AD841_17 [ADI]

Wideband, Unity-Gain Stable, Fast Settling Op Amp;
AD841_17
型号: AD841_17
厂家: ADI    ADI
描述:

Wideband, Unity-Gain Stable, Fast Settling Op Amp

文件: 总17页 (文件大小:377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband, Unity-Gain Stable,  
Fast Settling Op Amp  
Data Sheet  
AD841  
FEATURES  
CONNECTION DIAGRAMS  
AC performance  
NC  
NC  
1
2
3
4
5
6
7
14 NC  
AD841  
Unity-gain bandwidth: 40 MHz  
Fast settling time: 110 ns to 0.01%  
Slew rate: 300 V/µs  
Full power bandwidth: 4.7 MHz for 20 V p-p into a 500 Ω load  
DC performance  
13 NC  
BALANCE  
–INPUT  
+INPUT  
12 BALANCE  
11 +V  
S
10 OUTPUT  
–V  
9
8
NC  
NC  
S
TOP VIEW  
(Not to Scale)  
NC  
Input offset voltage: 1 mV maximum  
Input voltage noise: 15 nV/√Hz typical  
Open-loop gain: 45 V/mV into a 1 kΩ load  
Output current: 50 mA minimum  
Supply current: 12 mA maximum  
NOTES  
1. NC = NO CONNECT.  
Figure 1. PDIP (N-14) Package and CERDIP (Q-14) Package  
APPLICATIONS  
High speed signal conditioning  
Video and pulse amplifiers  
Data acquisition systems  
Line drivers  
Active filters  
Available in 14-pin plastic PDIP, 14-pin hermetic CERDIP, and  
20-pin LCC packages  
Chips and MIL-STD-883B parts available  
3
2
1
20 19  
18  
17  
16  
15  
14  
4
5
6
7
8
NC  
+V  
NC  
–INPUT  
NC  
S
NC  
+INPUT  
NC  
OUTPUT  
NC  
AD841  
9
10 11 12 13  
NOTES  
1. NC = NO CONNECT.  
Figure 2. LCC (E-20-1) Package  
GENERAL DESCRIPTION  
The AD841 is a member of the Analog Devices, Inc., family of  
wide bandwidth operational amplifiers. This high speed/high  
precision family includes the AD842, which is stable at a gain of  
two or greater and has 100 mA minimum output current drive.  
These devices are fabricated using Analog Devices’ junction  
isolated complementary bipolar (CB) process. This process  
permits a combination of dc precision and wideband ac perfor-  
mance previously unobtainable in a monolithic op amp. In  
addition to its 40 MHz unity-gain bandwidth product, the  
AD841 offers extremely fast settling characteristics, typically  
settling to within 0.01% of final value in 110 ns for a 10 V step.  
use in high frequency signal conditioning circuits and wide  
bandwidth active filters. The extremely rapid settling time of  
the AD841 makes it the preferred choice for data acquisition  
applications that require 12-bit accuracy. The AD841 is also  
appropriate for other applications such as high speed DAC and  
ADC buffer amplifiers and other wide bandwidth circuitry.  
PRODUCT HIGHLIGHTS  
1. The high slew rate and fast settling time of the AD841  
make it ideal for DAC and ADC buffers, and all types of  
video instrumentation circuitry.  
2. The AD841 is a precision amplifier. It offers accuracy to  
0.01% or better and wide bandwidth performance  
previously available only in hybrids.  
3. The AD841s thermally balanced layout and the speed of  
the CB process allow the AD841 to settle to 0.01% in 110 ns  
without the long tails that occur with other fast op amps.  
4. Laser wafer trimming reduces the input offset voltage to  
1 mV maximum on the K grade, thus eliminating the need  
for external offset nulling in many applications. Offset null  
pins are provided for additional versatility.  
Unlike many high frequency amplifiers, the AD841 requires no  
external compensation. It remains stable over its full operating  
temperature range. It also offers a low quiescent current of  
12 mA maximum, a minimum output current drive capability  
