AD9575ARUZPEC [ADI]

Network Clock Generator, Two Outputs; 网络时钟发生器,两路输出
AD9575ARUZPEC
型号: AD9575ARUZPEC
厂家: ADI    ADI
描述:

Network Clock Generator, Two Outputs
网络时钟发生器,两路输出

晶体 时钟发生器 微控制器和处理器 外围集成电路 光电二极管
文件: 总16页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Network Clock Generator, Two Outputs  
AD9575  
FEATURES  
GENERAL DESCRIPTION  
Fully integrated VCO/PLL core  
0.39 ps rms jitter from 12 kHz to 20 MHz at 156.25 MHz  
The AD9575 provides a highly integrated, dual output clock  
generator function including an on-chip PLL core that is  
0.15 ps rms jitter from 1.875 MHz to 20 MHz at 156.25 MHz  
0.40 ps rms jitter from 12 kHz to 20 MHz at 106.25 MHz  
0.15 ps rms jitter from 637 kHz to 10 MHz at 106.25 MHz  
Input crystal frequency of 19.44 MHz, 25 MHz, or  
25.78125 MHz  
optimized for network clocking. The integer-N PLL design is  
based on the Analog Devices, Inc., proven portfolio of high  
performance, low jitter frequency synthesizers to maximize line  
card performance. Other applications with demanding phase  
noise and jitter requirements also benefit from this part.  
Pin selectable divide ratios for 33.33 MHz, 62.5 MHz,  
100 MHz, 106.25 MHz, 125 MHz, 155.52 MHz, 156.25 MHz,  
159.375 MHz, 161.13 MHz, and 312.5 MHz outputs  
LVDS/LVPECL/LVCMOS output format  
The PLL section consists of a low noise phase frequency detector  
(PFD), a precision charge pump, a low phase noise voltage  
controlled oscillator (VCO), and pin selectable feedback and  
output dividers.  
Integrated loop filter  
By connecting an external crystal, popular network output  
frequencies can be locked to the input reference. The output  
divider and feedback divider ratios are pin programmable for the  
required output rates. No external loop filter components are  
required, thus conserving valuable design time and board space.  
Space saving 4.4 mm × 5.0 mm TSSOP  
100 mW power dissipation (LVDS output)  
120 mW power dissipation (LVPECL output)  
3.3 V operation  
APPLICATIONS  
The AD9575 is available in a 16-lead, 4.4 mm × 5.0 mm TSSOP  
and can be operated from a single 3.3 V supply. The temperature  
range is −40°C to +85°C.  
GbE/FC/SONET line cards, switches, and routers  
CPU/PCI-e applications  
Low jitter, low phase noise clock generation  
FUNCTIONAL BLOCK DIAGRAM  
VDD × 5  
LVDS OR  
LVPECL  
LDO  
VCO  
100MHz  
TO 312.5MHz  
XTAL  
OSC  
LVCMOS  
33.33MHz/  
62.5MHz/SEL1  
SEL  
AD9575  
GND × 5  
SEL0  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
AD9575  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................7  
Thermal Resistance.......................................................................7  
ESD Caution...................................................................................7  
Pin Configuration and Function Descriptions..............................8  
Typical Performance Characteristics ..............................................9  
Terminology.................................................................................... 11  
Theory of Operation ...................................................................... 12  
Phase Frequency Detector (PFD) and Charge Pump............ 12  
Power Supply............................................................................... 12  
LVPECL Clock Distribution..................................................... 12  
LVDS Clock Distribution.......................................................... 13  
LVCMOS Clock Distribution ................................................... 13  
Typical Applications................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
PLL Characteristics ...................................................................... 3  
LVDS Clock Output Jitter (Typ/Max)........................................ 4  
LVPECL Clock Output Jitter (Typ/Max)................................... 4  
Output Frequency Select ............................................................. 5  
Clock Outputs............................................................................... 5  
Timing Characteristics ................................................................ 5  
Power.............................................................................................. 6  
Crystal Oscillator.......................................................................... 6  
Timing Diagrams.......................................................................... 6  
REVISION HISTORY  
1/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD9575  
SPECIFICATIONS  
Typical (typ) value is given for VDD = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are  
given over full VDD and TA (−40°C to +85°C) variation.  
PLL CHARACTERISTICS  
Table 1.  
LVDS  
Typ  
LVCMOS  
Typ  
LVPECL  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
PHASE NOISE CHARACTERISTICS  
PLL Noise (100 MHz Output)  
At 1 kHz  
−123  
−128  
−131  
−150  
−156  
−156  
−122  
−129  
−131  
−151  
−158  
−158  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
At 10 MHz  
At 30 MHz  
PLL Noise (106.25 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
−121  
−127  
−130  
−149  
−156  
−156  
−121  
−128  
−130  
−150  
−158  
−159  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 10 MHz  
At 30 MHz  
PLL Noise (125 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
−120  
−126  
−128  
−148  
−155  
−156  
−120  
−127  
−129  
−150  
−157  
−158  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 10 MHz  
At 30 MHz  
PLL Noise (155.52 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
−118  
−123  
−125  
−147  
−155  
−156  
−118  
−123  
−125  
−149  
−157  
−157  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 10 MHz  
At 30 MHz  
PLL Noise (156.25 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
−118  
−124  
−126  
−146  
−155  
−155  
−118  
−125  
−127  
−148  
−157  
−157  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 10 MHz  
At 30 MHz  
PLL Noise (159.375 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
−118  
−124  
−126  
−146  
−155  
−155  
−118  
−125  
−126  
−147  
−156  
−157  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 10 MHz  
At 30 MHz  
Rev. 0 | Page 3 of 16  
 
