performance than 3 op amp IA designs  
Available in 8-lead DIP and SOIC packaging  
Low power, 1.3 mA max supply current  
Excellent dc performance (B grade)  
50 µV max, input offset voltage  
0.6 µV/°C max, input offset drift  
1.0 nA max, input bias current  
100 dB min common-mode rejection ratio (G = 10)  
Low noise  
9 nV/√Hz @ 1 kHz, input voltage noise  
0.28 µV p-p noise (0.1 Hz to 10 Hz)  
Excellent ac specifications  
120 kHz bandwidth (G = 100)  
15 µs settling time to 0.01%  
OUTPUT  
REF  
–V  
S
AD620  
TOP VIEW  
Figure 1. 8-Lead PDIP (N), CERDIP (Q), and SOIC (R) Packages  
PRODUCT DESCRIPTION  
The AD620 is a low cost, high accuracy instrumentation  
amplifier that requires only one external resistor to set gains of  
1 to 10,000. Furthermore, the AD620 features 8-lead SOIC and  
DIP packaging that is smaller than discrete designs and offers  
lower power (only 1.3 mA max supply current), making it a  
good fit for battery-powered, portable (or remote) applications.  
The AD620, with its high accuracy of 40 ppm maximum  
nonlinearity, low offset voltage of 50 µV max, and offset drift of  
0.6 µV/°C max, is ideal for use in precision data acquisition  
systems, such as weigh scales and transducer interfaces.  
Furthermore, the low noise, low input bias current, and low power  
of the AD620 make it well suited for medical applications, such  
as ECG and noninvasive blood pressure monitors.  
APPLICATIONS  
Weigh scales  
ECG and medical instrumentation  
Transducer interface  
Data acquisition systems  
Industrial process controls  
Battery-powered and portable equipment  
The low input bias current of 1.0 nA max is made possible with  
the use of Superϐeta processing in the input stage. The AD620  
works well as a preamplifier due to its low input voltage noise of  
9 nV/√Hz at 1 kHz, 0.28 µV p-p in the 0.1 Hz to 10 Hz band,  
and 0.1 pA/√Hz input current noise. Also, the AD620 is well  
suited for multiplexed applications with its settling time of 15 µs  
to 0.01%, and its cost is low enough to enable designs with one  
in-amp per channel.  
30,000  
10,000  
25,000  
20,000  
15,000  
10,000  
5,000  
0
3 OP AMP  
IN-AMP  
1,000  
(3 OP-07s)  
TYPICAL STANDARD  
BIPOLAR INPUT  
IN-AMP  
100  
G = 100  
AD620A  
G
10  
R
AD620 SUPERβETA  
BIPOLAR INPUT  
IN-AMP  
1
0.1  
1k  
0
5
10  
15  
20  
10k  
100k  
1M  
10M  
100M  
SUPPLY CURRENT (mA)  
SOURCE RESISTANCE (  
)
Figure 2. Three Op Amp IA Designs vs. AD620  
Figure 3. Total Voltage Noise vs. Source Resistance  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD620  
TABLE OF CONTENTS  
Specifications .....................................................................................3  
Input Protection ..........................................................................16  
RF Interference............................................................................16  
Common-Mode Rejection.........................................................17  
Grounding....................................................................................17  
Ground Returns for Input Bias Currents.................................18  
Outline Dimensions........................................................................19  
Ordering Guide ...........................................................................20  
Absolute Maximum Ratings ............................................................5  
ESD Caution ..................................................................................5  
Typical Performance Characteristics..............................................7  
Theory of Operation.......................................................................13  
Gain Selection..............................................................................16  
Input and Output Offset Voltage ..............................................16  
Reference Terminal.....................................................................16  
REVISION HISTORY  
12/04—Rev. F to Rev. G  
7/03—Data Sheet changed from REV. E to REV. F  
Edit to FEATURES............................................................................1  
Changes to SPECIFICATIONS .......................................................2  
Removed AD620CHIPS from ORDERING GUIDE ...................4  
Removed METALLIZATION PHOTOGRAPH...........................4  
Replaced TPCs 1–3...........................................................................5  
Replaced TPC 12...............................................................................6  
Replaced TPC 30...............................................................................9  
Replaced TPCs 31 and 32...............................................................10  
Replaced Figure 4............................................................................10  
Changes to Table I...........................................................................11  
Changes to Figures 6 and 7............................................................12  
Changes to Figure 8 ........................................................................13  
Edited INPUT PROTECTION section........................................13  
Added new Figure 9........................................................................13  
Changes to RF INTERFACE section ............................................14  
Updated Format.................................................................. Universal  
Change to Features............................................................................1  
Change to Product Description.......................................................1  
Changes to Specifications.................................................................3  
Added Metallization Photograph....................................................4  
Replaced Figure 4-Figure 6 ..............................................................6  
Replaced Figure 15............................................................................7  
Replaced Figure 33..........................................................................10  
Replaced Figure 34 and Figure 35.................................................10  
Replaced Figure 37..........................................................................10  
Changes to Table 3 ..........................................................................13  
Changes to Figure 41 and Figure 42 .............................................14  
Changes to Figure 43 ......................................................................15  
Change to Figure 44........................................................................17  
Changes to Input Protection section ............................................15  
Deleted Figure 9...............................................................................15  
Changes to RF Interference section..............................................15  
Edit to Ground Returns for Input Bias Currents section...........17  
Added AD620CHIPS to Ordering Guide ....................................19  
Edit to GROUND RETURNS FOR INPUT BIAS CURRENTS  
section...............................................................................................15  
Updated OUTLINE DIMENSIONS.............................................16  
Rev. G | Page 2 of 20  
AD620  
SPECIFICATIONS  
Typical @ 25°C, VS = 15 V, and RL = 2 kΩ, unless otherwise noted.  
Table 1.  
AD620S1  
AD620A  
AD620B  
Parameter  
GAIN  
Gain Range  
Gain Error2  
G = 1  
Conditions  
Min  
Typ Max  
Min  
Typ Max  
Min  
Typ Max  
Unit  
G = 1 + (49.4 kΩ/RG)  
1
10,000  
1
10,000  
1
10,000  
VOUT  
= 10 V  
0.03 0.10  
0.15 0.30  
0.15 0.30  
0.40 0.70  
0.01 0.02  
0.10 0.15  
0.10 0.15  
0.35 0.50  
0.03 0.10  
0.15 0.30  
0.15 0.30  
0.40 0.70  
%
%
%
%
G = 10  
G = 100  
G = 1000  
Nonlinearity  
G = 1–1000  
G = 1–100  
Gain vs. Temperature  
VOUT = −10 V to +10 V  
RL = 10 kΩ  
RL = 2 kΩ  
10  
10  
40  
95  
10  
10  
40  
95  
10  
10  
40  
95  
ppm  
ppm  
G = 1  
Gain >12  
10  
−50  
10  
−50  
10  
−50  
ppm/°C  
ppm/°C  
VOLTAGE OFFSET  
Input Offset, VOSI  
(Total RTI Error = VOSI + VOSO/G)  
VS = 5 V  
to 15 V  
30  
125  
185  
1.0  
15  
50  
85  
0.6  
30  
125  
225  
1.0  
µV  
Overtemperature  
Average TC  
VS = 5 V  
to 15 V  
µV  
VS = 5 V  
to 15 V  
0.3  
0.1  
0.3  
µV/°C  
Output Offset, VOSO  
VS = 15 V  
VS = 5 V  
VS = 5 V  
to 15 V  
VS = 5 V  
to 15 V  
400  
1000  
1500  
2000  
200 500  
750  
400  
1000  
1500  
2000  
µV  
µV  
µV  
Overtemperature  
Average TC  
1000  
5.0  
15  
2.5  
7.0  
5.0  
15  
µV/°C  
Offset Referred to the  
Input vs. Supply (PSR)  
VS = 2.3 V  
to 18 V  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
95  
110  
110  
100  
120  
140  
140  
80  
100  
120  
140  
140  
80  
95  
110  
110  
100  
120  
140  
140  
dB  
dB  
dB  
dB  
100  
120  
120  
INPUT CURRENT  
Input Bias Current  
Overtemperature  
Average TC  
Input Offset Current  
Overtemperature  
Average TC  
0.5  
2.0  
2.5  
0.5  
1.0  
1.5  
0.5  
2
4
nA  
nA  
pA/°C  
nA  
nA  
3.0  
0.3  
3.0  
0.3  
8.0  
0.3  
1.0  
1.5  
0.5  
0.75  
1.0  
2.0  
1.5  
1.5  
8.0  
pA/°C  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range3  
10||2  
10||2  
10||2  
10||2  
10||2  
10||2  
GΩ_pF  
GΩ_pF  
V
VS = 2.3 V −VS + 1.9  
to 5 V  
+VS − 1.2  
−VS + 1.9  
+VS − 1.2  
−VS + 1.9  
+VS − 1.2  
Overtemperature  
−VS + 2.1  
−VS + 1.9  
+VS − 1.3  
+VS − 1.4  
−VS + 2.1  
−VS + 1.9  
+VS − 1.3  
+VS − 1.4  
−VS + 2.1  
−VS + 1.9  
+VS − 1.3  
+VS − 1.4  
V
V
VS = 5 V  
to 18 V  
Overtemperature  
−VS + 2.1  
+VS − 1.4  
−VS + 2.1  
+VS + 2.1  
−VS + 2.3  
+VS − 1.4  
V
Rev. G | Page 3 of 20  
 
