AD8385ASVZ [ADI]

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters; 10位, 12通道抽取LCD DECDRIVER与电平转换器
AD8385ASVZ
型号: AD8385ASVZ
厂家: ADI    ADI
描述:

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters
10位, 12通道抽取LCD DECDRIVER与电平转换器

转换器 电平转换器 接口集成电路 驱动 CD
文件: 总24页 (文件大小:852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 12-Channel Decimating  
LCD DECDRIVER® with Level Shifters  
AD8385  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
High voltage drive to within 1.3 V of supply rails  
Output short-circuit protection  
High update rates  
Fast, 100 Ms/s 10-bit input data update rate  
Static power dissipation: 1.84 W  
Voltage controlled video reference (brightness), offset,  
and full-scale (contrast) output levels  
INV bit reverses polarity of video signal  
3.3 V logic, 9 V to 18 V analog supplies  
Level shifters for panel timing signals  
High accuracy voltage outputs  
BYP  
BIAS  
VRH  
VRH  
VRL  
SCALING  
CONTROL  
3
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID8  
VID9  
VID10  
VID11  
/
12  
2-STAGE  
LATCH  
10  
DACs  
DB(0:9)  
/
/
R/L  
CLK  
STSQ  
XFR  
4
/
SEQUENCE  
CONTROL  
INV  
CONTROL  
INV  
V1  
V2  
TSTM  
Laser trimming eliminates the need for adjustments or  
calibration  
Flexible logic  
SDI  
SCL  
SEN  
12-BIT  
SHIFT  
REGISTER  
VAO1  
VAO2  
3
3
DUAL  
DAC  
/
/
SVRH  
SVRL  
SVRL  
STSQ/XFR allow parallel AD8385 operation  
Fast settling into capacitive loads  
30 ns settling time to 0.25% into 150 pF load  
Slew rate 460 V/µs  
DYIN  
DXIN  
DY  
DX  
DIRYIN  
DIRXIN  
NRGIN  
ENBX1I  
ENBX2I  
ENBX3I  
ENBX4I  
DIRY  
DIRX  
NRG  
ENBX1  
ENBX2  
ENBX3  
ENBX4  
9
9
/
/
/
Available in 100-lead 14 mm × 14 mm TQFP E-pad  
GENERAL DESCRIPTION  
2
2
CLX  
CLY  
/
/
The AD8385 provides a fast, 10-bit, latched decimating digital  
input that drives 12 high voltage outputs. 10-bit input words are  
loaded into 12 separate high speed, bipolar DACs sequentially.  
Flexible digital input format allows several AD8385s to be used  
in parallel in high resolution displays. The output signal can be  
adjusted for dc reference, signal inversion, and contrast for  
maximum flexibility. Integrated level shifters convert timing  
signals from a 3 V timing controller to high voltage for LCD  
panel timing inputs. Two, serial, 8-bit DACs are integrated to  
provide dc reference signals. A 3-wire serial interface controls  
overload protection, output mode, and the serial DACs.  
2
CLXIN  
CLYIN  
CLXN  
CLYN  
R
S
MONITI  
MONITO  
AD8385  
Figure 1.  
The AD8385 is fabricated on ADIs fast bipolar, 26 V XFHV  
process, which provides fast input logic, bipolar DACs with  
trimmed accuracy and fast settling, high voltage, precision drive  
amplifiers on the same chip.  
The AD8385 dissipates 1.84 W nominal static power.  
The AD8385 is offered in a 100-lead, 14 mm × 14 mm TQFP  
E-pad package and operates over the commercial temperature  
range of 0°C to 85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD8385  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
DECDRIVER Section .................................................................. 3  
Level Shifters ................................................................................. 4  
Level Shifting Edge Detector ...................................................... 5  
Serial Interface .............................................................................. 5  
Power Supplies .............................................................................. 6  
Operating Temperature ............................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Overload Protection..................................................................... 8  
Exposed Paddle............................................................................. 8  
Maximum Power Dissipation ..................................................... 8  
Operating Temperature Range ................................................... 8  
Pin Configuration and Function Descriptions............................. 9  
Block Diagrams and Timing Diagrams ....................................... 11  
DECDRIVER Section ................................................................ 11  
Level Shifters ............................................................................... 13  
Level Shifting Edge Detector .................................................... 14  
Serial Interface ............................................................................ 15  
Functional Description .................................................................. 16  
Reference and Control Input .................................................... 16  
Output Operating Mode............................................................ 17  
Overload Protection................................................................... 17  
Serial DACs................................................................................. 17  
Theory of Operation...................................................................... 18  
Transfer Function and Analog Output Voltage ...................... 18  
Accuracy ...................................................................................... 18  
Applications..................................................................................... 19  
Optimized Reliability with the Thermal Switch..................... 19  
Operation in High Ambient Temperature .............................. 20  
Power Supply Sequencing ......................................................... 20  
VBIAS Generation—V1, V2 Input Pin Functionality ........... 20  
Applications Circuit................................................................... 21  
PCB Design for Optimized Thermal Performance ............... 21  
Thermal Pad Design .................................................................. 21  
Thermal Via Structure Design.................................................. 21  
AD8385 PCB Design Recommendations ............................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
REVISION HISTORY  
1/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
AD8385  
SPECIFICATIONS  
DECDRIVER SECTION  
@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V, unless otherwise noted.  
Table 1.  
Parameter  
VIDEO DC PERFORMANCE1  
Conditions  
Min  
Typ  
Max  
Unit  
TMIN to TMAX  
VDE  
VCME  
DAC Code 450 to 800  
DAC Code 450 to 800  
TMIN to TMAX , VO = 5 V step, CL = 150 pF  
20% to 80%  
–7.5  
–3.5  
+7.5  
+3.5  
mV  
mV  
VIDEO OUTPUT DYNAMIC PERFORMANCE  
Data Switching Slew Rate  
Invert Switching Slew Rate  
Data Switching Settling Time to 1%  
Data Switching Settling Time to 0.25%  
Invert Switching Settling Time to 1%  
Invert Switching Settling Time to 0.25%  
Invert Switching Overshoot  
CLK and Data Feedthrough2  
All-Hostile Crosstalk3  
460  
560  
19  
30  
75  
250  
100  
10  
V/µs  
V/µs  
ns  
ns  
ns  
ns  
mV  
mV p-p  
20% to 80%  
24  
50  
120  
500  
200  
Amplitude  
Glitch Duration  
DAC Transition Glitch Energy  
VIDEO OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage—Grounded Mode  
Data Switching Delay: t9  
INV Switching Delay: t10  
INV to CLK Setup Time: t27  
Output Current  
Output Resistance  
REFERENCE INPUTS  
V1 Range  
10  
30  
0.3  
mV p-p  
ns  
nV-s  
DAC Code 511 to 512  
AVCC – VOH, VOL – AGND  
1.1  
0.25  
12  
1.3  
V
V
4
50 % of VIDx  
50 % of VIDx  
10  
13  
0.5 fCLK  
14  
17  
5.5 fCLK  
ns  
ns  
ns  
mA  
5
15  
100  
22  
5
5
AVCC – 4  
AVCC – 4  
V
V2 (V1 – 0.25 V)  
V2 (V1 – 0.25 V)  
V2 Range  
V
V1 Input Current  
V2 Input Current  
VRL Range  
–5  
–27  
µA  
µA  
V
VRH ≥ VRL  
VRH ≥ VRL  
V1 – 0.5  
VRL  
AVCC – 1.3  
AVCC  
VRH Range  
V
VRH to VRL Range  
VRH Input Resistance  
VRL Bias Current  
VRH Input Current  
RESOLUTION  
VFS =2 × (VRH – VRL)  
To VRL  
0
2.75  
V
20  
–0.2  
125  
kΩ  
µA  
µA  
Coding  
Binary  
10  
Bits  
Rev. 0 | Page 3 of 24  
 