 
AD9575  
LVDS  
Typ  
LVCMOS  
Typ  
LVPECL  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
PLL Noise (312.5 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
−112  
−119  
−120  
−140  
−152  
−153  
−112  
−119  
−120  
−142  
−154  
−155  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 10 MHz  
At 30 MHz  
PLL Noise (33.33 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
−131  
−138  
−140  
−155  
−155  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
At 5 MHz  
PLL Noise (62.5 MHz Output)  
At 1 kHz  
At 10 kHz  
At 100 kHz  
At 1 MHz  
At 5 MHz  
Spurious Content  
PLL Figure of Merit  
−126  
−133  
−134  
−150  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
−70  
−217  
−70  
−217  
dBc/Hz  
LVDS CLOCK OUTPUT JITTER (TYP/MAX)  
Typical (typ) value is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Jitter Integration Bandwidth  
100 MHz 106.25 MHz 125 MHz 155.52 MHz 156.25 MHz 159.375 MHz 312.5 MHz Unit  
12 kHz to 20 MHz  
1.875 MHz to 20 MHz  
0.637 MHz to 10 MHz  
0.38/0.50 0.40/0.54  
0.37/0.47 0.41/0.54  
0.39/0.51  
0.15/0.27  
0.38/0.51  
0.36/0.48  
ps rms  
ps rms  
ps rms  
0.15/0.21  
LVPECL CLOCK OUTPUT JITTER (TYP/MAX)  
Typical (typ) value is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Jitter Integration Bandwidth  
100 MHz 106.25 MHz 125 MHz 155.52 MHz 156.25 MHz 159.375 MHz 312.5 MHz Unit  
12 kHz to 20 MHz  
1.875 MHz to 20 MHz  
0.637 MHz to 10 MHz  
0.36/0.46 0.44/0.68  
0.36/0.45 0.40/0.52  
0.39/0.64  
0.19/0.54  
0.41/0.62  
0.38/0.49  
ps rms  
ps rms  
ps rms  
0.22/0.35  
Rev. 0 | Page 4 of 16  
 