 
AD620  
AD620S1  
AD620A  
AD620B  
Parameter  
Conditions  
Min  
Typ Max  
Min  
Typ Max  
Min  
Typ Max  
Unit  
Common-Mode Rejection  
Ratio DC to 60 Hz with  
1 kΩ Source Imbalance VCM = 0 V to 10 V  
G = 1  
73  
93  
110  
110  
90  
80  
90  
73  
93  
110  
110  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
110  
130  
130  
100  
120  
120  
110  
130  
130  
110  
130  
130  
OUTPUT  
Output Swing  
RL = 10 kΩ  
VS = 2.3 V −VS +  
+VS − 1.2  
−VS + 1.1  
+VS − 1.2  
−VS + 1.1  
+VS − 1.2  
V
to 5 V  
1.1  
Overtemperature  
−VS + 1.4  
−VS + 1.2  
+VS − 1.3  
+VS − 1.4  
−VS + 1.4  
−VS + 1.2  
+VS − 1.3  
+VS − 1.4  
−VS + 1.6  
−VS + 1.2  
+VS − 1.3  
+VS − 1.4  
V
V
VS = 5 V  
to 18 V  
Overtemperature  
Short Circuit Current  
DYNAMIC RESPONSE  
−VS + 1.6  
+VS – 1.5  
−VS + 1.6  
+VS – 1.5  
–VS + 2.3  
+VS – 1.5  
V
mA  
18  
18  
18  
Small Signal –3 dB Bandwidth  
G = 1  
G = 10  
G = 100  
G = 1000  
Slew Rate  
1000  
800  
120  
12  
1000  
800  
120  
12  
1000  
800  
120  
12  
kHz  
kHz  
kHz  
kHz  
V/µs  
0.75  
1.2  
0.75  
1.2  
0.75  
1.2  
Settling Time to 0.01%  
G = 1–100  
G = 1000  
10 V Step  
15  
150  
15  
150  
15  
150  
µs  
µs  
NOISE  
Total RTI Noise = (e2ni ) + (eno /G)2  
Voltage Noise, 1 kHz  
Input, Voltage Noise, eni  
Output, Voltage Noise, eno  
RTI, 0.1 Hz to 10 Hz  
G = 1  
9
72  
13  
100  
9
72  
13  
100  
9
72  
13  
100  
nV/√Hz  
nV/√Hz  
3.0  
0.55  
0.28  
100  
10  
3.0  
6.0  
3.0  
6.0  
µV p-p  
µV p-p  
µV p-p  
fA/√Hz  
pA p-p  
G = 10  
0.55 0.8  
0.28 0.4  
100  
0.55 0.8  
0.28 0.4  
100  
G = 100–1000  
Current Noise  
0.1 Hz to 10 Hz  
REFERENCE INPUT  
RIN  
f = 1 kHz  
10  
10  
20  
50  
20  
50  
20  
50  
kΩ  
µA  
V
IIN  
VIN+, VREF = 0  
60  
+VS − 1.6  
60  
+VS − 1.6  
60  
+VS − 1.6  
Voltage Range  
Gain to Output  
POWER SUPPLY  
Operating Range4  
Quiescent Current  
−VS + 1.6  
0.0001  
−VS + 1.6  
−VS + 1.6  
1
1
0.0001  
1
0.0001  
2.3  
18  
2.3  
18  
2.3  
18  
V
VS = 2.3 V  
to 18 V  
0.9  
1.1  
1.3  
0.9  
1.1  
1.3  
0.9  
1.1  
1.3  
mA  
Overtemperature  
1.6  
1.6  
1.6  
mA  
°C  
TEMPERATURE RANGE  
For Specified Performance  
−40 to +85  
−40 to +85  
−55 to +125  
1 See Analog Devices military data sheet for 883B tested specifications.  
2 Does not include effects of external resistor RG.  
3 One input grounded. G = 1.  
4 This is defined as the same supply range that is used to specify PSR.  
Rev. G | Page 4 of 20  
 