of 50 mA, a low input voltage noise of 15 nV/√Hz, and low  
input offset voltage of 1 mV maximum.  
The 300 V/µs slew rate of the AD841, along with its 40 MHz  
gain bandwidth, ensures excellent performance in video and  
pulse amplifier applications. This amplifier is well suited for  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD841* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD841 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
AN-402: Replacing Output Clamping Op Amps with Input  
Clamping Amps  
DISCUSSIONS  
View all AD841 EngineerZone Discussions.  
AN-417: Fast Rail-to-Rail Operational Amplifiers Ease  
Design Constraints in Low Voltage High Speed Systems  
AN-581: Biasing and Decoupling Op Amps in Single  
Supply Applications  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Data Sheet  
AD841: Military Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AD841: Wideband, Unity-Gain Stable, Fast Settling Op  
Amp Data Sheet  
TOOLS AND SIMULATIONS  
Power Dissipation vs Die Temp  
VRMS/dBm/dBu/dBV calculators  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Tutorials  
MT-032: Ideal Voltage Feedback (VFB) Op Amp  
MT-033: Voltage Feedback Op Amp Gain and Bandwidth  
MT-047: Op Amp Noise  
MT-048: Op Amp Noise Relationships: 1/f Noise, RMS  
Noise, and Equivalent Noise Bandwidth  
MT-049: Op Amp Total Output Noise Calculations for  
Single-Pole System  
MT-050: Op Amp Total Output Noise Calculations for  
Second-Order System  
MT-052: Op Amp Noise Figure: Don't Be Misled  
MT-053: Op Amp Distortion: HD, THD, THD + N, IMD,  
SFDR, MTPR  
MT-056: High Speed Voltage Feedback Op Amps  
MT-058: Effects of Feedback Capacitance on VFB and CFB  
Op Amps  
MT-059: Compensating for the Effects of Input  
Capacitance on VFB and CFB Op Amps Used in Current-to-  
Voltage Converters  
MT-060: Choosing Between Voltage Feedback and  
Current Feedback Op Amps  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD841  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 10  
Offset Nulling ............................................................................. 10  
Input Considerations ................................................................. 10  
AD841 Settling Time ................................................................. 10  
Grounding and Bypassing......................................................... 11  
Capacitive Load Driving Ability............................................... 11  
Terminated Line Driver............................................................. 12  
Overdrive Recovery ................................................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Characteristics .............................................................. 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
2/13—Rev. B to Rev. C  
Removed TO-8 Package.....................................................Universal  
Changed Input Voltage Noise 13 nV/√Hz to 15 nV/√Hz and  
Changes to General Description Section ...................................... 1  
Changes to Endnote 1, Table 1........................................................ 4  
Added Operating Temperature Range, Table 2 ............................ 5  
Deleted Using a Heat Sink Section............................................... 11  
Updated Outline Dimensions....................................................... 13  
Added Ordering Guide .................................................................. 14  
11/88—Rev. A to Rev. B  
Rev. C | Page 2 of 16  
 