 
AD9575  
OUTPUT FREQUENCY SELECT  
Typical (typ) value is given for VS = 3.3 V, TA = 25°C, unless otherwise noted  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit Test Conditions/Comments  
Select Pins (SEL0/SEL1)  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
0.83 × VS + 0.2  
V
V
μA  
μA  
0.33 × VS − 0.2  
190  
150  
Pull-down to GND, pull-up to VDD, pull-up to VDD via 15 kΩ,  
do not connect  
CLOCK OUTPUTS  
Typical (typ) value is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVDS CLOCK OUTPUT  
Output Frequency  
Differential Output Voltage (VOD)  
Delta VOD  
Output Offset Voltage (VOS)  
Delta VOS  
Short-Circuit Current (ISA, ISB)  
Duty Cycle  
Termination = 100 Ω differential; default  
312.5  
450  
25  
1.375  
25  
MHz  
mV  
mV  
V
mV  
mA  
%
250  
340  
Refer to Figure 2 for definition  
Output shorted to GND  
1.125  
1.25  
14  
50  
24  
55  
45  
LVPECL CLOCK OUTPUT  
Output Frequency  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
Differential Output Voltage (VOD)  
Duty Cycle  
312.5  
VS –1.05 VS – 0.8  
VS –1.75 VS – 1.7  
MHz  
V
V
mV  
%
VS – 1.5  
VS – 2.5  
430  
640  
50  
800  
55  
Refer to Figure 2 for definition  
45  
LVCMOS CLOCK OUTPUT  
Output Frequency  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
Duty Cycle  
62.5  
MHz  
V
V
VS − 0.1  
45  
0.1  
55  
50  
%
TIMING CHARACTERISTICS  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVDS  
Termination = 100 Ω differential; CLOAD = 0 pF  
20% to 80%, measured differentially  
80% to 20%, measured differentially  
Termination = 200 Ω differential; CLOAD = 0 pF  
20% to 80%, measured differentially  
80% to 20%, measured differentially  
Termination = 50 Ω to 0 V; CLOAD = 5 pF  
20% to 80%; CLOAD = 5 pF  
Output Rise Time, tRL  
Output Fall Time, tFL  
LVPECL  
Output Rise Time, tRL  
Output Fall Time, tFL  
LVCMOS  
150  
150  
200  
200  
300  
300  
ps  
ps  
180  
180  
250  
250  
300  
300  
ps  
ps  
Output Rise Time, tRC  
Output Fall Time, tFC  
0.50  
0.50  
0.70  
0.70  
1.10  
1.10  
ns  
ns  
80% to 20%; CLOAD = 5 pF  
Rev. 0 | Page 5 of 16  
 
 
 
AD9575  
POWER  
Table 7.  
Parameter  
POWER SUPPLY  
POWER DISSIPATION  
LVDS  
Min  
Typ  
Max  
Unit  
3.0  
3.3  
3.6  
V
100  
120  
130  
160  
mW  
mW  
LVPECL  
CRYSTAL OSCILLATOR  
Table 8.  
Parameter  
CRYSTAL SPECIFICATION  
Frequency  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Parallel resonant/fundamental mode  
19.44  
25  
25.78125 MHz  
ESR  
40  
Ω
Load Capacitance  
Phase Noise  
Stability  
18  
−138  
pF  
dBc/Hz  
ppm  
At 1 kHz offset  
−30  
+30  
TIMING DIAGRAMS  
DIFFERENTIAL  
SIGNAL  
SINGLE-ENDED  
80%  
80%  
50%  
LVCMOS  
5pF LOAD  
V
OD  
20%  
20%  
tRL  
tFL  
tRC  
tFC  
Figure 3. LVCMOS Timing  
Figure 2. LVDS or LVPECL, Timing and Differential Amplitude  
Rev. 0 | Page 6 of 16  
 
 
 