AD620  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
Rating  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other condition s above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage  
18 V  
650 mW  
VS  
Internal Power Dissipation1  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range (Q)  
Storage Temperature Range (N, R)  
Operating Temperature Range  
AD620 (A, B)  
25 V  
Indefinite  
−65°C to +150°C  
−65°C to +125°C  
−40°C to +85°C  
−55°C to +125°C  
AD620 (S)  
Lead Temperature Range  
(Soldering 10 seconds)  
300°C  
1 Specification is for device in free air:  
8-Lead Plastic Package: θJA = 95°C  
8-Lead CERDIP Package: θJA = 110°C  
8-Lead SOIC Package: θJA = 155°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. G | Page 5 of 20  
 
 
AD620  
Figure 4. Metallization Photograph.  
Dimensions shown in inches and (mm).  
Contact sales for latest dimensions.  
Rev. G | Page 6 of 20  
AD620  
TYPICAL PERFORMANCE CHARACTERISTICS  
(@ 25°C, VS = 15 V, RL = 2 kΩ, unless otherwise noted.)  
2.0  
1.5  
1.0  
50  
SAMPLE SIZE = 360  
40  
30  
+I  
B
–I  
B
0.5  
0
20  
10  
–0.5  
–1.0  
–1.5  
–2.0  
0
–80  
–40  
0
40  
80  
–75  
–25  
25  
75  
125  
175  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (  
µ
V)  
Figure 8. Input Bias Current vs. Temperature  
Figure 5. Typical Distribution of Input Offset Voltage  
2.0  
1.5  
50  
40  
SAMPLE SIZE = 850  
30  
20  
10  
0
1.0  
0.5  
0
0
–1200  
–600  
0
600  
1200  
1
2
3
4
5
WARM-UP TIME (Minutes)  
INPUT BIAS CURRENT (pA)  
Figure 9. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 6. Typical Distribution of Input Bias Current  
1000  
50  
40  
30  
SAMPLE SIZE = 850  
GAIN = 1  
100  
GAIN = 10  
20  
10  
10  
GAIN = 100, 1,000  
GAIN = 1000  
BW LIMIT  
1
0
–400  
–200  
0
200  
400  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
INPUT OFFSET CURRENT (pA)  
Figure 7. Typical Distribution of Input Offset Current  
Figure 10. Voltage Noise Spectral Density vs. Frequency (G = 1−1000)  
Rev. G | Page 7 of 20  
 