AD8385  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIGITAL INPUT CHARACTERISTICS  
Input tr, tf = 2 ns  
Max. Input Data Update Rate  
Data Setup Time: t1  
STSQ Setup Time: t3  
XFR Setup Time: t5  
Data Hold Time: t2  
STSQ Hold Time: t4  
XFR Hold Time: t6  
CLK High Time: t7  
100  
0
0
0
3
3
3
3
2.5  
Ms/s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
µA  
µA  
V
CLK Low Time: t8  
CIN  
IIH  
3
0.05  
–0.6  
IIL  
VIH  
VIL  
VTH  
2
0.8  
V
V
1.65  
1 VDE = differential error voltage; VCME = common-mode error voltage; VFS = full-scale output voltage = 2 × (VRH – VRL). See the Accuracy section.  
2 Measured on two outputs differentially as CLK and DB(0:9) are driven and XFR is held low.  
3 Measured on two outputs differentially as the other four are transitioning by 5 V. Measured for both states of INV.  
4 Measured from 50% of rising CLK edge to 50% of output change. Measurement is made for both states of INV.  
5 Measured from 50% of rising CLK edge that follows a valid XFR to 50% of output change. Refer to Figure 6 for the definition.  
LEVEL SHIFTERS  
@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LEVEL SHIFTER LOGIC INPUTS  
CIN  
IIH  
IIL  
VTH  
3
2
pF  
µA  
µA  
V
0.05  
–0.6  
1.65  
–2  
VIH  
VIL  
2.0  
DGND  
DVCC  
0.8  
V
V
LEVEL SHIFTER OUTPUTS  
RL > 10 kΩ  
VOH  
VOL  
AVCC – 0.25  
0.25  
V
V
LEVEL SHIFTER DYNAMIC PERFORMANCE  
Output Rise, Fall Times—tr, tf  
DX, CLX, CLXN, ENBX[1–4]  
DY, CLY, CLYN  
TA MIN to TA MAX  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
CL = 200 pF  
CL = 300 pF  
18.5  
40  
102  
43  
30  
70  
200  
50  
100  
ns  
ns  
ns  
ns  
ns  
DIRX, DIRY  
NRG  
NRG  
61  
Propagation Delay Times—t11, t12, t13, t14  
DX, CLX, CLXN, ENBX[1–4]  
DY, CLY, CLYN  
DIRX, DIRY  
NRG  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
CL = 200 pF  
CL = 300 pF  
20  
29  
70  
30  
37  
50  
50  
100  
100  
ns  
ns  
ns  
ns  
ns  
NRG  
Output Skew  
ENBX[1-4]—t15, t16  
DX to ENBX[1–4]—t16  
DX to CLX—t15, t16, t17, t18  
DY, CLY, CLYN—t15, t16, t17, t18  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
2
2
10  
20  
ns  
ns  
ns  
ns  
Rev. 0 | Page 4 of 24  
 
AD8385  
LEVEL SHIFTING EDGE DETECTOR  
@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input Low Voltage  
Input High Voltage  
Input Rising Edge Threshold Voltage  
Input Falling Edge Threshold Voltage  
Output High Voltage  
AGND  
AVCC – 0.7  
AGND + 0.75  
AVCC  
V
V
V
V
VIH  
VTH LH  
VTH HL  
VOH  
VOL  
IIH  
IIL  
t19  
∆t19  
t20  
∆t20  
tr  
AGND + 1  
AVCC – 1  
V
DVCC 0.25  
Output Low Voltage  
Input Current High State  
Input Current Low State  
Input Rising Edge Propagation Delay Time  
t19 Variation with Temperature  
Input Falling Edge Propagation Delay Time  
t20 Variation with Temperature  
Output Rise Time  
0.25  
1.2  
–1.2  
16  
2
12  
2
5
V
2.5  
µA  
µA  
ns  
ns  
ns  
ns  
ns  
ns  
–2.5  
CL = 10 pF  
CL = 10 pF  
10% to 90%  
10% to 90%  
tf  
Output Fall Time  
6
SERIAL INTERFACE  
@ 25 C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, SVFS = 5 V, SVRL = 4 V, SVRH = 9 V, unless otherwise noted.  
Table 4.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SERIAL DAC REFERENCE INPUTS  
SVRH Range  
SVRL Range  
SVFS = (SVRH – SVRL)  
SVRL ≤ SVRH  
SVRL ≤ SVRH  
SVRL + 1  
AGND + 1.5  
1
AVCC – 3.5  
SVRH – 1  
8
V
V
V
SVFS Range  
SVRH Input Current  
SVRL Input Current  
SVRH Input Resistance  
SERIAL DAC ACCURACY  
DNL  
SVFS = 5 V  
SVFS = 5 V  
125  
–2.5  
40  
150  
µA  
mA  
kΩ  
–2.8  
SVFS = 5 V, RL = ∞  
SVFS = 5 V, RL = ∞  
–1.0  
–1.5  
–2.0  
–3  
+1.0  
+1.5  
+2.0  
+3  
LSB  
LSB  
LSB  
LSB  
INL  
Output Offset Error  
Scale Factor Error  
SERIAL DAC LOGIC INPUTS  
CIN  
Input tr, tf = 10 ns  
3
pF  
µA  
µA  
V
V
V
IIN LOW Low Level Input Current  
IIN HIGH High Level Input Current  
VTH Input Threshold Voltage  
VIH Input High Voltage  
VIL Input Low Voltage  
SERIAL DAC OUTPUTS  
Maximum Output Voltage  
Minimum Output Voltage  
VAO1—Grounded Mode  
IOUT  
–0.6  
0.05  
1.65  
2.0  
DGND  
DVCC  
0.8  
SVRH – 1 LSB  
SVRL  
0.1  
V
V
V
mA  
µF  
µF  
30  
CLOAD Low Range1  
CLOAD High Range1  
0.002  
0.047  
Rev. 0 | Page 5 of 24  
 