 
AD9575  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 9.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VDD, VDDA, VDDX, VDD_CMOS to GND  
XO1, XO2 to GND  
LVDS/LVPECL OUT, LVDS/LVPECL OUT,  
CMOS OUT/SEL1 to GND  
Junction Temperature1  
−0.3 V to +3.6 V  
−0.3 V to VS + 0.3 V  
−0.3 V to VS + 0.3 V  
Table 10. Thermal Resistance1  
Package Type  
θJA  
Unit  
16-Lead TSSOP  
90.3  
°C/W  
150°C  
1 Thermal impedance measurements were taken on a 4-layer board in still air  
in accordance with EIA/JESD51-7.  
Storage Temperature Range  
Lead Temperature (10 sec)  
−65°C to +150°C  
300°C  
1 See Table 10 for θJA  
.
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 16  
 
 
 
 
 
 
AD9575  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GNDA  
VDDA  
VDDX  
XO1  
SEL0  
GND  
LVDS/LVPECL OUT  
LVDS/LVPECL OUT  
VDD  
AD9575  
TOP VIEW  
XO2  
(Not to Scale)  
GNDX  
GNDA  
VDDA  
VDD_CMOS  
CMOS OUT/SEL1  
GND_CMOS  
Figure 4. Pin Configuration  
Table 11. Pin Function Descriptions  
Pin No.  
1, 7  
2, 8  
3
4, 5  
6
Mnemonic  
Description  
Analog Ground.  
Analog Power Supply (3.3 V).  
Crystal Oscillator Power Supply.  
External Crystal.  
GNDA  
VDDA  
VDDX  
XO1, XO2  
GNDX  
Crystal Oscillator Ground.  
9
10  
11  
12  
GND_CMOS  
CMOS OUT/SEL1  
VDD_CMOS  
VDD  
LVDS/LVPECL OUT  
LVDS/LVPECL OUT  
GND  
Ground for LVCMOS Output.  
LVCMOS Output/Output Frequency Select.  
Power Supply for LVCMOS Output.  
Power Supply for LVDS or LVPECL Output.  
Complementary LVDS or LVPECL Output.  
LVDS or LVPECL Output.  
13  
14  
15  
16  
Ground for LVDS or LVPECL Output.  
Output Frequency Select.  
SEL0  
Table 12. Output Frequency Selection1  
Mode  
XTAL  
SEL0  
SEL1  
X2  
GND  
GND  
X2  
VDD  
GND  
VDD  
LVDS/LVPECL Output  
100 MHz  
156.25 MHz  
161.132812 MHz  
125 MHz  
159.375 MHz  
312.5 MHz  
106.25 MHz  
155.52 MHz  
LVCMOS Output  
33.33 MHz  
High-Z  
High-Z  
62.5 MHz  
High-Z  
High-Z  
High-Z  
High-Z  
1
2
3
4
5
6
7
8
25 MHz  
25 MHz  
25.78125 MHz  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
19.44 MHz  
GND  
VDD  
VDD  
NC  
15 kΩ pull-up  
15 kΩ pull-up  
VDD  
VDD  
No connect  
1 The AD9575 must be power-cycled if the select pin voltages are altered.  
2 X = in Mode 1 and Mode 4, Pin 10 is configured as a LVCMOS output by forcing Pin16 to GND.  
Rev. 0 | Page 8 of 16  
 
 
 
AD9575  
TYPICAL PERFORMANCE CHARACTERISTICS  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. Phase Noise at LVPECL, 100 MHz Clock Output  
Figure 8. Phase Noise at LVPECL, 155.52 MHz Clock Output  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Phase Noise at LVPECL, 106.25 MHz Clock Output  
Figure 9. Phase Noise at LVPECL, 156.25 MHz Clock Output  
–110  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Phase Noise at LVPECL, 125 MHz Clock Output  
Figure 10. Phase Noise at LVPECL, 159.375 MHz Clock Output  
Rev. 0 | Page 9 of 16  
 