AD620  
1000  
100  
10  
1
1000  
10  
100  
FREQUENCY (Hz)  
Figure 11. Current Noise Spectral Density vs. Frequency  
Figure 14. 0.1 Hz to 10 Hz Current Noise, 5 pA/Div  
100,000  
10,000  
1000  
FET INPUT  
IN-AMP  
AD620A  
100  
10  
TIME (1 SEC/DIV)  
1k  
10k  
100k  
1M  
10M  
SOURCE RESISTANCE ()  
Figure 15. Total Drift vs. Source Resistance  
Figure 12. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)  
160  
140  
120  
100  
80  
G = 1000  
G = 100  
G = 10  
G = 1  
60  
40  
20  
0
TIME (1 SEC/DIV)  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 13. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)  
Figure 16. Typical CMR vs. Frequency, RTI, Zero to 1 kΩ Source Imbalance  
Rev. G | Page 8 of 20  
AD620  
35  
180  
160  
G = 10, 100, 1000  
30  
25  
140  
120  
G = 1000  
G = 1  
20  
15  
100  
80  
G = 100  
G = 10  
G = 1  
10  
5
60  
40  
G = 1000  
G = 100  
0
20  
0.1  
1M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 17. Positive PSR vs. Frequency, RTI (G = 1−1000)  
Figure 20. Large Signal Frequency Response  
180  
160  
+V –0.0  
S
–0.5  
–1.0  
–1.5  
140  
120  
100  
80  
G = 1000  
+1.5  
+1.0  
+0.5  
G = 100  
G = 10  
G = 1  
60  
40  
20  
–V +0.0  
S
0
5
10  
15  
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
SUPPLY VOLTAGE ± Volts  
Figure 18. Negative PSR vs. Frequency, RTI (G = 1−1000)  
Figure 21. Input Voltage Range vs. Supply Voltage, G = 1  
1000  
+V –0.0  
S
–0.5  
–1.0  
–1.5  
R
= 10k  
L
100  
10  
1
R
= 2kΩ  
L
+1.5  
+1.0  
+0.5  
R
= 2kΩ  
L
R
= 10kΩ  
L
–V +0.0  
0.1  
100  
S
5
10  
15  
20  
1k  
10k  
100k  
1M  
10M  
0
FREQUENCY (Hz)  
SUPPLY VOLTAGE ± Volts  
Figure 19. Gain vs. Frequency  
Figure 22. Output Voltage Swing vs. Supply Voltage, G = 10  
Rev. G | Page 9 of 20  
AD620  
30  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
= ±15V  
S
G = 10  
20  
10  
0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0
100  
1k  
10k  
LOAD RESISTANCE (Ω)  
Figure 23. Output Voltage Swing vs. Load Resistance  
Figure 26. Large Signal Response and Settling Time, G = 10 (0.5 mV = 0.01%)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 27. Small Signal Response, G = 10, RL = 2 kΩ, CL = 100 pF  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 24. Large Signal Pulse Response and Settling Time  
G = 1 (0.5 mV = 0.01%)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 25. Small Signal Response, G = 1, RL = 2 kΩ, CL = 100 pF  
Figure 28. Large Signal Response and Settling Time, G = 100 (0.5 mV = 0.01%)  
Rev. G | Page 10 of 20  
AD620  
20  
15  
10  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TO 0.01%  
TO 0.1%  
5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0
0
5
10  
OUTPUT STEP SIZE (V)  
15  
20  
Figure 29. Small Signal Pulse Response, G = 100, RL = 2 kΩ, CL = 100 pF  
Figure 32. Settling Time vs. Step Size (G = 1)  
1000  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
100  
10  
1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1
10  
100  
1000  
GAIN  
Figure 30. Large Signal Response and Settling Time,  
G = 1000 (0.5 mV = 0.01% )  
Figure 33. Settling Time to 0.01% vs. Gain, for a 10 V Step  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 34. Gain Nonlinearity, G = 1, RL = 10 kΩ (10 µV = 1 ppm)  
Figure 31. Small Signal Pulse Response, G = 1000, RL = 2 kΩ, CL = 100 pF  
Rev. G | Page 11 of 20  
AD620  
1k  
10T  
10k  
10k*  
INPUT  
10V p-p  
100k  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V
OUT  
+V  
7
S
2
11k  
1k  
100  
1
G = 1000  
G = 1  
AD620  
6
G = 10  
G = 100  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
49.9  
499  
5.49kΩ  
5
8
3
4
–V  
S
*ALL RESISTORS 1% TOLERANCE  
Figure 35. Gain Nonlinearity, G = 100, RL = 10 kΩ  
(100 µV = 10 ppm)  
Figure 37. Settling Time Test Circuit  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 36. Gain Nonlinearity, G = 1000, RL = 10 kΩ  
(1 mV = 100 ppm)  
Rev. G | Page 12 of 20  
AD620  
THEORY OF OPERATION  
The input transistors Q1 and Q2 provide a single differential-  
pair bipolar input for high precision (Figure 38), yet offer 10×  
lower input bias current thanks to Superϐeta processing.  
20µA  
V
B
20µA  
I2  
I1  
Feedback through the Q1-A1-R1 loop and the Q2-A2-R2 loop  
maintains constant collector current of the input devices Q1  
and Q2, thereby impressing the input voltage across the external  
gain setting resistor RG. This creates a differential gain from the  
inputs to the A1/A2 outputs given by G = (R1 + R2)/RG + 1. The  
unity-gain subtractor, A3, removes any common-mode signal,  
yielding a single-ended output referred to the REF pin potential.  
A1  
A2  
10kΩ  
C2  
C1  
10kΩ  
10kΩ  
A3  
OUTPUT  
REF  
10kΩ  
+IN  
R3  
400Ω  
R1  
R2  
– IN  
Q1  
Q2  
R4  
400Ω  
R
G
GAIN  
SENSE  
GAIN  
SENSE  
The value of RG also determines the transconductance of the  
preamp stage. As RG is reduced for larger gains, the  
transconductance increases asymptotically to that of the input  
transistors. This has three important advantages: (a) Open-loop  
gain is boosted for increasing programmed gain, thus reducing  
gain related errors. (b) The gain-bandwidth product  
(determined by C1 and C2 and the preamp transconductance)  
increases with programmed gain, thus optimizing frequency  
response. (c) The input voltage noise is reduced to a value of  
9 nV/√Hz, determined mainly by the collector current and base  
resistance of the input devices.  
–V  
S
Figure 38. Simplified Schematic of AD620  
The AD620 is a monolithic instrumentation amplifier based on  
a modification of the classic three op amp approach. Absolute  
value trimming allows the user to program gain accurately  
(to 0.15% at G = 100) with only one resistor. Monolithic  
construction and laser wafer trimming allow the tight matching  
and tracking of circuit components, thus ensuring the high level  
of performance inherent in this circuit.  
The internal gain resistors, R1 and R2, are trimmed to an  
absolute value of 24.7 kΩ, allowing the gain to be programmed  
accurately with a single external resistor.  
The gain equation is then  
49.4kΩ  
RG  
G =  
+1  
49.4kΩ  
G1  
RG =  
Make vs. Buy: a Typical Bridge Application Error Budget  
The AD620 offers improved performance over “homebrew”  
three op amp IA designs, along with smaller size, fewer  
components, and 10× lower supply current. In the typical  
application, shown in Figure 39, a gain of 100 is required to  
amplify a bridge output of 20 mV full-scale over the industrial  
temperature range of −40°C to +85°C. Table 3 shows how to  
calculate the effect various error sources have on circuit  
accuracy.  
Rev. G | Page 13 of 20  
 