Data Sheet  
AD841  
SPECIFICATIONS  
TA = 25°C and 15 V dc, unless otherwise noted. All minimum and maximum specifications are guaranteed.  
Table 1.  
AD841J  
Min Typ  
AD841K  
Max Min Typ  
AD841S1  
Max Min Typ  
Test Conditions/  
Comments  
Parameter  
Max Unit  
INPUT OFFSET VOLTAGE2  
0.8  
2.0  
5.0  
0.5  
1.0  
3.3  
0.5  
5.5  
35  
2.0  
mV  
mV  
µV/°C  
µA  
TMIN − TMAX  
Offset Drift  
35  
35  
INPUT BIAS CURRENT  
3.5  
8
3.5  
5
3.5  
8
TMIN – TMAX  
10  
0.4  
0.5  
6
0.2  
0.3  
12  
0.4  
0.6  
µA  
µA  
µA  
Input Offset Current  
0.1  
0.1  
0.1  
TMIN − TMAX  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Differential mode  
200  
2
200  
2
200  
2
kΩ  
pF  
INPUT VOLTAGE RANGE  
Common Mode  
10 12  
10 12  
10 12  
V
Common-Mode Rejection  
VCM = 10 V  
TMIN – TMAX  
86  
80  
100  
103 109  
100  
15  
86  
80  
110  
dB  
dB  
INPUT VOLTAGE NOISE  
Wideband Noise  
f = 1 kHz  
15  
47  
15  
47  
nV/√Hz  
µV rms  
10 Hz to 10 MHz  
VOUT = 10 V  
RLOAD ≥ 500 Ω  
TMIN − TMAX  
47  
OPEN-LOOP GAIN  
25  
12  
45  
25  
20  
45  
25  
12  
45  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage  
RLOAD ≥ 500 Ω  
TMIN − TMAX  
10  
10  
10  
V
Current  
VOUT = 10 V  
Open loop  
50  
50  
50  
mA  
Ω
OUTPUT RESISTANCE  
FREQUENCY RESPONSE  
Unity Gain Bandwidth  
Full Power Bandwidth3  
5
5
5
VOUT = 90 mV p-p  
VOUT = 20 V p-p  
RLOAD ≥ 500 Ω  
AV = −1  
AV = −1  
AV = −1  
40  
40  
40  
MHz  
3.1  
4.7  
10  
10  
3.1  
4.7  
10  
10  
3.1  
4.7  
10  
10  
MHz  
ns  
%
Rise Time4  
Overshoot4  
Slew Rate4  
200 300  
200 300  
200 300  
V/µs  
Settling Time 10 V Step  
AV = −1  
to 0.1%  
90  
00  
90  
ns  
to 0.01%  
110  
200  
700  
0.03  
0.022  
110  
200  
700  
0.03  
0.022  
110  
200  
700  
0.03  
0.022  
ns  
OVERDRIVE RECOVERY  
−Overdrive  
+Overdrive  
f = 4.4 MHz  
f = 4.4 MHz  
ns  
ns  
DIFFERENTIAL GAIN  
Differential Phase  
POWER SUPPLY  
%
Degree  
Rated Performance  
Operating Range  
Quiescent Current  
15  
15  
15  
V
V
mA  
mA  
dB  
dB  
5
18  
12  
14  
5
18  
12  
14  
5
18  
12  
16  
11  
11  
11  
TMIN − TMAX  
Power Supply Rejection Ratio VS = 5 V to 18 V  
TMIN − TMAX  
86  
80  
100  
90  
86  
100  
86  
80  
100  
Rev. C | Page 3 of 16  
 