AD9575  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
M2  
–160  
1k  
M2 100mV 1ns  
M3 100mV 1ns  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 14. 312.5 MHz LVPECL Output  
Figure 11. Phase Noise at LVPECL, 312.5 MHz Clock Output  
140  
130  
120  
110  
100  
90  
LVDS POWER  
M2  
LVPECL POWER  
80  
M2 100mV 10ns  
M3 100mV 10ns  
1
2
3
4
5
6
7
8
MODE  
Figure 15. 62.5 MHz LVCMOS Output  
Figure 12. Typical Power Dissipation vs. Mode  
M2  
M2 50mV 2ns  
M3 50mV 2ns  
Figure 13. 156.25 MHz LVDS Output  
Rev. 0 | Page 10 of 16  
AD9575  
TERMINOLOGY  
Phase Jitter  
Time Jitter  
An ideal sine wave can be thought of as having a continuous  
and even progression of phase with time from 0° to 360° for  
each cycle. Actual signals, however, display a certain amount of  
variation from ideal phase progression over time. This phenome-  
non is called phase jitter. Although many causes can contribute  
to phase jitter, one major cause is random noise, which is  
characterized statistically as Gaussian (normal) in distribution.  
Phase noise is a frequency domain phenomenon. In the time  
domain, the same effect is exhibited as time jitter. When  
observing a sine wave, the time of successive zero crossings is  
seen to vary. In a square wave, the time jitter is seen as a  
displacement of the edges from their ideal (regular) times of  
occurrence. In both cases, the variations in timing from the  
ideal are the time jitter. Because these variations are random in  
nature, the time jitter is specified in units of seconds root mean  
square (rms) or 1 sigma of the Gaussian distribution.  
This phase jitter leads to a spreading out of the energy of the  
sine wave in the frequency domain, producing a continuous  
power spectrum. This power spectrum is usually reported as a  
series of values whose units are dBc/Hz at a given offset in fre-  
quency from the sine wave (carrier). The value is a ratio (expressed  
in dB) of the power contained within a 1 Hz bandwidth with  
respect to the power at the carrier frequency. For each measure-  
ment, the offset from the carrier frequency is also given.  
Additive Phase Noise  
Additive phase noise is the amount of phase noise that is  
attributable to the device or subsystem being measured. The  
phase noise of any external oscillators or clock sources has been  
subtracted. This makes it possible to predict the degree to which  
the device impacts the total system phase noise when used in  
conjunction with the various oscillators and clock sources, each  
of which contributes its own phase noise to the total. In many  
cases, the phase noise of one element dominates the system  
phase noise.  
Phase Noise  
It is meaningful to integrate the total power contained within  
some interval of offset frequencies (for example, 10 kHz to  
10 MHz). This is called the integrated phase noise over that  
frequency offset interval and can be readily related to the time  
jitter due to the phase noise within that offset frequency interval.  
Additive Time Jitter  
Additive time jitter is the amount of time jitter that is attributable  
to the device or subsystem being measured. The time jitter of  
any external oscillators or clock sources has been subtracted.  
This makes it possible to predict the degree to which the device  
impacts the total system time jitter when used in conjunction  
with the various oscillators and clock sources, each of which  
contributes its own time jitter to the total. In many cases, the  
time jitter of the external oscillators and clock sources  
dominates the system time jitter.  
Phase noise has a detrimental effect on error rate performance  
by increasing eye closure at the transmitter output and reducing  
the jitter tolerance/sensitivity of the receiver.  
Rev. 0 | Page 11 of 16  
 