 
AD620  
Note that for the homebrew circuit, the OP07 specifications for  
input voltage offset and noise have been multiplied by √2. This  
is because a three op amp type in-amp has two op amps at its  
inputs, both contributing to the overall input error.  
Regardless of the system in which it is being used, the AD620  
provides greater accuracy at low power and price. In simple  
systems, absolute accuracy and drift errors are by far the most  
significant contributors to error. In more complex systems  
with an intelligent processor, an autogain/autozero cycle will  
remove all absolute accuracy and drift errors, leaving only the  
resolution errors of gain, nonlinearity, and noise, thus allowing  
full 14-bit accuracy.  
10V  
10k*  
10k*  
OP07D  
R
G
AD620A  
499  
R = 350  
R = 350  
R = 350  
10k  
10k  
**  
**  
REFERENCE  
100**  
OP07D  
R = 350  
AD620A MONOLITHIC  
INSTRUMENTATION  
AMPLIFIER, G = 100  
OP07D  
10k*  
10k*  
SUPPLY CURRENT = 1.3mA MAX  
"HOMEBREW" IN-AMP, G = 100  
*0.02% RESISTOR MATCH, 3ppm/  
°
C TRACKING  
**DISCRETE 1% RESISTOR, 100ppm/  
°
C TRACKING  
SUPPLY CURRENT = 15mA MAX  
PRECISION BRIDGE TRANSDUCER  
Figure 39. Make vs. Buy  
Table 3. Make vs. Buy Error Budget  
Error, ppm of Full Scale  
Error Source  
AD620 Circuit Calculation  
“Homebrew” Circuit Calculation  
AD620  
Homebrew  
ABSOLUTE ACCURACY at TA = 25°C  
Input Offset Voltage, µV  
Output Offset Voltage, µV  
Input Offset Current, nA  
CMR, dB  
125 µV/20 mV  
1000 µV/100 mV/20 mV  
2 nA ×350 Ω/20 mV  
(150 µV × √2)/20 mV  
((150 µV × 2)/100)/20 mV  
(6 nA ×350 Ω)/20 mV  
6,250  
500  
18  
10,607  
150  
53  
500  
110 dB(3.16 ppm) ×5 V/20 mV  
(0.02% Match × 5 V)/20 mV/100  
791  
Total Absolute Error  
7,559  
11,310  
DRIFT TO 85°C  
Gain Drift, ppm/°C  
Input Offset Voltage Drift, µV/°C  
Output Offset Voltage Drift, µV/°C  
(50 ppm + 10 ppm) ×60°C  
1 µV/°C × 60°C/20 mV  
15 µV/°C × 60°C/100 mV/20 mV  
100 ppm/°C Track × 60°C  
(2.5 µV/°C × √2 × 60°C)/20 mV  
(2.5 µV/°C × 2 × 60°C)/100 mV/20 mV  
3,600  
3,000  
450  
6,000  
10,607  
150  
Total Drift Error  
7,050  
16,757  
RESOLUTION  
Gain Nonlinearity, ppm of Full Scale  
Typ 0.1 Hz to 10 Hz Voltage Noise, µV p-p  
40 ppm  
0.28 µV p-p/20 mV  
40 ppm  
40  
14  
54  
40  
27  
67  
(0.38 µV p-p × √2)/20 mV  
Total Resolution Error  
Grand Total Error  
14,663  
28,134  
G = 100, VS = 15 V.  
(All errors are min/max and referred to input.)  
Rev. G | Page 14 of 20  
AD620  
5V  
20k  
7
3
8
3k  
3kΩ  
REF  
IN  
G = 100  
499  
6
AD620B  
DIGITAL  
DATA  
OUTPUT  
3k  
3k  
5
10k  
ADC  
1
2
4
AGND  
AD705  
20k  
0.6mA  
MAX  
1.7mA  
0.10mA  
1.3mA  
MAX  
Figure 40. A Pressure Monitor Circuit that Operates on a 5 V Single Supply  
Pressure Measurement  
Medical ECG  
Although useful in many bridge applications, such as weigh  
scales, the AD620 is especially suitable for higher resistance  
pressure sensors powered at lower voltages where small size and  
low power become more significant.  
The low current noise of the AD620 allows its use in ECG  
monitors (Figure 41) where high source resistances of 1 MΩ or  
higher are not uncommon. The AD620s low power, low supply  
voltage requirements, and space-saving 8-lead mini-DIP and  
SOIC package offerings make it an excellent choice for battery-  
powered data recorders.  
Figure 40 shows a 3 kΩ pressure transducer bridge powered  
from 5 V. In such a circuit, the bridge consumes only 1.7 mA.  
Adding the AD620 and a buffered voltage divider allows the  
signal to be conditioned for only 3.8 mA of total supply current.  
Furthermore, the low bias currents and low current noise,  
coupled with the low voltage noise of the AD620, improve the  
dynamic range for better performance.  
Small size and low cost make the AD620 especially attractive for  
voltage output pressure transducers. Since it delivers low noise  
and drift, it will also serve applications such as diagnostic  
noninvasive blood pressure measurement.  
The value of capacitor C1 is chosen to maintain stability of  
the right leg drive loop. Proper safeguards, such as isolation,  
must be added to this circuit to protect the patient from  
possible harm.  
+3V  
PATIENT/CIRCUIT  
PROTECTION/ISOLATION  
R1  
10k  
R3  
0.03Hz  
24.9k  
C1  
R
8.25k  
HIGH-  
PASS  
OUTPUT  
1V/mV  
G
AD620A  
G = 143  
R2  
24.9k  
FILTER  
R4  
1M  
G = 7  
OUTPUT  
AMPLIFIER  
AD705J  
–3V  
Figure 41. A Medical ECG Monitor Circuit  
Rev. G | Page 15 of 20  
 