 
AD8385  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SERIAL INTERFACE DYNAMIC PERFORMANCE  
SEN to SCL Setup Time, t20  
SCL, High Level Pulse Width, t21  
SCL, Low Level Pulse Width, t22  
SDI Setup Time, t24  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
SDI Hold Time, t25  
SCL to SEN Hold Time, t23  
VAO1, VAO2 Settling Time, t26  
VAO1, VAO2 Settling Time, t26  
SVFS = 5 V, to 0.5%, CL = 100 pF  
SVFS = 5 V, to 0.5%, CL = 33 µF  
1
2
15  
1 Outputs VAO1 and VAO2 are designed to drive very high capacitive loads. For proper operation of these outputs, load capacitance must be ≤0.002 µF or ≥0.047 µF.  
Load capacitance in the range of 0.002 µF to 0.047 µF causes the output overshoot to exceed 100 mV.  
POWER SUPPLIES  
@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, SVFS = 5 V, SVRL = 4 V, SVRH = 9 V, unless otherwise noted.  
Table 5.  
AD8385 Power Supplies  
DVCC, Operating Range  
DVCC, Quiescent Current  
AVCC Operating Range  
Total AVCC Quiescent Current  
Min  
Typ  
3.3  
56  
Max  
Unit  
V
mA  
V
3
3.6  
9
18  
111  
mA  
OPERATING TEMPERATURE  
@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, SVFS = 5 V, SVRL = 4 V, SVRH = 9 V, unless otherwise noted.  
Table 6.  
Parameter  
Min  
0
0
Typ  
Max  
75  
85  
Unit  
°C  
°C  
1
2
Ambient Temperature Range, TA  
Ambient Temperature Range, TA  
1 Operation at high ambient temperature requires a thermally-optimized PCB layout (see the Applications section), input data update rate not exceeding 85 MHz, black-  
to-white transition ≤ 4 V and CL ≤ 150 pF. In systems with limited or no airflow, the maximum ambient operating temperature is limited to 75°C with the overload  
protection enabled. For operation above 75°C, see Endnote 2.  
2 In addition to the requirements stated in Endnote 1, operation at 85°C ambient temperature requires 200 lfm airflow or the overload protection disabled.  
Rev. 0 | Page 6 of 24  
 
 
AD8385  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
Parameter  
Stresses above those listed under the Absolute Maximum  
Rating  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to the  
absolute maximum ratings for extended periods may reduce  
device reliability.  
Supply Voltage  
AVCCx – AGNDx  
DVCC – DGND  
Input Voltage  
Maximum Digital Input Voltage  
Minimum Digital Input Voltage  
Maximum Analog Input Voltage  
Minimum Analog Input Voltage  
Internal Power Dissipation1  
TQFP E-Pad Package @ TA = 25°C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering, 10 sec)  
18 V  
4.5 V  
DVCC + 0.5 V  
DGND – 0.5 V  
AVCC + 0.5 V  
AGND – 0.5 V  
1 100-lead TQFP E-pad package: θJA = 20°C/W (still air),  
JEDEC STD, 4-layer PCB in still air.  
5.00 W  
0°C to 85°C  
–65°C to 125°C  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 7 of 24  
 
 
AD8385  
OVERLOAD PROTECTION  
OPERATING TEMPERATURE RANGE  
The AD8385 employs a 2-stage overload protection circuit with  
an enable/disable function that is programmable through the  
3-wire serial interface. It consists of an output current limiter  
and a thermal shut down.  
The maximum operating junction temperature is 150°C. The  
junction temperature trip point of the overload protection is  
165°C. Production test guarantees a minimum junction  
temperature trip point of 125°C.  
When enabled, the maximum current at any one output of the  
AD8385 is, on average, internally limited to 100 mA. In the  
event of a momentary short circuit between a video output and  
a power supply rail (VCC or AGND), the output current limit is  
sufficiently low to provide temporary protection.  
Consequently, the maximum guaranteed operating junction  
temperature is 125°C with the overload protection enabled, and  
150°C with the overload protection disabled.  
To ensure operation within the specified operating temperature  
range, the maximum power dissipation must be limited:  
The thermal shutdown debiases the output amplifier when the  
junction temperature reaches the internally set trip point. In the  
event of an extended short circuit between a video output and a  
power supply rail, the output amplifier current continues to  
switch between 0 mA and 100 mA typ, with a period deter-  
mined by the thermal time constant and the hysteresis of the  
thermal trip point. Thermal shutdown provides long-term  
protection by limiting the average junction temperature to a  
safe level. When disabled, no overload protection is present.  
(
TJMAX TA  
)
PDMAX  
3
(θJA 0.9× Airflowin lfm)  
3.0  
2.5  
2.0  
1.5  
STILL AIR  
100MHz  
200 lfm  
60Hz XGA  
EXPOSED PADDLE  
500 lfm  
To ensure optimal thermal performance, the exposed paddle  
must be electrically connected to an external plane such as  
AVCC or GND, as described in the Applications Circuit section.  
QUIESCENT  
*OVERLOAD PROTECTION ENABLED  
**OVERLOAD PROTECTION DISABLED  
MAXIMUM POWER DISSIPATION  
*65  
**90  
70  
95  
75  
80  
85  
90  
95  
100  
125  
105  
130  
The junction temperature limits the maximum power that can  
be safely dissipated by the AD8385. The maximum safe junction  
temperature for plastic encapsulated devices, determined by the  
glass transition temperature of the plastic, is approximately  
150°C. Exceeding this limit can cause a temporary shift in the  
parametric performance due to a change in the stresses exerted  
on the die by the package. Exceeding a junction temperature of  
175°C for an extended period can result in device failure.  
100  
105  
110  
115  
120  
AMBIENT TEMPERATURE (°C)  
AD8385 on a 4-layer JEDEC PCB with a thermally optimized landing pattern,  
as described in the Applications Circuit section.  
Figure 2. Maximum Power Dissipation vs. Temperature  
Note that the quiescent power dissipation of the AD8385 is  
1.84 W when operating under the conditions specified in this  
data sheet. When driving a 12-channel XGA panel with an input  
capacitance of 150 pF, the AD8385 dissipates a total of 2.3 W  
when displaying 1 pixel wide alternating white and black  
vertical lines generated by a standard 60 Hz XGA input video.  
When the frequency of the pixel clock is raised to 100 MHz, the  
total power dissipation increases to 2.54 W. These specific  
power dissipations are shown in Figure 2 for reference.  
Rev. 0 | Page 8 of 24  
 
 
AD8385  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
DVCC  
DGND  
SDI  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
AGND0  
VID0  
PIN 1  
IDENTIFIER  
2
3
AVCC0,2  
VID2  
4
SEN  
5
SCL  
AGND2,4  
VID4  
6
BYP  
7
TSTM  
AGNDS  
AGNDS  
SVRL  
SVRL  
SVRH  
VAO1  
VAO2  
AVCCS  
NC  
AVCC4,6  
VID6  
8
9
AGND6,8  
VID8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AD8385  
TOP VIEW  
(Not to Scale)  
100L  
14mm x 14mm  
TQFP E-PAD  
AVCC8,10  
VID10  
AGND10,1  
VID1  
AVCC1,3  
VID3  
DIRX  
AGND3,5  
VID5  
DIRY  
DY  
AVCC5,7  
VID7  
CLY  
CLYN  
DIRXIN  
DIRYIN  
DYIN  
AGND7,9  
VID9  
AVCC9,11  
VID11  
CLYIN  
AGND11  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NC =  
NO CONNECT  
Figure 3. 100-Lead TQFP Package  
Table 8. Pin Function Descriptions  
Pin Name  
DB(0:9)  
CLK  
Function  
Data Input  
Clock  
Description  
10-Bit Data Input. MSB = DB9.  
Clock Input. Data is acquired on both edges of the CLK.  
STSQ  
Start Sequence  
A new data loading sequence begins on the rising edge of CLK when this input was high on the  
preceding rising edge of CLK.  
R/L  
Right/Left Select  
Data Transfer  
A new data loading sequence begins on the left, with Channel 0, when this input is low; a new  
data loading sequence begins on the right, with Channel 11 when this input is high.  
Data is transferred to the video outputs on the next rising edge of CLK when this input is high on  
the rising edge of CLK.  
XFR  
VID0–VID11  
V1, V2  
Analog Outputs  
Reference Voltages  
These pins are directly connected to the analog inputs of the LCD panel.  
The voltage applied between V1 and AGND sets the white video level during INV = low. The  
voltage applied between V2 and AGND sets the white video level during INV = high.  
VRH, VRL  
INV  
Full-Scale  
References  
Invert  
The voltage applied between these pins sets the full-scale video output voltage.  
When this input is high, the analog output voltages are above V2. When low, the analog outputs  
voltages are below V1.  
DVCC  
DGND  
AVCCx  
Digital Power Supply Digital Power Supply.  
Digital Ground  
This pin is normally connected to the digital ground plane.  
Analog Power  
Supplies  
Analog Power Supplies.  
AGNDx  
BYP  
Analog Ground  
Bypass  
Analog Supply Returns.  
A 0.1 µF capacitor connected between this pin and AGND ensures optimum settling time.  
SVRH, SVRL  
Serial DAC Reference Reference Voltages for the Output Amplifiers of the Serial DACs.  
Voltages  
Rev. 0 | Page 9 of 24  
 
AD8385  
Pin Name  
Function  
Description  
SCL  
Serial Interface Data  
Clock  
Clock for the Serial Interface.  
SDI  
Serial Interface Data  
Input  
While the SEN input is low, one 12-bit serial word is loaded into the serial interface on the rising  
edges of SCL. The first four bits select the function; the following eight bits are the data used in the  
serial DACs.  
SEN  
Serial Interface  
Enable  
A falling edge of this input initiates a loading cycle. While this input is held low, the serial interface  
is enabled and data is loaded on every rising edge of SCL. The selected functions are updated on  
the rising edge of this input. While this input is held high, the serial interface is disabled.  
VAO1, VAO2  
TSTM  
Serial DAC Voltage  
Output  
Test Mode  
These output voltages are updated on the rising edge of the SEN input.  
When this input is low, the overload protection and output mode are determined by the function  
programmed into the serial interface. While this input is held high, the overload protection is  
forced to enabled and the output mode is forced to normal, regardless of function programmed  
into the serial interface.  
TSTA  
Test Pin  
Connect this pin to DGND.  
MONITI  
MONITO  
DYIN, DIRYIN,  
DIRXIN, DXIN,  
NRGIN,  
Monitor Input  
Monitor Output  
Inverting Level  
Shifter Inputs  
Logic Input of the Level Shifting Inverting Edge Detector.  
Output of the Level Shifting Inverting Edge Detector.  
Logic Input of the Inverting Level Shifters.  
ENBX(1–4)IN  
DX, DY, DIRX,  
DIRY, NRG,  
ENBX(1–4)  
Inverting Level  
Shifter Outputs  
While the corresponding input voltage of these level shifters is below the threshold voltage, the  
output voltage at these pins is at VOH. While the corresponding input voltage of these level  
shifters is above the threshold voltage, the output voltage at these pins is at VOL.  
CLXIN, CLYIN  
Complementary  
Logic Input of the Complementary Level Shifters.  
Level Shifter Inputs  
CLX, CLXN,  
CLY, CLYN,  
Complementary  
Level Shifter  
Outputs  
While the corresponding input voltage of these level shifters is below the threshold voltage, the  
voltage at the noninverting output pins is at VOH and the voltage at the inverting outputs is at  
VOL. While the corresponding input voltage of these level shifters is above the threshold voltage,  
the voltage at the noninverting output pins is at VOL and the voltage at the inverting outputs is at  
VOH.  
Rev. 0 | Page 10 of 24  
AD8385  
BLOCK DIAGRAMS AND TIMING DIAGRAMS  
DECDRIVER SECTION  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2-STAGE  
LATCH  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DB(0:9)  
VID0  
VID2  
VID4  
VID6  
VID8  
VID10  
VID1  
VID3  
VID5  
VID7  
VID9  
VID11  
2-STAGE  
LATCH  
AD8385  
2-STAGE  
LATCH  
BYP  
BIAS  
2-STAGE  
LATCH  
CLK  
STSQ  
XFR  
SEQUENCE  
CONTROL  
2-STAGE  
LATCH  
R/L  
2-STAGE  
LATCH  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2-STAGE  
LATCH  
DAC  
DAC  
DAC  
DAC  
DAC  
2-STAGE  
LATCH  
2-STAGE  
LATCH  
2-STAGE  
LATCH  
2-STAGE  
LATCH  
10  
10  
2-STAGE  
LATCH  
DAC  
INV  
INV CONTROL  
SCALING  
CONTROL  
VRH VRL  
V1 V2  
Figure 4. Block Diagram  
Rev. 0 | Page 11 of 24  
 
AD8385  
tr  
tr  
t8  
V
V
TH  
CLK  
t7  
t1  
t2  
t1  
t2  
TH  
DB(0:9)  
V
V
TH  
STSQ  
XFR  
t3  
t4  
TH  
t5  
t6  
Figure 5. Input Timing  
CLK  
DB(0:9)  
–9 –8 –7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
STSQ  
XFR  
INV  
V2+VFS  
V2  
VID(0:11)  
50%  
t9  
t9  
V1  
V1–VFS  
t27 MIN  
t10  
t27 MAX  
PIXELS –12, –11, –10, –9, –8, –7, –6, –5, –4, –3, –2, –1  
PIXELS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11  
Figure 6. Output Timing (R/L = Low)  
Table 9.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t27  
Data Setup Time  
Data Hold Time  
Input tr, tf = 2 ns  
0
3
0
3
0
3
3
2.5  
10  
STSQ Setup Time  
STSQ Hold Time  
XFR Setup Time  
XFR Hold Time  
CLK High Time  
CLK Low Time  
Data Switching Delay  
Invert Switching Delay  
INV to CLK Setup Time  
12  
15  
14  
17  
5.5/fCLK  
13  
0.5/fCLK  
Rev. 0 | Page 12 of 24  
AD8385  
LEVEL SHIFTERS  
DYIN  
DXIN  
DY  
DX  
CLX  
CLY  
CLXIN  
CLYIN  
DIRYIN  
DIRXIN  
NRGIN  
ENBX1I  
ENBX2I  
ENBX3I  
ENBX4I  
DIRY  
DIRX  
NRG  
ENBX1  
ENBX2  
ENBX3  
ENBX4  
CLXN  
CLYN  
Figure 8. Level Shifter—Complementary  
Figure 7. Level Shifter—Inverting  
INPUTS  
t11  
t12  
INVERTING  
OUTPUTS  
t15  
t17  
t16  
t18  
NONINVERTING  
OUTPUTS  
t13  
t14  
Figure 9. Inverting and Complementary Level Shifter Timing  
Table 10. Level Shifter Timing  
Parameter  
Conditions  
TA MIN to TA MAX  
CL = 40 pF  
Min  
Typ  
Max  
Unit  
Output Rise, Fall Times, tr, tf  
DX, CLX, CLXN, ENBX[1–4]  
DY, CLY, CLYN  
DIRX, DIRY  
NRG  
18.5  
40  
102  
43  
30  
70  
200  
50  
100  
ns  
ns  
ns  
ns  
ns  
CL = 200 pF  
CL = 300 pF  
TA MIN to TA MAX  
CL = 40 pF  
61  
Propagation Delay Times—t11, t12, t13, t14  
DX, CLX, CLXN, ENBX[1–4]  
DY, CLY, CLYN  
DIRX, DIRY  
20  
29  
70  
30  
37  
50  
50  
100  
100  
ns  
ns  
ns  
ns  
ns  
NRG  
CL = 200 pF  
CL = 300 pF  
Propagation Delay Skew—t15, t16, t17, t18  
ENBX[1–4]—t15, t16  
TA MIN to TA MAX, CL = 40 pF  
2
ns  
DX to ENBX[1–4]—t16  
2
DX to CLX—t15, t16, t17, t18  
DY, CLY, CLYN—t15, t16, t17, t18  
10  
20  
ns  
ns  
Rev. 0 | Page 13 of 24  
 
AD8385  
LEVEL SHIFTING EDGE DETECTOR  
R
S
MONITI  
MONITO  
Figure 10. Level Shifting Edge Detector Block Diagram  
AVCC  
MONITI  
AGND  
t19  
t20  
VOH  
MONITO  
VOL  
Figure 11. Level Shifting Edge Detector Timing  
Table 11. Level Shifting Edge Detector, AVCC = 15.5 V, DVCC = 3.3 V, CL = 10 pF, TA MIN = 25°C, TA MAX = 85°C  
Parameter  
Min  
Typ  
Max  
Unit  
V
V
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
AGND  
AVCC – 0.7  
AGND + 0.75  
AVCC  
VTH LH  
VTH HL  
VOH  
VOL  
IIH  
IIL  
t19  
ꢀt19  
Input Rising Edge Threshold Voltage  
Input Falling Edge Threshold Voltage  
Output High Voltage  
Output Low Voltage  
Input Current High State  
Input Current Low State  
Input Rising Edge Propagation Delay Time  
t19 Variation with Temperature  
AGND + 1  
AVCC – 1  
DVCC – 0.25  
0.25  
1.2  
–1.2  
16  
V
V
V
V
µA  
µA  
ns  
ns  
2.5  
–2.5  
2
t20  
ꢀt20  
Input Falling Edge Propagation Delay Time  
t20 Variation with Temperature  
12  
2
ns  
ns  
tr  
tf  
Output Rise Time  
Output Fall Time  
5
6
ns  
ns  
Rev. 0 | Page 14 of 24  
 
AD8385  
SERIAL INTERFACE  
SVRH  
SVRL  
SDI  
SCL  
SEN  
12-BIT SHIFT REGISTER  
VAO1, VAO2 = SVRL + SDICODE (SVRH–SVRL)/256  
DUAL SDAC  
8
AO2  
SD(0:7)  
/
SELECT LOAD  
SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9 SD10 SD11  
AO1  
CONTROL  
ENABLE  
THERMAL  
SWITCH  
12  
/
12  
/
6
VIDEO  
DACs  
VID(0:11)  
/
TSTM  
Figure 12. Serial Interface Block Diagram  
SEN  
SCL  
SDI  
SEN  
t20  
t22  
t21  
t25  
t23  
SCL  
SDI  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
t24  
VAO1,  
VAO2  
D11  
D10  
D1  
D0  
Figure 13. Serial Interface Timing  
VAO1,  
VAO2  
t26  
Figure 14. Serial Interface Timing  
Table 12. Serial DAC Timing  
Parameter  
Conditions  
Min  
10  
10  
10  
10  
10  
10  
Typ  
Max  
Unit  
SEN to SCL Setup Time, t20  
SCL, High Level Pulse Width, t21  
SCL, Low Level Pulse Width, t22  
SDI Setup Time, t24  
SDI Hold Time, t25  
SCL to SEN Hold Time, t23  
VAO1, VAO2 Settling Time, t26  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
VFS = 5 V, to 0.5%, CL = 100 pF  
VFS = 5 V, to 0.5%, CL = 33 µF  
1
2
15  
Rev. 0 | Page 15 of 24  
 
AD8385  
FUNCTIONAL DESCRIPTION  
INV Control—Analog Output Inversion  
The AD8385 is a system building block designed to directly  
drive the columns of LCD microdisplays of the type popu-  
larized for use in projection systems. It comprises 12 channels  
of precision, 10-bit digital-to-analog converters loaded from a  
single, high speed, 10-bit wide input. Precision current feedback  
amplifiers, providing well-damped pulse response and fast  
voltage settling into large capacitive loads, buffer the 12 outputs.  
Laser trimming at the wafer level ensures low absolute output  
errors and tight channel-to-channel matching. Tight part-to-  
part matching in high resolution systems is guaranteed by the  
use of external voltage references.  
The analog voltage equivalent of the input code is subtracted  
from (V2 + VFS) while INV is held high and added to  
(V1 – VFS) while INV is held low. Video inversion is delayed  
by 6 to 12 CLK cycles from the INV input.  
TSTM Control—Test Mode  
A low on this input allows serial interface control of the output  
operating mode and the thermal switch.  
A high on this input turns the thermal switch on and releases  
the video outputs and VAO1 from grounded mode.  
3-Wire Serial Interface—SDAC, Output, Thermal Switch  
Control  
Three groups of level shifters convert digital inputs to high  
voltage outputs for direct connection to the control inputs of  
LCD panels.  
The serial interface controls two 8-bit serial DACs, the thermal  
switch of the overload protection circuit, and the video output  
operating mode via a 12-bit-wide serial word from a micropro-  
cessor. Four of the 12 bits select the function; the remaining  
8 bits are the data for the serial DACs.  
An edge detector conditions a high voltage reference timing  
input from the LCD and converts it to digital levels for use in  
synchronizing timing controllers, such as the AD8389.  
REFERENCE AND CONTROL INPUT  
Start Sequence Control—Input Data Loading  
Table 13. Bit Definitions  
Bit  
Name  
SD(0:7)  
SD8  
SD9  
SD10  
Bit Functionality  
8-bit SDAC data. MSB = SD7  
Not used  
Thermal switch control  
Output operating mode, SDAC selection, and  
thermal switch control  
A valid STSQ control input initiates a new 6-clock loading cycle  
during which 12 input data-words are loaded sequentially into  
12 internal channels. Data is loaded on both the rising and  
falling edges of CLK. A new loading sequence begins on the  
current rising CLK edge only when STSQ is held high at the  
preceding rising CLK edge.  
SD11  
Output operating mode and SDAC selection control  
Right/Left Control—Input Data Loading  
To facilitate image mirroring, the direction of the loading  
sequence is set by the R/L control.  
Table 14. Truth Table @ TSTM = Low  
SD  
SEN  
Action  
11 10  
9
X
X
8
X
X
A new loading sequence begins at Channel 0 and proceeds to  
Channel 11 when the R/L control is held low. It begins at  
Channel 11 and proceeds to Channel 0 when the R/L control  
is held high.  
0
1
0
0
Load VAO2. No change to VAO1.  
Load VAO1. Release video outputs  
from grounded mode. No change to  
VAO2.  
XFR Control—Data Transfer to Outputs  
0
0
1
1
0
1
X
X
Release video outputs and VAO1 from  
grounded mode. Disable thermal  
switch. No change to VAO1 and  
VAO2.  
Release video outputs and VAO1 from  
grounded mode. Enable thermal  
switch. No change to VAO1 and  
VAO2.  
Video outputs and VAO1 to grounded  
output mode. Disable thermal switch.  
No change to VAO1, VAO2.  
Video outputs and VAO1 to grounded  
output mode. Enable thermal switch.  
No change to VAO1, VAO2.  
Data transfer to the outputs is initiated by the XFR control. Data  
is transferred to all outputs simultaneously on the rising CLK  
edge only when XFR is high during the preceding rising  
CLK edge.  
V1, V2 Inputs—Voltage Reference Inputs  
Two external analog voltage references set the levels of the  
outputs. V1 sets the output voltage at Code 1023 while the INV  
input is low, and V2 sets the output voltage at Code 1023 while  
the INV input is held high.  
1
1
X
1
1
X
0
1
X
X
X
X
VRH, VRL Inputs—Full-Scale Video Reference Inputs  
Twice the difference between these analog input voltages sets  
the full-scale output voltage VFS = 2 (VRH–VRL).  
Start a serial interface loading cycle.  
No change to outputs.  
Rev. 0 | Page 16 of 24  
 
AD8385  
Table 15. Truth Table @ TSTM = High. Thermal Switch  
Enabled. Grounded Output Disabled.  
For systems that operate at high internal ambient temperatures  
and require large capacitive loads to be driven by the AD8385 at  
high frequencies, junction temperatures above 125°C may be  
required. In such systems, the thermal switch should either be  
disabled or a minimum airflow of 200 lfm be maintained.  
SD  
SEN  
Action  
11 10  
9
8
0
1
X
0
0
1
X
X
Load VAO2. No change to VAO1.  
Load VAO1. No change to VAO2.  
No change to VAO1 and VAO2 data.  
X
X
X
X
SERIAL DACS  
Both serial DACs are loaded via the serial interface. The output  
voltage is determined by the following equation:  
Start a serial interface loading cycle.  
No change to outputs.  
X
X
X
X
VAO1, VAO2 = SVRL + SD(0:7) × (SVRH SVRL)/256  
X = Don’t Care.  
Output VAO1 is designed to drive very large capacitive loads,  
above 0.047 µF. Lower capacitive loads may result in excessive  
overshoot at VAO1.  
OUTPUT OPERATING MODE  
In normal operating mode, the voltage of the video outputs and  
VAO1 is determined by the inputs.  
Level Shifters  
In grounded output mode, the video outputs and VAO1 are  
forced to (AGND + 0.1 V) typ.  
The characteristics of the level shifters are optimized based on  
their intended use.  
OVERLOAD PROTECTION  
Seven level shifters—DX, CLX, CLXN, and ENBX[1:4]—are  
optimized for the X direction and three—DY, CLY and CLYN—  
are optimized for the Y direction control signals.  
The overload protection employs current limiters and a thermal  
switch to protect the video output pins against accidental shorts  
between any video output pin and AVCC or AGND.  
One level shifter—NRG—is designed to drive a large capacitive  
load and is optimized for an X direction control signal. Two  
level shifters—DIRX and DIRY—are optimized for very low  
frequency control signals.  
The junction temperature trip point of the thermal switch is  
165°C. Production test guarantees a minimum junction  
temperature trip point of 125°C. Consequently, the operating  
junction temperature should not be allowed to rise above 125°C  
with the thermal switch enabled.  
One level shifting edge detector—MONITI, MONITO—is  
optimized to condition a synchronizing feedback reference  
signal from the LCD.  
Rev. 0 | Page 17 of 24  
 
AD8385  
THEORY OF OPERATION  
TRANSFER FUNCTION AND ANALOG OUTPUT  
VOLTAGE  
ACCURACY  
To best correlate transfer function errors to image artifacts, the  
overall accuracy of the DECDRIVER is defined by two  
parameters, VDE and VCME.  
The DECDRIVER has two regions of operation where the video  
output voltages are either above reference voltage V2 or below  
reference voltage V1. The transfer function defines the video  
output voltage as the function of the digital input code:  
VDE, the differential error voltage, measures the difference  
between the rms value of the output and the rms value of the  
ideal. The defining expression is  
VIDx(n) = V2 + VFS × (1 – n/1023), for INV = high  
VIDx(n) = V1 VFS × (1 – n/1023), for INV = low  
[VOUTN(n)V2][VOUTP(n)V1]  
n
1023  
VDE(n) =  
– 1–  
×VFS  
2
where:  
n = input code  
VFS = 2 × (VRH VRL)  
VCME, the common-mode error voltage, measures ½ the dc  
bias of the output. The defining expression is  
A number of internal limits define the usable range of the video  
output voltages, VIDx. See Figure 15.  
1 1  
2 2  
V1+V2  
VCME(n) =  
(
VOUTN(n) +VOUTP(n) –  
)
2
AVCC  
1.3V  
V2 + VFS  
INTERNAL LIMITS AND  
INV = HIGH  
USABLE VOLTAGE RANGES  
VOUTN(n)  
9V AVCC 18V  
0 VFS 5.5V  
V2  
V1  
5V V2 ≤ (AVCC – 4)  
VOUTP(n)  
INV = LOW  
0 VFS 5.5V  
5V V1  
≤ (AVCC – 4)  
V1 – VFS  
AGND  
1.3V  
0
1023  
INPUT CODE  
Figure 15. Transfer Function and Usable Voltage Ranges  
Rev. 0 | Page 18 of 24  
 
 
AD8385  
APPLICATIONS  
12-CHANNEL LCD  
AD8385  
VID(0:11)  
CHANNEL 0–5  
DB(0:9)  
STSQ, XFR,  
CLK, R/L, INV  
DIRX , DIRY  
IN  
,
DIRX, DIRY,  
DY, CLY,  
CLYN, NRG  
IN  
LCD TIMING  
CONTROLS  
DY , CLY  
,
IN  
IN  
NRG  
IN  
IMAGE  
PROCESSOR  
1/3 AD8389  
DX  
CLX  
ENBX (1–4)  
,
IN  
DX,  
CLX, CLXN,  
ENBX (1–4)  
LCD TIMING  
CONTROLS  
DXI, CLXI,  
ENBX(1–4)I  
DXxO, CLXxO,  
ENBX(1–4)xO  
,
IN  
IN  
MONITxI  
MONITO  
MONITI  
CLK  
MONITOR  
VCOM  
VAO1  
VAO2  
SDI  
SCL  
SEN  
µP  
VRH, VRL,  
V1, V2,  
SVRH, SVRL  
DC REFERENCE  
VOLTAGES  
Figure 16. Typical Applications Circuit  
OPTIMIZED RELIABILITY WITH THE THERMAL SWITCH  
OPTION A  
OPTION B  
While internal current limiters provide short-term protection  
against temporary shorts at the outputs, the thermal switch  
must be enabled to protect against persistent shorts lasting for  
several seconds.  
DVCC  
DVCC  
AD8385  
AD8385  
SERVICE  
JUMPER  
SERVICE  
JUMPER  
Initial Power-Up After Assembly or Repair Using a  
Service Jumper  
TSTM PIN7  
TSTM PIN7  
TO µP  
To optimize reliability with the use of the thermal switch, the  
following sequence of operations is recommended:  
DGND  
Figure 17. Service Jumper Location  
1. Ensure that the TSTM pin is high on initial power-up by  
inserting a service jumper. See Figure 17.  
Initial Power-Up after Assembly or Repair Using the  
Serial Interface  
2. Execute the initial power-up.  
3. Identify any shorts at outputs.  
1. Immediately after power-up, send Code 011XXXXXXXXX  
through the serial interface to enable the thermal switch  
and disable the grounded output mode.  
4. Power down, repair shorts, and repeat the initial power-up  
sequence until proper system functionality is verified.  
2. Identify any shorts at the outputs.  
5. Remove service jumper.  
6. Resume normal operation.  
3. Power down, repair shorts, and repeat the initial power-up  
sequence until proper system functionality is verified.  
4. Resume normal operation.  
Rev. 0 | Page 19 of 24  
 
 
AD8385  
Power-Up During Normal Operation  
Internal Bias Voltage Generation  
The serial interface has no power-on reset.  
Code 010XXXXXXXXX, sent immediately following  
a power-up places, all outputs into normal operating  
mode and disables the thermal switch.  
Standard systems that internally generate the bias voltage  
reserve the uppermost code range for the bias voltage, and use  
the remaining code range to encode the video for gamma  
correction. A high degree of ac symmetry is guaranteed by the  
AD8385 in these systems.  
OPERATION IN HIGH AMBIENT TEMPERATURE  
The V1 and V2 inputs in these systems are tied together and are  
normally connected to VCOM, as shown in Figure 18.  
To extend the maximum operating junction temperature of the  
AD8385 to 150°C, keep the thermal switch disabled during  
normal operation. Code format X10XXXXXXXXX ensures a  
disabled thermal switch.  
POWER SUPPLY SEQUENCING  
VFS = 5V  
AD8385  
As indicated in the Absolute Maximum Ratings, the voltage at  
any input pin cannot exceed its supply voltage by more than  
0.5 V. To ensure compliance with the Absolute Maximum  
Ratings, the following power-up and power-down sequencing  
is recommended.  
VBIAS = 1V  
V2  
VCOM  
VCOM  
V1  
VBIAS = 1V  
820 1023  
RESERVED  
CODE  
VFS = 5V  
RANGE  
During power-up, initial application of nonzero voltages to any  
of the input pins must be delayed until the supply voltage ramps  
up to its highest operational input voltage.  
Figure 18. V1, V2 Connection and Transfer  
Function in a Typical Standard System  
During power-down, the voltage at any input pin must reach  
zero during a period not exceeding the hold-up time of the  
power supply.  
External Bias Voltage Generation  
In systems that require improved brightness resolution and  
higher accuracy, the V1 and V2 inputs, connected to external  
voltage references, provide the necessary bias voltage (VBIAS)  
while allowing the full code range to be used for gamma  
correction.  
Failure to comply with the Absolute Maximum Ratings, may  
result in functional failure or damage to the internal ESD  
diodes. Damaged ESD diodes can cause temporary parametric  
failures, which can result in image artifacts. Damaged ESD  
diodes cannot provide full ESD protection, reducing reliability.  
To ensure a symmetrical ac voltage at the AD8385s outputs,  
VBIAS must remain constant for both states of INV. Therefore,  
V1 and V2 are defined as  
Table 16.  
Power-On  
Power-Off  
1. Apply power to supplies.  
2. Apply power to other I/Os.  
1. Remove power from I/Os.  
2. Remove power from supplies.  
V1 = VCOM VBIAS  
V2 = VCOM + VBIAS  
VBIAS GENERATION—V1, V2 INPUT PIN  
FUNCTIONALITY  
To avoid image flicker, a symmetrical ac voltage is required and  
a bias voltage of approximately 1 V minimum must be  
maintained across the pixels of HTPS LCDs. The AD8385  
provides an internal and external method of maintaining this  
bias voltage.  
Rev. 0 | Page 20 of 24  
 
 
AD8385  
PCB DESIGN FOR OPTIMIZED THERMAL  
PERFORMANCE  
APPLICATIONS CIRCUIT  
The following circuit ensures VBIAS symmetry to within 1 mV  
with a minimum component count. Bypass capacitors are not  
shown for clarity.  
The total maximum power dissipation of the AD8385 is partly  
load-dependent. In a 12-channel 60 Hz XGA system running at  
a 65 MHz pixel rate, the total maximum power dissipation is  
2.3 W at an LCD channel input capacitance of 150 pF. At a  
100 MHz pixel rate, the total maximum power dissipation can  
exceed 3 W.  
AVCC = 15.5V  
VZ = 5.1V  
To limit the operating junction temperature at or below the  
guaranteed maximum, the package, in conjunction with the  
PCB, must effectively conduct heat away from the junction.  
AD8385  
3
1
V2 = 8V  
V1 = 6V  
5
–IN  
V
V+  
V2  
2
8
VCOM = 7V  
R2 = 1kΩ  
AD8132  
OCM  
V–  
4
The AD8385 package is designed to provide enhanced thermal  
characteristics through the exposed die paddle on the bottom  
surface of the package. To take full advantage of this feature, the  
exposed paddle must be in direct thermal contact with the PCB,  
which then serves as a heat sink.  
V1  
+IN  
6
R1 = 6kΩ  
DVCC = 3.3V  
Figure 19. External VBIAS Generator with the AD8132  
A thermally effective PCB must incorporate two thermal pads  
and a thermal via structure. The thermal pad on the top PCB  
layer provides a solderable contact surface on the top surface of  
the PCB. The thermal pad on the bottom PCB layer provides a  
surface in direct contact with the ambient. The thermal via  
structure provides a thermal path to the inner and bottom  
layers of the PCB to remove heat.  
VFS = 4V  
V2  
VBIAS = 1V  
VCOM  
VBIAS = 1V 1023  
V1  
THERMAL PAD DESIGN  
VFS = 4V  
To minimize thermal performance degradation of production  
PCBs, the contact area between the thermal pad and the PCB  
should be maximized. Therefore, the size of the thermal pad on  
the top PCB layer should match the exposed paddle size. The  
second thermal pad of at least the same size should be placed on  
the bottom side of the PCB. At least one thermal pad should be  
in direct thermal contact with a plane such as AVCC or GND.  
Figure 20. AD8385 Transfer Function in a Typical High Accuracy System  
8.75  
7.50  
6.25  
5.00  
3.75  
THERMAL VIA STRUCTURE DESIGN  
Effective heat transfer from the top to the inner and bottom  
layers of the PCB requires thermal vias incorporated into the  
thermal pad design. Thermal performance increases logarith-  
mically with the number of vias.  
T
= 25°C  
T
= 85°C  
A
A
2.50  
1.25  
0.00  
–1.25  
–2.50  
–3.75  
–5.00  
–6.25  
–7.50  
–8.75  
Near optimal thermal performance of production PCBs is  
attained only when tightly spaced thermal vias are placed on  
the full extent of the thermal pad.  
5.7  
6.2  
6.7  
7.2  
7.7  
8.2  
8.7  
9.2  
9.7 10.2 10.7  
(V+) – (V–) (V)  
Figure 21. Typical Asymmetry at the Outputs of the AD8132 vs. Its Power  
Supply for the Application Circuit  
Figure 21 shows that the AD8132 (Figure 19) typically produces  
a symmetrical output at 85°C when its supply, (V+) – (V–), is  
at 7.2 V.  
Rev. 0 | Page 21 of 24  
 
 
 
AD8385  
16 mm  
6.5 mm  
AD8385 PCB DESIGN RECOMMENDATIONS  
Top PCB Layer  
Pad size: 0.25 mm × 0.25 mm  
Pad pitch: 0.5 mm  
Thermal pad size: 6.5 mm × 6.5 mm  
Thermal via structure: 0.25 mm diameter vias on a  
0.5 mm grid  
Bottom PCB Layer  
It is recommended that the bottom thermal pad be thermally  
connected to a plane. The connection should be direct such that  
the thermal pad becomes part of the plane.  
Figure 22. Land Pattern—Top Layer  
The use of thermal spokes is not recommended when con-  
necting the thermal pads or via structure to the AVCC plane.  
Solder Masking  
To minimize the formation of solder voids due to solder flowing  
into the via holes (solder wicking), the via diameter should be  
small. Optional solder masking of the via holes on the top layer  
of the PCB plugs the via holes, inhibiting solder flow into the  
holes. To optimize the thermal pad coverage, the solder mask  
diameter should be no more than 0.1 mm larger than the via  
hole diameter.  
6.5 mm  
Solder Mask—Top Layer  
Pads: Set by the customers PCB design rules  
Thermal vias: 0.25 mm diameter circular mask, centered  
on the vias.  
Figure 23. Land Pattern—Bottom Layer  
Solder Mask—Bottom Layer  
Set by the customers PCB design rules.  
Figure 24. Solder Mask—Top Layer  
Rev. 0 | Page 22 of 24  
 
AD8385  
OUTLINE DIMENSIONS  
Figure 25. 100-Lead, Thermally Enhanced Thin Quad Flat Package (with Exposed Heat Sink) [TQFP_EP]  
(SV-100-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8385ASVZ1  
Temperature Range  
0°C to 85°C  
Package Description  
Package Option  
100-Lead TQFP_EP  
SV-100-3  
1 Z = Pb-free part.  
Rev. 0 | Page 23 of 24  
 
 
AD8385  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04514–0–1/05(0)  
Rev. 0 | Page 24 of 24  

相关型号:

AD8386

10-Bit, 12-Channel Output Decimating LCD Driver
ADI

AD8386JCPZ

10-Bit, 12-Channel Output Decimating LCD Driver
ADI

AD8387

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387-EB

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387JSVZ

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8389

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

SPECIALTY CONSUMER CIRCUIT, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER

AD8390

Low Power, High Output Current Differential Amplifier
ADI

AD8390A

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-R2

Low Power, High Output Current Differential Amplifier
ADI

AD8390AACPZ-R7

Low Power, High Output Current Differential Amplifier
ADI