AD9575  
THEORY OF OPERATION  
VDDA GNDA  
VDDA GNDA  
VDD_CMOS GND_CMOS  
LVCMOS  
1/k  
PHASE  
FREQUENCY  
DETECTOR  
XTAL  
OSC  
1/n  
CMOS OUT/SEL1  
SEL0  
LDO  
SEL  
LVDS/LVPECL OUT  
LVDS/LVPECL OUT  
CHARGE  
PUMP  
1/m  
2.5GHz TO  
2.55GHz VCO  
LVDS  
100MHz  
AD9575  
V
LDO  
Figure 16. Detailed Block Diagram  
POWER SUPPLY  
Figure 16 shows a block diagram of the AD9575. The chip  
features a PLL core, which is configured to generate the specific  
clock frequencies via pin programming. By appropriate connec-  
tion of the select pins, SEL0 and SEL1, as described in Table 12,  
the divide ratios of the feedback divider (n), LVDS output  
divider (m), and LVCMOS output divider (k) can be programmed.  
In Mode 1 and Mode 4, Pin 10 is configured as a LVCMOS  
output by forcing Pin 16 to GND. In conjunction with a band-  
select VCO that operates over the range of 2.488 GHz to 2.55 GHz,  
a wide range of popular network reference frequencies can  
be generated. This PLL is based on proven Analog Devices  
synthesizer technology, noted for its exceptional phase noise  
performance. The AD9575 is highly integrated and includes  
the loop filter, a regulator for supply noise immunity, all the  
necessary dividers, output buffers, and a crystal oscillator. A  
user need only supply an external crystal to implement a  
clocking solution, which does not require any processor  
intervention.  
The AD9575 requires a 3.3 V 10% power supply for VDD. The  
Specifications section gives the performance expected from the  
AD9575 with the power supply voltage within this range. The  
absolute maximum range of −0.3 V to +3.6 V, with respect to  
GND, must never be exceeded on the VDDX, VDD_CMOS,  
and VDDA pins.  
Good engineering practice should be followed in the layout of  
power supply traces and the ground plane of the PCB. The  
power supply should be bypassed on the PCB with adequate  
capacitance (>10 μF). The AD9575 should be bypassed with  
adequate capacitors (0.1 μF) at all power pins as close as  
possible to the part. The layout of the AD9575 evaluation board  
is a good example.  
LVPECL CLOCK DISTRIBUTION  
The LVPECL outputs (because they are open emitter) require a  
dc termination to bias the output transistors. The simplified  
equivalent circuit in Figure 19 shows the LVPECL output stage.  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
In most applications, a standard LVPECL far-end termination is  
recommended, as shown in Figure 18. The resistor network is  
designed to match the transmission line impedance (50 Ω) and  
the desired switching threshold (1.3 V).  
The PFD takes inputs from the reference clock and feedback  
divider to produce an output proportional to the phase and  
frequency difference between them. Figure 17 shows a  
simplified schematic.  
3.3V  
V
3.3V  
3.3V  
P
127  
127Ω  
50Ω  
CHARGE  
PUMP  
UP  
SINGLE-ENDED  
(NOT COUPLED)  
HIGH  
D1 Q1  
CLR1  
LVPECL  
LVPECL  
REFCLK  
50Ω  
83Ω  
83Ω  
V
= V – 1.3V  
DD  
T
CP  
Figure 18. LVPECL Far-End Termination  
CLR2  
D2 Q2  
DOWN  
HIGH  
FEEDBACK  
DIVIDER  
GND  
Figure 17. PFD Simplified Schematic and Timing (in Lock)  
Rev. 0 | Page 12 of 16  
 
 
 
 
 
 
 