 
AD620  
Precision V-I Converter  
INPUT AND OUTPUT OFFSET VOLTAGE  
The AD620, along with another op amp and two resistors,  
makes a precision current source (Figure 42). The op amp  
buffers the reference terminal to maintain good CMR. The  
output voltage, VX, of the AD620 appears across R1, which  
converts it to a current. This current, less only the input bias  
current of the op amp, then flows out to the load.  
The low errors of the AD620 are attributed to two sources,  
input and output errors. The output error is divided by G when  
referred to the input. In practice, the input errors dominate at  
high gains, and the output errors dominate at low gains. The  
total VOS for a given gain is calculated as  
Total Error RTI = input error + (output error/G)  
Total Error RTO = (input error × G) + output error  
REFERENCE TERMINAL  
+V  
S
7
V
3
8
IN+  
+ V  
X
R
AD620  
6
G
The reference terminal potential defines the zero output voltage  
and is especially useful when the load does not share a precise  
ground with the rest of the system. It provides a direct means of  
injecting a precise offset to the output, with an allowable range  
of 2 V within the supply voltages. Parasitic resistance should be  
kept to a minimum for optimum CMR.  
R1  
1
2
5
V
IN–  
4
I
L
–V  
S
AD705  
[(V ) – (V )] G  
IN+ IN–  
V
x
I =  
=
L
R1  
R1  
LOAD  
INPUT PROTECTION  
The AD620 features 400 Ω of series thin film resistance at its  
inputs and will safely withstand input overloads of up to 15 V  
or 60 mA for several hours. This is true for all gains and power  
on and off, which is particularly important since the signal  
source and amplifier may be powered separately. For longer  
time periods, the current should not exceed 6 mA  
(IIN ≤ VIN/400 Ω). For input overloads beyond the supplies,  
clamping the inputs to the supplies (using a low leakage diode  
such as an FD333) will reduce the required resistance, yielding  
lower noise.  
Figure 42. Precision Voltage-to-Current Converter (Operates on 1.8 mA, 3 V)  
GAIN SELECTION  
The AD620s gain is resistor-programmed by RG, or more  
precisely, by whatever impedance appears between Pins 1 and 8.  
The AD620 is designed to offer accurate gains using 0.1% to 1%  
resistors. Table 4 shows required values of RG for various gains.  
Note that for G = 1, the RG pins are unconnected (RG = ∞). For  
any arbitrary gain, RG can be calculated by using the formula:  
RF INTERFERENCE  
49.4kΩ  
RG =  
All instrumentation amplifiers rectify small out of band signals.  
The disturbance may appear as a small dc voltage offset. High  
frequency signals can be filtered with a low pass R-C network  
placed at the input of the instrumentation amplifier. Figure 43  
demonstrates such a configuration. The filter limits the input  
signal according to the following relationship:  
G 1  
To minimize gain error, avoid high parasitic resistance in series  
with RG; to minimize gain drift, RG should have a low TC—less  
than 10 ppm/°C—for the best performance.  
Table 4. Required Values of Gain Resistors  
1
1% Std Table  
Value of RG(Ω)  
Calculated 0.1% Std Table  
Calculated  
Gain  
FilterFreqDIFF  
=
2πR(2CD +CC )  
Gain  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
199.4  
495.0  
991.0  
Value of RG(Ω )  
49.3 k  
12.4 k  
5.49 k  
2.61 k  
1.01 k  
499  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
2.002  
4.984  
9.998  
19.93  
49.91  
100.0  
199.4  
501.0  
1,003.0  
1
FilterFreqCM  
=
2πRCC  
where CD ≥10CC.  
CD affects the difference signal. CC affects the common-mode  
signal. Any mismatch in R × CC will degrade the AD620s  
CMRR. To avoid inadvertently reducing CMRR-bandwidth  
performance, make sure that CC is at least one magnitude  
smaller than CD. The effect of mismatched CCs is reduced with a  
larger CD:CC ratio.  
249  
249  
100  
98.8  
49.9  
49.3  
Rev. G | Page 16 of 20  
 
 
 
AD620  
+15V  
+V  
S
– INPUT  
0.1µ F  
499Ω  
10µF  
AD648  
100  
100  
C
C
R
R
+IN  
+
V
OUT  
AD620  
V
OUT  
R
C
C
AD620  
G
D
C
REF  
–V  
S
–IN  
REFERENCE  
0.1µ F  
10µF  
+ INPUT  
–V  
S
–15V  
Figure 44. Differential Shield Driver  
Figure 43. Circuit to Attenuate RF Interference  
COMMON-MODE REJECTION  
+V  
S
Instrumentation amplifiers, such as the AD620, offer high  
CMR, which is a measure of the change in output voltage when  
both inputs are changed by equal amounts. These specifications  
are usually given for a full-range input voltage change and a  
specified source imbalance.  
– INPUT  
R
G
2
100  
AD620  
V
AD548  
OUT  
R
G
2
REFERENCE  
+ INPUT  
For optimal CMR, the reference terminal should be tied to a  
low impedance point, and differences in capacitance and  
resistance should be kept to a minimum between the two  
inputs. In many applications, shielded cables are used to  
minimize noise; for best CMR over frequency, the shield  
should be properly driven. Figure 44 and Figure 45 show active  
data guards that are configured to improve ac common-mode  
rejections by “bootstrapping” the capacitances of input cable  
shields, thus minimizing the capacitance mismatch between the  
inputs.  
–V  
S
Figure 45. Common-Mode Shield Driver  
GROUNDING  
Since the AD620 output voltage is developed with respect to the  
potential on the reference terminal, it can solve many  
grounding problems by simply tying the REF pin to the  
appropriate “local ground.”  
To isolate low level analog signals from a noisy digital  
environment, many data-acquisition components have separate  
analog and digital ground pins (Figure 46). It would be  
convenient to use a single ground line; however, current  
through ground wires and PC runs of the circuit card can cause  
hundreds of millivolts of error. Therefore, separate ground  
returns should be provided to minimize the current flow from  
the sensitive points to the system ground. These ground returns  
must be tied together at some point, usually best at the ADC  
package shown in Figure 46.  
ANALOG P.S.  
+15V –15V  
DIGITAL P.S.  
+5V  
C
C
0.1µF  
0.1µF  
1µF  
1
µ
F
1µ  
F
+
AD620  
DIGITAL  
DATA  
OUTPUT  
AD585  
S/H  
AD574A  
ADC  
Figure 46. Basic Grounding Practice  
Rev. G | Page 17 of 20  
 
 
 
 
AD620  
+V  
S
GROUND RETURNS FOR INPUT BIAS CURRENTS  
– INPUT  
Input bias currents are those currents necessary to bias the  
input transistors of an amplifier. There must be a direct return  
path for these currents. Therefore, when amplifying “floating”  
input sources, such as transformers or ac-coupled sources, there  
must be a dc path from each input to ground, as shown in  
Figure 47, Figure 48, and Figure 49. Refer to A Designer’s Guide  
to Instrumentation Amplifiers (free from Analog Devices) for  
more information regarding in-amp applications.  
R
V
G
AD620  
OUT  
LOAD  
REFERENCE  
+ INPUT  
–V  
S
TO POWER  
SUPPLY  
GROUND  
+V  
S
– INPUT  
Figure 48. Ground Returns for Bias Currents with Thermocouple Inputs  
AD620  
V
R
G
OUT  
+V  
S
– INPUT  
LOAD  
+ INPUT  
REFERENCE  
–V  
S
V
R
G
AD620  
OUT  
TO POWER  
SUPPLY  
GROUND  
LOAD  
+ INPUT  
REFERENCE  
Figure 47. Ground Returns for Bias Currents with Transformer-Coupled Inputs  
–V  
S
100k  
100kΩ  
TO POWER  
SUPPLY  
GROUND  
Figure 49. Ground Returns for Bias Currents with AC-Coupled Inputs  
Rev. G | Page 18 of 20  
 
 
 
 
AD620  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.015 (0.38)  
GAUGE  
0.25 (0.0098)  
0.10 (0.0040)  
0.130 (3.30)  
0.115 (2.92)  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.022 (0.56)  
0.25 (0.0098)  
0.17 (0.0067)  
0.430 (10.92)  
MAX  
SEATING  
PLANE  
0.005 (0.13)  
MIN  
0.018 (0.46)  
0.014 (0.36)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
Figure 52. 8-Lead Standard Small Outline Package [SOIC]  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Figure 50. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8).  
Dimensions shown in inches and (millimeters)  
0.055 (1.40)  
MAX  
0.005 (0.13)  
MIN  
8
5
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 51. 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 19 of 20  
 
AD620  
ORDERING GUIDE  
Model  
AD620AN  
AD620ANZ2  
AD620BN  
AD620BNZ2  
AD620AR  
AD620ARZ2  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−55°C to +125°C  
Package Option1  
N-8  
N-8  
N-8  
N-8  
R-8  
R-8  
13" REEL  
13" REEL  
7" REEL  
7" REEL  
R-8  
AD620AR-REEL  
AD620ARZ-REEL2  
AD620AR-REEL7  
AD620ARZ-REEL72  
AD620BR  
AD620BRZ2  
R-8  
AD620BR-REEL  
AD620BRZ-RL2  
AD620BR-REEL7  
AD620BRZ-R72  
AD620ACHIPS  
AD620SQ/883B  
13" REEL  
13" REEL  
7" REEL  
7" REEL  
Die Form  
Q-8  
1 N = Plastic DIP; Q = CERDIP; R = SOIC.  
2 Z = Pb-free part.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks  
and registered trademarks are the property of their respective owners.  
C00775–0–12/04(G)  
Rev. G | Page 20 of 20  
 
 
 
 

相关型号:

AD620BRZ-REEL

暂无描述
ADI

AD620BRZ-REEL7

INSTRUMENTATION AMPLIFIER, 85uV OFFSET-MAX, 1MHz BAND WIDTH, PDSO8, MS-021-AA, SOIC-8
ADI

AD620BRZ-RL

Low Cost Low Power Instrumentation Amplifier
ADI

AD620S(Q)/883B

INSTRUMENTATION AMPLIFIER, 225uV OFFSET-MAX, 1MHz BAND WIDTH, CDIP8, CERAMIC, DIP-8
ADI

AD620SQ/883B

Low Cost Low Power Instrumentation Amplifier
ADI

AD620_04

Low Cost Low Power Instrumentation Amplifier
ADI

AD620_05

Low Cost Low Power Instrumentation Amplifier
ADI

AD621

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621A

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621ACHIPS

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621AN

Low Drift, Low Power Instrumentation Amplifier
ADI

AD621ANZ

Low Drift, Low Power Instrumentation Amplifier
ADI