AD841  
Data Sheet  
AD841J  
Min Typ  
AD841K  
Max Min Typ  
AD841S1  
Max Min Typ  
Test Conditions/  
Comments  
Parameter  
Max Unit  
TEMPERATURE RANGE  
Rated Performance5  
0
70  
0
70  
−55  
+125 °C  
1 Standard military drawing available: 5962-89641012A – (SE/883B).  
2 Input offset voltage specifications are guaranteed after 5 minutes at TA = 25°C.  
3 Full power bandwidth = slew rate/2 π VPEAK  
4 Refer to Figure 22 to Figure 24.  
.
5 S grade TMIN – TMAX specifications are tested with automatic test equipment at TA = −55°C and TA = +125°C.  
Rev. C | Page 4 of 16  
 
 
 
 
Data Sheet  
AD841  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL CHARACTERISTICS  
Table 3.  
Parameter  
Rating  
Supply Voltage (VS)  
Internal Power Dissipation1  
PDIP (N-14)  
CERDIP (Q-14)  
Input Voltage  
1ꢀ V  
Package Type  
14-Lead CERDIP  
14-Lead PDIP  
20-Lead LCC  
θJC  
35  
30  
35  
θJA  
θSA  
Unit  
°C/W  
°C/W  
°C/W  
110  
100  
150  
3ꢀ  
1.5 W  
1.3 W  
VS  
Differential Input Voltage  
Storage Temperature Range  
Q-14  
6 V  
ESD CAUTION  
−65°C to +150°C  
−65°C to +125°C  
N-14  
Operating Temperature Range  
ADꢀ41J/ADꢀ41K  
ADꢀ41S  
Junction Temperature  
Lead Temperature Range (Soldering 60 sec)  
0°C to 70°C  
−55°C to +125°C  
+175°C  
+300°C  
1 Maximum internal power dissipation is specified so that TJ does not exceed  
175°C at an ambient temperature of 25°C.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
0.099  
(2.5)  
BALANCE  
+V  
S
BALANCE  
–V  
IN  
0.067  
(1.7)  
OUTPUT  
+V  
–V  
S
IN  
SUBSTRATE CONNECTED TO +V  
S
Figure 3. Metalization Photograph  
Contact factory for latest dimensions  
Dimensions shown in inches and (millimeters)  
Rev. C | Page 5 of 16  
 
 
 
AD841  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C and VS = 15 V, unless otherwise noted.  
20  
12  
10  
8
15  
V
IN  
10  
5
6
0
4
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
Figure 4. Input Common-Mode Range vs. Supply Voltage  
Figure 7. Quiescent Current vs. Supply Voltage  
20  
15  
10  
5
6
5
4
3
V
OUT  
0
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 5. Output Voltage Swing vs. Supply Voltage  
Figure 8. Input Bias Current vs. Temperature  
30  
25  
20  
15  
10  
5
100  
10  
±15V SUPPLIES  
1
0.1  
0.01  
0
10  
100  
1k  
10k  
10k  
100k  
1M  
10M  
100M  
LOAD RESISTANCE (Ω)  
FREQUENCY (Hz)  
Figure 6. Output Voltage Swing vs. Load Resistance  
Figure 9. Output Impedance vs. Frequency  
Rev. C | Page 6 of 16  
 
Data Sheet  
AD841  
15  
14  
13  
12  
11  
10  
9
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
8
500Ω LOAD  
1k  
7
–20  
100  
–20  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 10. Quiescent Current vs. Temperature  
Figure 13. Open-Loop Gain and Phase Margin vs. Frequency  
140  
130  
120  
110  
100  
90  
98  
96  
94  
92  
90  
+OUTPUT CURRENT  
–OUTPUT CURRENT  
80  
70  
500Ω LOAD  
60  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0
5
10  
15  
20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
Figure 11. Short-Circuit Current Limit vs. Temperature  
Figure 14. Open-Loop Gain vs. Supply Voltage  
50  
45  
40  
35  
30  
120  
100  
80  
60  
40  
20  
0
+SUPPLY  
–SUPPLY  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 12. Gain Bandwidth Product vs. Temperature  
Figure 15. Power Supply Rejection vs. Frequency  
Rev. C | Page 7 of 16  
AD841  
Data Sheet  
120  
V
–70  
–80  
3V rms  
= 1kΩ  
= ±15V  
= 1V p-p  
= 25°C  
S
R
V
L
CM  
T
A
100  
80  
60  
40  
20  
–90  
SECOND HARMONIC  
–100  
–110  
–120  
–130  
THIRD HARMONIC  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
FREQUENCY (Hz)  
Figure 16. Common-Mode Rejection vs. Frequency  
Figure 19. Harmonic Distortion vs. Frequency  
30  
25  
20  
15  
10  
5
500  
450  
400  
350  
300  
250  
200  
V
R
= ±15V  
= 1kΩ  
= 25°C  
S
L
T
A
0
1M  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. Large Signal Frequency Response  
Figure 20. Slew Rate vs. Temperature  
10  
30  
25  
20  
15  
10  
5
8
6
4
2
0.1%  
0.1%  
0.01%  
0.01%  
0
–2  
–4  
–6  
–8  
–10  
30  
40  
50  
60  
70  
80  
90  
100  
110  
10  
100  
1k  
10k  
100k  
1M  
10M  
SETTLING TIME (ns)  
FREQUENCY (Hz)  
Figure 18. Output Swing and Error vs. Settling Time  
Figure 21. Input Voltage Noise Spectral Density  
Rev. C | Page 8 of 16  
Data Sheet  
AD841  
R
1kΩ  
R
B
120Ω  
F
0.1µF  
2.2µF  
0.1µF  
2.2µF  
+V  
+V  
S
S
HP3314A  
FUNCTION  
GENERATOR  
OR  
R
1kΩ  
IN  
4
4
11  
11  
EQUIVALENT  
49.9Ω  
10  
0.1µF  
2.2µF  
10  
0.1µF  
2.2µF  
V
V
HP3314A  
FUNCTION  
GENERATOR  
OR  
AD841  
OUT  
AD841  
OUT  
R
100Ω  
IN  
499Ω  
499Ω  
V
IN  
6
6
5
5
+
+
EQUIVALENT  
R
499Ω  
B
49.9Ω  
–V  
–V  
S
S
Figure 22. Inverting Amplifier Configuration (PDIP Pinout)  
Figure 25. Unity-Gain Buffer Amplifier Configuration (PDIP Pinout)  
2V  
50ns  
2V  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
Figure 23. Inverter Large Signal Pulse Response  
Figure 26. Buffer Large Signal Pulse Response  
50mV  
50ns  
50mV  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
Figure 24. Inverter Small Signal Pulse Response  
Figure 27. Buffer Small Signal Pulse Response  
Rev. C | Page 9 of 16  
 
 
 
AD841  
Data Sheet  
THEORY OF OPERATION  
OFFSET NULLING  
10mV  
5V  
20ns  
The input offset voltage of the AD841 is very low for a high  
speed op amp, but if additional nulling is required, the circuit  
shown in Figure 28 can be used.  
100  
90  
+V  
S
OUTPUT ERROR:  
0.02%/DIV  
100Ω  
100Ω  
3
4
5
12  
10  
11  
OUTPUT:  
5V/DIV  
0%  
10  
OUTPUT  
INPUT  
AD841  
R
L
6
0.1µF  
2.2µF  
+
Figure 29. AD841 0.01% Settling Time  
–V  
S
Figure 28. Offset Nulling (PDIP Pinout)  
TEK  
7A13  
ERROR  
AMP  
(×10)  
INPUT CONSIDERATIONS  
TEK  
An input resistor (RIN in Figure 25) is recommended in circuits  
where the input to the AD841 is subjected to transient or  
continuous overload voltages exceeding the 6 V maximum  
differential limit. This resistor provides protection for the input  
transistors by limiting the maximum current that can be forced  
into the input.  
7A18  
HP6263  
1kΩ  
1kΩ  
1kΩ  
1kΩ  
DDD5109  
FLAT-TOP  
PULSE  
0.1µF  
2.2µF  
+15V  
11  
GENERATOR  
50Ω  
For high performance circuits it is recommended that a resistor  
(RB in Figure 22 and Figure 25) be used to reduce bias current  
errors by matching the impedance at each input. The output  
voltage error caused by the offset current is more than an order  
of magnitude less than the error present if the bias current error  
is not removed.  
4
FET PROBE  
TEK P6201  
10  
0.1µF  
2.2µF  
AD841  
499Ω  
6
5
+
499Ω  
AD841 SETTLING TIME  
–15V  
Figure 29 and Figure 31 show the settling performance of the  
AD841 in the test circuit shown in Figure 30.  
Figure 30. Settling Time Test Circuit  
Settling time is defined as the interval of time from the  
application of an ideal step function input until the closed-loop  
amplifier output has entered and remains within a specified  
error band.  
Measurement of the 0.01% settling in 110 ns was accomplished  
by amplifying the error signal from a false summing junction  
with a very high speed proprietary hybrid error amplifier  
specially designed to enable testing of small settling errors.  
The device under test was driving a 500 Ω load. The input to  
the error amp is clamped to avoid possible problems associated  
with the overdrive recovery of the oscilloscope input amplifier.  
The error amp gains the error from the false summing junction  
by 10, and it contains a gain vernier to fine trim the gain.  
This definition encompasses the major components, which  
comprise settling time. They include  
Propagation delay through the amplifier  
Slewing time to approach the final output value  
The time of recovery from the overload associated  
with slewing  
Linear settling to within the specified error band  
Expressed in these terms, the measurement of settling time  
is obviously a challenge and needs to be done accurately to  
assure the user that the amplifier is worth consideration for  
the application.  
Rev. C | Page 10 of 16  
 
 
 
 
 
 
 
Data Sheet  
AD841  
Figure 31 shows the long-term stability of the settling charac-  
teristics of the AD841 output after a 10 V step. There is no  
evidence of settling tails after the initial transient recovery  
time. The use of a junction isolated process, together with  
careful layout, avoids these problems by minimizing the effects  
of transistor isolation capacitance discharge and thermally  
induced shifts in circuit operating points. These problems  
do not occur even under high output current conditions.  
CAPACITIVE LOAD DRIVING ABILITY  
Like all wideband amplifiers, the AD841 is sensitive to capaci-  
tive loading. The AD841 is designed to drive capacitive loads  
of up to 20 pF without degradation of its rated performance.  
Capacitive loads of greater than 20 pF will decrease the dynamic  
performance of the part although instability should not occur  
unless the load exceeds 100 pF (for a unity-gain follower). A  
resistor in series with the output can be used to decouple larger  
capacitive loads.  
Figure 32 shows a typical configuration for driving a large  
capacitive load. The 51 Ω output resistor effectively isolates the  
high frequency feedback from the load and stabilizes the circuit.  
Low frequency feedback is returned to the amplifier summing  
junction via the low-pass filter formed by the 51 Ω resistor and  
the load capacitance, CL.  
OUTPUT ERROR:  
100  
0.02%/DIV  
90  
OUTPUT:  
5V/DIV  
1kΩ  
10  
15pF  
0.1µF  
2.2µF  
+V  
S
0%  
500ns  
1kΩ  
4
INPUT  
11  
Figure 31. AD841 Settling Demonstrating No Settling Tails  
51Ω  
V
L
OUT  
10  
0.1µF  
2.2µF  
AD841  
C
R
L
GROUNDING AND BYPASSING  
6
5
+
In designing practical circuits with the AD841, the user must  
remember that whenever high frequencies are involved, some  
special precautions are in order. Circuits must be built with  
short interconnect leads. Large ground planes should be used  
whenever possible to provide a low resistance, low inductance  
circuit path, as well as minimizing the effects of high frequency  
coupling. Avoid sockets because the increased interlead  
capacitance can degrade bandwidth.  
499Ω  
–V  
S
Figure 32. Circuit for Driving a Large Capacitive Load  
Feedback resistors should be of low enough value to assure that  
the time constant formed with the circuit capacitances will not  
limit the amplifier performance. Resistor values of less than  
5 kΩ are recommended. If a larger resistor must be used, a  
small (<10 pF) feedback capacitor in parallel with the feed-  
back resistor, RF, may be used to compensate for these stray  
capacitances and optimize the dynamic performance of the  
amplifier in the particular application.  
Bypass power supply leads to ground as close as possible to  
the amplifier pins. A 2.2 µF capacitor in parallel with a 0.1 µF  
ceramic disk capacitor is recommended.  
Rev. C | Page 11 of 16  
 
 
 
 
AD841  
Data Sheet  
TERMINATED LINE DRIVER  
OVERDRIVE RECOVERY  
The AD841 functions very well as a high speed line driver of  
either terminated or unterminated cables. Figure 33 shows the  
AD841 driving a doubly terminated cable in a follower config-  
uration. The AD841 maintains a typical slew rate of 300 V/µs,  
which means it can drive a 10 V, 4.7 MHz signal or a 3 V,  
15.9 MHz signal.  
Figure 34 shows the overdrive recovery capability of the AD841.  
Typical recovery time is 200 ns from negative overdrive and  
700 ns from positive overdrive.  
10V  
200ns  
OVERDRIVEN  
OUTPUT: 10V/DIV  
100  
90  
The termination resistor, RT, (when equal to the characteristic  
impedance of the cable) minimizes reflections from the far end  
of the cable. A back-termination resistor, RBT, (also equal to the  
characteristic impedance of the cable) may be placed between  
the AD841 output and the cable to damp any stray signals  
caused by a mismatch between RT and the cable’s characteristic  
impedance. This results in a cleaner signal, but because half the  
output voltage is dropped across RBT, the op amp must supply  
double the output signal required if there is no back termina-  
tion. Therefore, the full power bandwidth is cut in half.  
INPUT SQUARE  
WAVE: 1V/DIV  
10  
0%  
1V  
Figure 34. Overdrive Recovery  
If termination is not used, cables appear as capacitive loads. If  
this capacitive load is large, it should be decoupled from the  
AD841 by a resistor in series with the output (see Figure 32).  
0.1µF  
+V  
S
2.2µF  
R
B
0.1µF  
2.2µF  
+V  
S
4
11  
OUTPUT  
10  
0.1µF  
2.2µF  
AD841  
HP3314A  
4
5
PULSE GENERATOR  
OR EQUIVALENT  
1kΩ  
11  
50Ω OR  
6
75Ω CABLE  
5
+
10  
0.1µF  
2.2µF  
V
OUT  
1µs ± 1V SQUARE  
WAVE INPUT  
AD841  
R
BT  
R
T
(OPTIONAL)  
100Ω  
50Ω  
6
V
+
IN  
–V  
S
TERMINATION  
RESISTOR  
FOR INPUT  
SIGNAL  
Figure 35. Overdrive Recovery Test Circuit  
–V  
S
R
= R = CABLE CHARACTERISTIC IMPEDANCE  
BT  
T
Figure 33. Line Driver Configuration  
Rev. C | Page 12 of 16  
 
 
 
 
Data Sheet  
AD841  
OUTLINE DIMENSIONS  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 36. 14-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-14)  
Dimensions shown in inches and (millimeters)  
0.098 (2.49) MAX  
8
0.005 (0.13) MIN  
14  
0.310 (7.87)  
0.220 (5.59)  
1
7
PIN 1  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
Dimensions shown in inches and (millimeters)  
Rev. C | Page 13 of 16  
 
AD841  
Data Sheet  
0.200 (5.08)  
REF  
0.075 (1.91)  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.075 (1.90)  
0.015 (0.38)  
MIN  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 38. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD841JNZ  
0°C to +70°C  
0°C to +70°C  
14-Lead Plastic Dual In-Line Package [PDIP]  
14-Lead Plastic Dual In-Line Package [PDIP]  
Die  
N-14  
N-14  
AD841KNZ  
AD841JCHIPS  
AD841SCHIPS  
AD841SE  
AD841SE/883B  
AD841SQ  
Die  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
20-Terminal Ceramic Leadless Chip Carrier [LCC]  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
E-20-1  
E-20-1  
Q-14  
AD841SQ/883B  
Q-14  
1 Z = RoHS Compliant Part.  
Rev. C | Page 14 of 16  
 
Data Sheet  
NOTES  
AD841  
Rev. C | Page 15 of 16  
AD841  
NOTES  
Data Sheet  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11340-0-2/13(C)  
Rev. C | Page 16 of 16  

相关型号:

AD842

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842*

Wideband. High Output Current. Fast Settling Op Amp
ETC

AD8420

Low Noise, Low Gain Drift, G = 2000
ADI

AD8420ARMZ

Wide Supply Range, Micropower,
ADI

AD8420ARMZ-R7

Wide Supply Range, Micropower,
ADI

AD8420ARMZ-RL

Wide Supply Range, Micropower,
ADI

AD8420BRMZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420BRMZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420BRMZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420_12

Wide Supply Range, Micropower,
ADI

AD8421

3 nV/√Hz, Low Power
ADI

AD8421-KGD-WP

3 nV /&#8730;Hz, Low Power Instrumentation Amplifier
ADI