AD9575  
3.3V  
3.3V  
mismatched impedances on the net. Series termination at the  
source is generally required to provide transmission line  
matching and/or to reduce current transients at the driver (see  
Figure 21). The value of the resistor is dependent on the board  
design and timing requirements (typically 10 Ω to 100 Ω is  
used). LVCMOS outputs are limited in terms of the capacitive  
load or trace length that they can drive. Typically, trace lengths  
less than 6 inches are recommended to preserve signal rise/fall  
times and preserve signal integrity.  
0.1nF  
DIFFERENTIAL  
(COUPLED)  
100  
LVPECL  
LVPECL  
0.1nF  
200Ω  
200Ω  
Figure 19. LVPECL with Parallel Transmission Line  
LVDS CLOCK DISTRIBUTION  
60.4  
The AD9575 is also available with low voltage differential  
signaling (LVDS) outputs. LVDS uses a current mode output  
stage with a factory programmed current level. The normal  
value (default) for this current is 3.5 mA, which yields a 350 mV  
output swing across a 100 Ω resistor. The LVDS outputs meet or  
exceed all ANSI/TIA/EIA-644 specifications.  
1.0 INCH  
10Ω  
CMOS  
MICROSTRIP  
5pF  
GND  
Figure 21. Series Termination of LVCMOS Output  
Termination at the far end of the PCB trace is a second option.  
The LVCMOS output of the AD9575 does not supply enough  
current to provide a full voltage swing with a low impedance  
resistive, far-end termination, as shown in Figure 22. The far-end  
termination network should match the PCB trace impedance  
and provide the desired switching point.  
A recommended termination circuit for the LVDS outputs is  
shown in Figure 20.  
50  
100Ω  
LVDS  
LVDS  
50Ω  
Figure 20. LVDS Output Termination  
The reduced signal swing may still meet receiver input  
requirements in some applications. This can be useful when  
driving long trace lengths on less critical nets.  
See the AN-586 Application Note on the Analog Devices  
website at www.analog.com for more information about LVDS.  
V
= 3.3V  
PULLUP  
LVCMOS CLOCK DISTRIBUTION  
The AD9575 provides a 33.33 or 62.5 MHz clock output, which  
is a dedicated LVCMOS level. Whenever single-ended LVCMOS  
clocking is used, some of the following general guidelines  
should be followed.  
100  
50Ω  
10Ω  
LVCMOS  
3pF  
100Ω  
Point-to-point nets should be designed such that a driver has  
one receiver only on the net, if possible. This allows for simple  
termination schemes and minimizes ringing due to possible  
Figure 22. LVCMOS Output with Far-End Termination  
TYPICAL APPLICATIONS  
AD9575  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
GNDA  
VDDA  
SEL0  
GND  
0.1µF  
1nF  
V
S
V
50  
VDDX LVDS/LVPECL OUT  
S
R
100Ω  
=
T
Cx  
Cx  
0.1µF  
50Ω  
XO1  
LVDS/LVPECL OUT  
VDD  
0.1µF  
V
XO2  
S
S
V
GNDX  
VDD_CMOS  
0.1µF  
GNDA CMOS OUT/SEL1  
VDDA  
GND CMOS  
0.1µF  
V
S
Figure 23. Typical Application (in LVDS configuration)  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
 
 
AD9575  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 24. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option  
AD9575ARUZLVD  
−40°C to +85°C  
16-Lead Thin Shrink Small Outline Package (TSSOP), 96 pcs per Tube,  
LVDS Output Format  
RU-16  
AD9575ARUZPEC  
−40°C to +85°C  
16-Lead Thin Shrink Small Outline Package (TSSOP), 96 pcs per Tube,  
LVPECL Output Format  
RU-16  
AD9575-EVALZ-LVD  
AD9575-EVALZ-PEC  
LVDS Outputs, Evaluation Board  
LVPECL Outputs, Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 14 of 16  
 
 
AD9575  
NOTES  
Rev. 0 | Page 15 of 16  
AD9575  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08462-0-1/10(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD9576

Dual PLL, Asynchronous Clock Generator
ADI

AD9576BCPZ

Dual PLL, Asynchronous Clock Generator
ADI

AD9576BCPZ-REEL7

Dual PLL, Asynchronous Clock Generator
ADI

AD9577

Clock Generator with Dual PLLs
ADI

AD9577-EVALZ

Clock Generator with Dual PLLs
ADI

AD9577BCPZ

Clock Generator with Dual PLLs
ADI

AD9577BCPZ-R7

Clock Generator with Dual PLLs
ADI

AD9577BCPZ-RL

Clock Generator with Dual PLLs
ADI

AD9578

Dual PLL Precision Synthesizer
ADI

AD9578BCPZ

Dual PLL Precision Synthesizer
ADI

AD9578BCPZ-REEL7

Dual PLL Precision Synthesizer
ADI

AD95S08KAC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC