AD9650BCPZRL7-65 [ADI]

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC); 16位, 25 MSPS / 65 MSPS / 80 MSPS / 105 MSPS , 1.8 V双通道模拟数字转换器( ADC )
AD9650BCPZRL7-65
型号: AD9650BCPZRL7-65
厂家: ADI    ADI
描述:

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
16位, 25 MSPS / 65 MSPS / 80 MSPS / 105 MSPS , 1.8 V双通道模拟数字转换器( ADC )

转换器 模数转换器
文件: 总44页 (文件大小:1640K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS,  
1.8 V Dual Analog-to-Digital Converter (ADC)  
AD9650  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
SDIO/ SCLK/  
1.8 V analog supply operation  
1.8 V CMOS or LVDS output supply  
SNR  
AVDD  
CSB  
DRVDD  
DCS  
DFS  
SPI  
AD9650  
82 dBFS at 30 MHz input and 105 MSPS data rate  
83 dBFS at 9.7 MHz input and 25 MSPS data rate  
SFDR  
90 dBc at 30 MHz input and 105 MSPS data rate  
95 dBc at 9.7 MHz input and 25 MSPS data rate  
Low power  
328 mW per channel at 105 MSPS  
119 mW per channel at 25 MSPS  
Integer 1-to-8 input clock divider  
IF sampling frequencies to 300 MHz  
Analog input range of 2.7 V p-p  
Optional on-chip dither  
ORA  
PROGRAMMING DATA  
CMOS/LVDS  
D15A (MSB)  
TO  
D0A (LSB)  
VIN+A  
VIN–A  
16  
ADC  
OUTPUT BUFFER  
CLK+  
CLK–  
DIVIDE 1  
TO 8  
VREF  
SENSE  
DCOA  
DCOB  
DUTY CYCLE  
STABILIZER  
DCO  
GENERATION  
REF  
SELECT  
VCM  
RBIAS  
VIN–B  
VIN+B  
ORB  
D15B (MSB)  
TO  
D0B (LSB)  
16  
CMOS/LVDS  
OUTPUT BUFFER  
ADC  
Integrated ADC sample-and-hold inputs  
Differential analog inputs with 500 MHz bandwidth  
ADC clock duty cycle stabilizer  
MULTICHIP  
SYNC  
AGND  
SYNC  
PDWN  
OEB  
NOTES  
APPLICATIONS  
1. PIN NAMES ARE FOR THE CMOS PIN CONFIGURATION ONLY;  
SEE FIGURE 7 FOR LVDS PIN NAMES.  
Industrial instrumentation  
Figure 1.  
X-Ray, MRI, and ultrasound equipment  
High speed pulse acquisition  
Chemical and spectrum analysis  
Direct conversion receivers  
Multimode digital receivers  
Flexible power-down options allow significant power savings,  
when desired.  
Programming for setup and control is accomplished using a 3-wire  
SPI-compatible serial interface.  
Smart antenna systems  
General-purpose software radios  
The AD9650 is available in a 64-lead LFCSP and is specified over  
the industrial temperature range of −40°C to +85°C.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9650 is a dual, 16-bit, 25 MSPS/65 MSPS/80 MSPS/  
105 MSPS analog-to-digital converter (ADC) designed for  
digitizing high frequency, wide dynamic range signals with  
input frequencies of up to 300 MHz.  
1. On-chip dither option for improved SFDR performance  
with low power analog input.  
2. Proprietary differential input that maintains excellent SNR  
performance for input frequencies up to 300 MHz.  
3. Operation from a single 1.8 V supply and a separate digital  
output driver supply accommodating 1.8 V CMOS or  
LVDS outputs.  
4. Standard serial port interface (SPI) that supports various  
product features and functions, such as data formatting  
(offset binary, twos complement, or gray coding), enabling  
the clock DCS, power-down, and test modes.  
The dual ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth, differential sample-and-hold  
analog input amplifiers, and shared integrated voltage reference,  
which eases design considerations. A duty cycle stabilizer is  
provided to compensate for variations in the ADC clock duty  
cycle, allowing the converters to maintain excellent performance.  
5. Pin compatible with the AD9268 and other dual families,  
AD9269, AD9251, AD9231, and AD9204. This allows a  
simple migration across resolutions and bandwidth.  
The ADC output data can be routed directly to the two external  
16-bit output ports or multiplexed on a single 16-bit bus. These  
outputs can be set to either 1.8 V CMOS or LVDS.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
AD9650  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ADC Architecture ...................................................................... 29  
Analog Input Considerations ................................................... 29  
Voltage Reference ....................................................................... 32  
Channel/Chip Synchronization................................................ 34  
Power Dissipation and Standby Mode .................................... 34  
Digital Outputs ........................................................................... 35  
Timing ......................................................................................... 35  
Built-In Self-Test (BIST) and Output Test .................................. 36  
Built-In Self-Test (BIST)............................................................ 36  
Output Test Modes..................................................................... 36  
Serial Port Interface (SPI).............................................................. 37  
Configuration Using the SPI..................................................... 37  
Hardware Interface..................................................................... 38  
Configuration Without the SPI ................................................ 38  
SPI Accessible Features.............................................................. 38  
Memory Map .................................................................................. 39  
Reading the Memory Map Register Table............................... 39  
Memory Map Register Table..................................................... 40  
Memory Map Register Descriptions........................................ 42  
Applications Information.............................................................. 43  
Design Guidelines ...................................................................... 43  
Outline Dimensions....................................................................... 44  
Ordering Guide .......................................................................... 44  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADC DC Specifications............................................................... 3  
ADC AC Specifications ................................................................. 4  
Digital Specifications ................................................................... 5  
Switching Specifications ................................................................ 7  
Timing Specifications .................................................................. 8  
Absolute Maximum Ratings.......................................................... 10  
Thermal Characteristics ................................................................ 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions ......................... 11  
Typical Performance Characteristics ........................................... 15  
AD9650-25 .................................................................................. 15  
AD9650-65 .................................................................................. 18  
AD9650-80 .................................................................................. 21  
AD9650-105................................................................................ 24  
Equivalent Circuits......................................................................... 28  
Theory of Operation ...................................................................... 29  
REVISION HISTORY  
7/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
 
AD9650  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.35 V internal reference, DCS disabled,  
unless otherwise noted.  
Table 1.  
AD9650BCPZ-25  
AD9650BCPZ-65  
AD9650BCPZ-80  
Max  
AD9650BCPZ-105  
Parameter  
Temp Min Typ Max Min Typ  
Max Min Typ  
Min Typ  
Max Unit  
RESOLUTION  
Full  
16  
16  
16  
16  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
Guaranteed  
Guaranteed  
0.2  
0.4  
0.5  
0.2  
0.4  
0.5  
0.4  
0.4  
0.70  
2.5  
0.4  
0.4  
0.7 % FSR  
2.5 % FSR  
+1.3 LSB  
LSB  
Gain Error  
Differential Nonlinearity (DNL)1  
2.5  
2.5  
−1  
+1.3 −1  
+1.3 −1  
+1.3  
−1  
0.7  
1.6  
0.7  
2.5  
0.7  
2.5  
0.7  
3
Integral Nonlinearity (INL)1  
3
5
6
6
LSB  
LSB  
MATCHING CHARACTERISTIC  
Offset Error  
Full  
Full  
0.1  
0.5  
0.4  
1.3  
0.1  
0.5  
0.4  
1.3  
0.1  
0.5  
0.4  
1.3  
0.1  
0.5  
0.4 % FSR  
1.3 % FSR  
Gain Error  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
2
2
2
2
ppm/°C  
ppm/°C  
Gain Error  
15  
15  
15  
15  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1.35 V  
Mode)  
Full  
Full  
7
14  
7
14  
7
14  
7
14  
mV  
mV  
Load Regulation at 1.0 mA  
INPUT REFERRED NOISE  
VREF = 1.35 V  
10  
10  
10  
10  
25°C  
1.5  
1.5  
1.5  
1.5  
LSB  
rms  
ANALOG INPUT  
Input Span, VREF = 1.35 V  
Input Capacitance2  
Input Common-Mode Voltage  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
Full  
Full  
Full  
Full  
2.7  
11  
0.9  
6
2.7  
11  
0.9  
6
2.7  
11  
0.9  
6
2.7  
11  
0.9  
6
V p-p  
pF  
V
kΩ  
AVDD  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
V
V
DRVDD  
1.9  
Supply Current  
IAVDD1  
Full  
Full  
Full  
125  
8
131  
202  
23  
209  
267  
29  
275  
332  
36  
340  
mA  
mA  
mA  
IDRVDD1 (1.8 V CMOS)  
IDRVDD1 (1.8 V LVDS)  
POWER CONSUMPTION  
DC Input  
Sine Wave Input1 (DRVDD =  
1.8 V CMOS Output Mode)  
Sine Wave Input1 (DRVDD =  
1.8 V LVDS Output Mode)  
Standby Power3  
72  
86  
90  
100  
Full  
Full  
237  
240  
254  
397  
405  
408  
522  
533  
537  
656  
663  
675  
2.5  
mW  
mW  
Full  
355  
520  
642  
778  
mW  
Full  
Full  
50  
50  
50  
50  
mW  
mW  
Power-Down Power  
0.25  
2.5  
0.25  
2.5  
0.25  
2.5  
0.25  
1 Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
3 Standby power is measured with a dc input and with the CLK+ and CLK− pins inactive (set to AVDD or AGND).  
Rev. 0 | Page 3 of 44  
 
 
 
AD9650  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.35 V internal reference, DCS disabled,  
unless otherwise noted.  
Table 2.  
AD9650BCPZ-25  
AD9650BCPZ-65  
AD9650BCPZ-80  
AD9650BCPZ-105  
Max Unit  
Parameter1  
Temp Min  
Typ  
Max  
Min Typ  
Max Min Typ Max Min Typ  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
25°C  
25°C  
Full  
83  
83  
82  
83  
82  
82.5  
82  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 30 MHz  
81.5  
81.8  
81.5  
81.5  
81.6  
80.7  
80.5  
fIN = 70 MHz  
fIN = 141 MHz2  
25°C  
25°C  
79.5  
81  
81  
80  
80  
80  
79.5  
SIGNAL-TO-NOISE-AND-DISTORTION  
(SINAD)  
fIN = 9.7 MHz  
fIN = 30 MHz  
25°C  
25°C  
Full  
82.2  
80  
82  
81.2  
82  
82  
82  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
80.4  
81  
80  
fIN = 70 MHz  
fIN = 141 MHz2  
25°C  
25°C  
78  
79.2  
78.5  
75.1  
78.8  
75.5  
75  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
25°C  
25°C  
25°C  
25°C  
13.5  
13.0  
12.7  
13.5  
13.2  
13.0  
12.9  
13.5  
13.2  
13.0  
13.0  
13.3  
13.2  
13.0  
12.3  
Bits  
Bits  
Bits  
Bits  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 141 MHz2  
WORST SECOND OR THIRD HARMONIC  
fIN =9.7 MHz  
25°C  
25°C  
Full  
−95  
−85  
−94  
−93  
−95.5  
−92  
−91  
−90  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 30 MHz  
−91.5  
−88  
−87  
−87  
fIN = 70 MHz  
25°C  
25°C  
−87  
−86  
−79  
−86  
−79  
−92  
−80  
fIN = 141 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
25°C  
25°C  
Full  
95  
85  
94  
95.5  
92  
91  
90  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 30 MHz  
93  
91.5  
88  
86  
79  
87  
87  
fIN = 70 MHz  
25°C  
25°C  
87  
86  
79  
92  
80  
fIN = 141 MHz  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 9.7 MHz  
25°C  
25°C  
Full  
−110  
−102  
−105  
−105  
−105  
−105  
−100  
−101  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 30 MHz  
−97  
−97  
−97  
−94  
fIN = 70 MHz  
fIN = 141 MHz  
25°C  
25°C  
−97  
−97  
−97  
−97  
−97  
−97  
−88  
TWO-TONE SFDR  
fIN = 7.2 MHz (−7 dBFS ), 8.4 MHz  
(−7 dBFS)  
25°C  
25°C  
25°C  
87  
84  
fIN = 25 MHz (−7 dBFS ), 30 MHz  
(−7 dBFS)  
90  
83  
87  
83  
87  
84  
dBc  
dBc  
fIN = 125 MHz (−7 dBFS ), 128 MHz  
(−7 dBFS)  
CROSSTALK3  
Full  
−105  
500  
−105  
500  
−105  
500  
−105  
500  
dBFS  
MHz  
ANALOG INPUT BANDWIDTH  
25°C  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Measurements made with a divide-by-4 clock rate to minimize the effects of clock jitter on the SNR performance.  
3 Crosstalk is measured with a 170 MHz tone at −1 dBFS on one channel and no input on the alternate channel.  
Rev. 0 | Page 4 of 44  
 
AD9650  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.35 V internal reference, and DCS enabled, unless  
otherwise noted.  
Table 3.  
Parameter  
Temperature Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
CMOS/LVDS/LVPECL  
0.9  
Full  
V
Full  
Full  
Full  
Full  
Full  
Full  
Full  
0.3  
AGND  
0.9  
−100  
−100  
3.6  
AVDD  
1.4  
V p-p  
V
V
+100  
+100  
μA  
μA  
pF  
kΩ  
9
10  
Input Resistance  
8
12  
SYNC INPUT  
Logic Compliance  
Internal Bias  
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
CMOS  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
AGND  
1.2  
AGND  
−100  
−100  
AVDD  
AVDD  
0.6  
V
V
V
+100  
+100  
μA  
μA  
pF  
kΩ  
1
16  
Input Resistance  
12  
20  
LOGIC INPUT (CSB)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−10  
40  
2.1  
0.6  
+10  
132  
V
V
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT (SCLK/DFS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−92  
−10  
2.1  
0.6  
−135  
+10  
V
V
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT/OUTPUT (SDIO/DCS)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−10  
38  
2.1  
0.6  
+10  
128  
V
V
μA  
μA  
kΩ  
pF  
26  
5
Input Capacitance  
LOGIC INPUTS (OEB, PDWN)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−90  
−10  
2.1  
0.6  
−134  
+10  
V
V
μA  
μA  
kΩ  
pF  
26  
5
Input Capacitance  
Rev. 0 | Page 5 of 44  
 
 
 
AD9650  
Parameter  
Temperature Min  
Typ  
Max  
Unit  
DIGITAL OUTPUTS  
CMOS Mode—DRVDD = 1.8 V  
High Level Output Voltage  
IOH = 50 μA  
Full  
Full  
1.79  
1.75  
V
V
IOH = 0.5 mA  
Low Level Output Voltage  
IOL = 1.6 mA  
IOL = 50 μA  
Full  
Full  
0.2  
0.05  
V
V
LVDS Mode—DRVDD = 1.8 V  
Differential Output Voltage (VOD), ANSI Mode  
Output Offset Voltage (VOS), ANSI Mode  
Differential Output Voltage (VOD), Reduced Swing Mode Full  
Output Offset Voltage (VOS), Reduced Swing Mode Full  
Full  
Full  
290  
1.15  
160  
1.15  
345  
1.25  
200  
1.25  
400  
1.35  
230  
1.35  
mV  
V
mV  
V
1 Pull up.  
2 Pull down.  
Rev. 0 | Page 6 of 44  
AD9650  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.35 V internal reference, and DCS enabled,  
unless otherwise noted.  
Table 4.  
AD9650BCPZ-25  
AD9650BCPZ-65  
AD9650BCPZ-80  
AD9650BCPZ-105  
Parameter  
Temp Min  
Typ  
Max Min  
Typ  
Max  
Min Typ  
Max Min Typ Max Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
DCS Enabled  
Full  
200  
520  
640  
640  
MHz  
Full  
Full  
Full  
20  
10  
40  
25  
25  
20  
65  
65  
20  
80  
80  
20  
10  
9.5  
105  
105  
MSPS  
MSPS  
ns  
DCS Disabled  
10  
10  
CLK Period—Divide-by-1  
15.4  
12.5  
Mode (tCLK  
)
CLK Pulse Width High (tCH)  
Divide-by-1 Mode, DCS  
Enabled  
Full  
Full  
Full  
12  
19  
0.8  
20  
20  
28  
21  
4.65  
7.33  
0.8  
7.70  
7.70  
10.75 3.75 6.25  
8.75  
6.55  
2.85 4.75  
6.65  
5.0  
ns  
ns  
ns  
Divide-by-1 Mode, DCS  
Disabled  
8.07  
5.95 6.25  
0.8  
4.5  
0.8  
4.75  
Divide-by-2 Mode  
Through Divide-by-8  
Mode  
Aperture Delay (tA)  
Full  
Full  
1.0  
1.0  
1.0  
1.0  
ns  
Aperture Uncertainty  
(Jitter, tJ)  
0.100  
0.090  
0.080  
0.075  
ps rms  
DATA OUTPUT PARAMETERS  
CMOS Mode  
Data Propagation Delay  
Full  
Full  
Full  
2.8  
3.5  
4.2  
2.8  
3.5  
4.2  
2.8  
3.5  
3.1  
4.2  
2.8  
3.5  
3.1  
4.2  
ns  
ns  
ns  
(tPD  
)
DCO Propagation Delay  
3.1  
3.1  
2
(tDCO  
)
DCO to Data Skew (tSKEW  
)
)
−0.6  
2.9  
−0.4  
0
−0.6  
2.9  
−0.4  
0
−0.6 −0.4  
0
−0.6 −0.4  
0
LVDS Mode  
Data Propagation Delay  
Full  
Full  
3.7  
3.9  
4.5  
3.7  
3.9  
4.5  
2.9  
3.7  
3.9  
4.5  
2.9  
3.7  
3.9  
4.5  
ns  
ns  
(tPD  
)
DCO Propagation Delay  
2
(tDCO  
)
DCO to Data Skew (tSKEW  
Full  
Full  
−0.1  
+0.2  
12  
+0.5 −0.1  
+0.2  
12  
+0.5  
−0.1 +0.2  
12  
+0.5 −0.1 +0.2  
12  
+0.5 ns  
Cycles  
CMOS Mode Pipeline Delay  
(Latency)  
LVDS Mode Pipeline Delay  
(Latency) Channel A/  
Channel B  
Full  
12/12.5  
12/12.5  
12/12.5  
12/12.5  
Cycles  
Wake-Up Time3  
Full  
Full  
500  
2
500  
2
500  
2
500  
2
μs  
Out-of-Range Recovery  
Time  
Cycles  
1 Conversion rate is the clock rate after the divider.  
2 Additional DCO delay can be added by writing to Bit 0 through Bit 4 in SPI Register 0x17 (see Table 17).  
3 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. 0 | Page 7 of 44  
 
 
AD9650  
TIMING SPECIFICATIONS  
Table 5.  
Unit  
Parameter  
Conditions  
Limit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK+ setup time  
SYNC to rising edge of CLK+ hold time  
0.3  
0.40  
ns typ  
ns typ  
SPI TIMING REQUIREMENTS1  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to the  
SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to the  
SCLK rising edge  
10  
ns min  
1 See Figure 93.  
Timing Diagrams  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
V
IN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
N – 12  
CH A/CH B DATA  
N – 13  
N – 11  
N – 10  
N – 9  
N – 8  
tPD  
Figure 2. CMOS Default Output Mode Data Output Timing  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
V
IN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
tPD  
CH A CH B CH A CH B CH A CH B CH A CH B CH A  
N – 12 N – 12 N – 11 N – 11 N – 10 N – 10 N – 9 N – 9 N – 8  
CH A/CH B DATA  
Figure 3. CMOS Interleaved Output Mode Data Output Timing  
Rev. 0 | Page 8 of 44  
 
 
 
 
AD9650  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
V
IN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
tPD  
CH A CH B CH A CH B CH A CH B CH A CH B CH A  
N – 12 N – 12 N – 11 N – 11 N – 10 N – 10 N – 9 N – 9 N – 8  
CH A/CH B DATA  
Figure 4. LVDS Mode Data Output Timing  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 5. SYNC Input Timing Requirements  
Rev. 0 | Page 9 of 44  
 
AD9650  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints and maximizes the  
thermal capability of the package.  
Parameter  
Electrical1  
Rating  
AVDD to AGND  
DRVDD to AGND  
VIN+A/VIN+B, VIN−A/VIN−B to AGND  
CLK+, CLK− to AGND  
SYNC to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
RBIAS to AGND  
CSB to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes reduces θJA.  
Table 7. Thermal Resistance  
Airflow  
Velocity (m/sec)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
θJC  
1.0  
θJB  
Unit  
°C/W  
°C/W  
°C/W  
SCLK/DFS to AGND  
SDIO/DCS to AGND  
OEB  
64-Lead LFCSP  
(CP-64-6)  
0
18.5  
16.1  
14.5  
1.0  
2.5  
9.2  
PDWN  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
D0A/D0B Through D15A/D15B to  
AGND  
DCOA/DCOB to AGND  
Environmental  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-STD 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
−0.3 V to DRVDD + 0.2 V  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−40°C to +85°C  
150°C  
ESD CAUTION  
Storage Temperature Range  
(Ambient)  
−65°C to +150°C  
1 The inputs and outputs are rated to the supply voltage (AVDD or DRVDD) +  
0.2 V but should not exceed 2.1 V.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 10 of 44  
 
 
AD9650  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
CLK+  
CLK–  
SYNC  
D0B  
D1B  
D2B  
D3B  
D4B  
D5B  
DRVDD 10  
D6B 11  
1
2
3
4
5
6
7
8
9
48 PDWN  
47 OEB  
46 CSB  
45 SCLK/DFS  
44 SDIO/DCS  
43 ORA  
42 D15A  
41 D14A  
40 D13A  
39 D12A  
38 D11A  
37 DRVDD  
36 D10A  
35 D9A  
AD9650  
PARALLEL CMOS  
TOP VIEW  
(Not to Scale)  
D7B 12  
D8B 13  
D9B 14  
D10B 15  
D11B 16  
34 D8A  
33 D7A  
NOTES  
1. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 6. LFCSP Parallel CMOS Pin Configuration (Top View)  
Table 8. Pin Function Descriptions (Parallel CMOS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
10, 19, 28, 37  
49, 50, 53, 54, 59,  
60, 63, 64  
DRVDD  
AVDD  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
0
AGND,  
Exposed Pad  
Ground  
The exposed thermal pad on the bottom of the package provides the analog  
ground for the part. This exposed pad must be connected to ground for proper  
operation.  
ADC Analog  
51  
52  
62  
61  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VREF  
Input  
Input  
Input  
Input  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
55  
Input/output Voltage Reference Input/Output.  
56  
58  
57  
1
SENSE  
RBIAS  
VCM  
CLK+  
CLK−  
Input  
Voltage Reference Mode Select. See Table 11 for details.  
Input/output External Reference Bias Resistor.  
Output  
Input  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
2
Input  
Digital Input  
3
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
25  
26  
27  
29  
30  
31  
32  
D0A  
D1A  
D2A  
D3A  
D4A  
D5A  
D6A  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A CMOS Output Data (LSB).  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Rev. 0 | Page 11 of 44  
 
AD9650  
Pin No.  
Mnemonic  
D7A  
Type  
Description  
33  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data (MSB).  
Channel A Overrange Output.  
Channel B CMOS Output Data (LSB).  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data (MSB).  
Channel B Overrange Output  
Channel A Data Clock Output.  
Channel B Data Clock Output.  
34  
35  
36  
38  
39  
40  
41  
42  
43  
4
5
6
7
8
9
11  
12  
13  
14  
15  
16  
17  
18  
20  
21  
22  
24  
23  
D8A  
D9A  
D10A  
D11A  
D12A  
D13A  
D14A  
D15A  
ORA  
D0B  
D1B  
D2B  
D3B  
D4B  
D5B  
D6B  
D7B  
D8B  
D9B  
D10B  
D11B  
D12B  
D13B  
D14B  
D15B  
ORB  
DCOA  
DCOB  
SPI Control  
45  
44  
46  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
Input/output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
47  
48  
OEB  
PDWN  
Input  
Input  
Output Enable Input (Active Low) in External Pin Mode.  
Power-Down Input in External Pin Mode. In SPI mode, this input can be  
configured as power-down or standby.  
Rev. 0 | Page 12 of 44  
AD9650  
PIN 1  
INDICATOR  
CLK+  
CLK–  
SYNC  
D0–  
D0+  
D1–  
D1+  
D2–  
D2+  
DRVDD 10  
D3– 11  
D3+ 12  
D4– 13  
D4+ 14  
D5– 15  
D5+ 16  
1
2
3
4
5
6
7
8
9
48 PDWN  
47 OEB  
46 CSB  
45 SCLK/DFS  
44 SDIO/DCS  
43 OR+  
42 OR–  
41 D15+  
40 D15–  
39 D14+  
38 D14–  
37 DRVDD  
36 D13+  
35 D13–  
34 D12+  
33 D12–  
AD9650  
PARALLEL LVDS  
TOP VIEW  
(Not to Scale)  
NOTES  
1. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 7. LFCSP Interleaved Parallel LVDS Pin Configuration (Top View)  
Table 9. Pin Function Descriptions (Interleaved Parallel LVDS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
10, 19, 28, 37  
DRVDD  
AVDD  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
49, 50, 53, 54, 59,  
60, 63, 64  
0
AGND,  
Exposed Pad  
Ground  
The exposed thermal pad on the bottom of the package provides the analog  
ground for the part. This exposed pad must be connected to ground for proper  
operation.  
ADC Analog  
51  
52  
62  
61  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VREF  
Input  
Input  
Input  
Input  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
55  
Input/output Voltage Reference Input/Output.  
56  
58  
57  
1
SENSE  
RBIAS  
VCM  
CLK+  
CLK−  
Input  
Voltage Reference Mode Select. See Table 11 for details.  
Input/output External Reference Bias Resistor.  
Output  
Input  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
2
Input  
Digital Input  
3
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
5
4
7
6
9
8
12  
D0+  
D0−  
D1+  
D1−  
D2+  
D2−  
D3+  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data 0—True (LSB).  
Channel A/Channel B LVDS Output Data 0—Complement (LSB).  
Channel A/Channel B LVDS Output Data 1—True.  
Channel A/Channel B LVDS Output Data 1—Complement.  
Channel A/Channel B LVDS Output Data 2—True.  
Channel A/Channel B LVDS Output Data 2—Complement.  
Channel A/Channel B LVDS Output Data 3—True.  
Rev. 0 | Page 13 of 44  
AD9650  
Pin No.  
Mnemonic  
D3−  
Type  
Description  
11  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data 3—Complement.  
Channel A/Channel B LVDS Output Data 4—True.  
Channel A/Channel B LVDS Output Data 4—Complement.  
Channel A/Channel B LVDS Output Data 5—True.  
Channel A/Channel B LVDS Output Data 5—Complement.  
Channel A/Channel B LVDS Output Data 6—True.  
Channel A/Channel B LVDS Output Data 6—Complement.  
Channel A/Channel B LVDS Output Data 7—True.  
Channel A/Channel B LVDS Output Data 7—Complement.  
Channel A/Channel B LVDS Output Data 8—True.  
Channel A/Channel B LVDS Output Data 8—Complement.  
Channel A/Channel B LVDS Output Data 9—True.  
Channel A/Channel B LVDS Output Data 9—Complement.  
Channel A/Channel B LVDS Output Data 10—True.  
Channel A/Channel B LVDS Output Data 10—Complement.  
Channel A/Channel B LVDS Output Data 11—True.  
Channel A/Channel B LVDS Output Data 11—Complement.  
Channel A/Channel B LVDS Output Data 12—True.  
Channel A/Channel B LVDS Output Data 12—Complement.  
Channel A/Channel B LVDS Output Data 13—True.  
Channel A/Channel B LVDS Output Data 13—Complement.  
Channel A/Channel B LVDS Output Data 14—True.  
Channel A/Channel B LVDS Output Data 14—Complement.  
Channel A/Channel B LVDS Output Data 15—True (MSB).  
Channel A/Channel B LVDS Output Data 15—Complement (MSB).  
Channel A/Channel B LVDS Overrange Output—True.  
Channel A/Channel B LVDS Overrange Output—Complement.  
Channel A/Channel B LVDS Data Clock Output—True.  
Channel A/Channel B LVDS Data Clock Output—Complement.  
14  
13  
16  
15  
18  
17  
21  
20  
23  
22  
27  
26  
30  
29  
32  
31  
34  
33  
36  
35  
39  
38  
41  
40  
43  
42  
25  
24  
D4+  
D4−  
D5+  
D5−  
D6+  
D6−  
D7+  
D7−  
D8+  
D8−  
D9+  
D9−  
D10+  
D10−  
D11+  
D11−  
D12+  
D12−  
D13+  
D13−  
D14+  
D14−  
D15+  
D15−  
OR+  
OR−  
DCO+  
DCO−  
SPI Control  
45  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
44  
46  
Input/output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
47  
48  
OEB  
PDWN  
Input  
Input  
Output Enable Input (Active Low) in External Pin Mode.  
Power-Down Input in External Pin Mode. In SPI mode, this input can be  
configured as power-down or standby.  
Rev. 0 | Page 14 of 44  
AD9650  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, rated sample rate, DCS disabled, 1.35 V internal reference, 2.7 V p-p differential input, VIN = −1.0 dBFS,  
and 32k sample, TA = 25°C, unless otherwise noted.  
AD9650-25  
0
0
–20  
25MSPS  
25MSPS  
9.7MHz @ –1dBFS  
SNR = 82.4dB (83.4dBFS)  
SFDR = 95.8dBc  
9.7MHz @ –6dBFS  
SNR = 77.9dB (83.9dBFS)  
SFDR = 99dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. AD9650-25 Single-Tone FFT with fIN = 9.7 MHz  
Figure 11. AD9650-25 Single-Tone FFT with fIN = 9.7 MHz at −6 dBFS with  
Dither Disabled  
0
0
25MSPS  
25MSPS  
30.3MHz @ –1dBFS  
9.7MHz @ –6dBFS  
SNR = 80.6dB (81.6dBFS)  
SFDR = 84.6dBc  
SNR = 77.4dB (83.4dBFS)  
–20  
–40  
–20  
SFDR = 101.3dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. AD9650-25 Single-Tone FFT with fIN = 30.3 MHz  
Figure 12. AD9650-25 Single-Tone FFT with fIN = 9.7 MHz at −6 dBFS with  
Dither Enabled  
0
120  
25MSPS  
70.1MHz @ –1dBFS  
SNR = 78.5dB (79.5dBFS)  
SFDR = 87.2dBFS  
SFDR (dBFS)  
100  
–20  
–40  
SNR (dBFS)  
80  
–60  
60  
SFDR (dBc)  
–80  
40  
–100  
–120  
–140  
20  
SNR (dB)  
0
0
2
4
6
8
10  
12  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 10. AD9650-25 Single-Tone FFT with fIN = 70.1 MHz  
Figure 13. AD9650-25 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 9.7 MHz  
Rev. 0 | Page 15 of 44  
 
AD9650  
120  
115  
110  
105  
100  
95  
1400000  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
SFDR (dBFS) DITHER ON  
SFDR (dBFS) DITHER OFF  
90  
SNR (dBFS) DITHER OFF  
SNR (dBFS) DITHER ON  
85  
80  
75  
70  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 17. AD9650-25 Grounded Input Histogram  
Figure 14. AD9650-25 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 9.7 MHz with and Without Dither Enabled  
100  
95  
90  
85  
80  
75  
70  
65  
120  
100  
80  
60  
40  
20  
0
6
4
DITHER DISABLED  
DITHER ENABLED  
2
SFDR  
0
–2  
–4  
SNR (–40°C)  
SNR (+25°C)  
SNR (+85°C)  
SFDR (–40°C)  
SFDR (+25°C)  
SFDR (+85°C)  
SNR  
–6  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
50  
100  
150  
200  
250  
300  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
Figure 15. AD9650-25 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
Figure 18. AD9650-25 INL with fIN = 9.7 MHz  
with 2.7 V p-p Full Scale  
105  
100  
95  
2.0  
1.5  
1.0  
0.5  
SFDR (dBc)  
90  
0
–0.5  
–1.0  
–1.5  
85  
SNR (dBFS)  
80  
75  
10  
–2.0  
0
15  
20  
25  
30  
35  
40  
45  
50  
10000  
20000  
30000  
40000  
50000  
60000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 16. AD9650-25 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 9.7 MHz  
Figure 19. AD9650-25 DNL with fIN = 9.7 MHz  
Rev. 0 | Page 16 of 44  
AD9650  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TOTAL POWER LVDS (mW)  
TOTAL POWER CMOS (mW)  
LVDS AND CMOS I  
(mA)  
AVDD  
LVDS I  
(mA)  
(mA)  
DRVDD  
CMOS I  
40  
DRVDD  
0
10  
15  
20  
25  
30  
35  
45  
50  
SAMPLE RATE (MSPS)  
Figure 20. AD9650-25 Power and Current vs. Sample Rate  
Rev. 0 | Page 17 of 44  
AD9650  
AD9650-65  
0
0
–20  
65MSPS  
65MSPS  
9.7MHz @ –1dBFS  
SNR = 82.1dB (83.1dBFS)  
SFDR = 98.7dBc  
141MHz @ –1dBFS  
SNR = 78.5dB (79.5dBFS)  
SFDR = 79.2dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. AD9650-65 Single-Tone FFT with fIN = 9.7 MHz  
Figure 24. AD9650-65 Single-Tone FFT with fIN = 141 MHz  
0
0
65MSPS  
65MSPS  
30.3MHz @ –6dBFS  
30.3MHz @ –1dBFS  
SNR = 77.3dB (83.3dBFS)  
SFDR = 96.2dBc  
SNR = 81.5dB (82.5dBFS)  
SFDR = 93.5dBc  
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 25. AD9650-65 Single-Tone FFT with fIN = 30.3 MHz at −6 dBFS with  
Dither Disabled  
Figure 22. AD9650-65 Single-Tone FFT with fIN = 30.3 MHz  
0
0
65MSPS  
65MSPS  
70.1MHz @ –1dBFS  
30.3MHz @ –6dBFS  
SNR = 80.4dB (81.4dBFS)  
SFDR = 86dBc  
SNR = 76.9dB (82.9dBFS)  
–20  
–20  
SFDR = 100dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 26. AD9650-65 Single-Tone FFT with fIN = 30.3 MHz @ −6 dBFS with  
Dither Enabled  
Figure 23. AD9650-65 Single-Tone FFT with fIN = 70.1 MHz  
Rev. 0 | Page 18 of 44  
 
AD9650  
120  
100  
80  
60  
40  
20  
0
105  
100  
95  
SFDR (dBFS)  
SNR (dBFS)  
SFDR  
SNR  
90  
SFDR (dBc)  
SNR (dB)  
85  
80  
75  
45  
50  
55  
60  
65  
70  
75  
80  
85  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
SAMPLE RATE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 30. AD9650-65 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 30 MHz  
Figure 27. AD9650-65 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN =30.3 MHz  
1400000  
1200000  
1000000  
800000  
600000  
400000  
200000  
0
120  
SFDR (dBFS) DITHER ON  
115  
110  
105  
100  
95  
SFDR (dBFS) DITHER OFF  
90  
SNR (dBFS) DITHER OFF  
85  
SNR (dBFS) DITHER ON  
80  
75  
70  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 28. AD9650-65 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Figure 31. AD9650-65 Grounded Input Histogram  
with fIN = 30.3 MHz with and Without Dither Enabled  
6
100  
95  
90  
85  
80  
75  
70  
65  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DITHER DISABLED  
DITHER ENABLED  
4
2
SFDR  
0
–2  
–4  
–6  
SNR (–40°C)  
SFDR (–40°C)  
SNR  
SNR (+25°C)  
SFDR (+25°C)  
SNR (+85°C)  
SFDR (+85°C)  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
50  
100  
150  
200  
250  
300  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
Figure 29. AD9650-65 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
Figure 32. AD9650-65 INL with fIN = 9.7 MHz  
with 2.7 V p-p Full Scale  
Rev. 0 | Page 19 of 44  
AD9650  
2.0  
700  
600  
500  
400  
300  
200  
100  
0
TOTAL POWER LVDS (mW)  
TOTAL POWER CMOS (mW)  
1.5  
1.0  
0.5  
0
LVDS AND CMOS I  
(mA)  
–0.5  
–1.0  
–1.5  
AVDD  
CMOS I  
(mA)  
DRVDD  
LVDS I  
35  
(mA)  
DRVDD  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
25  
45  
55  
65  
75  
85  
95  
105  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 33. AD9650-65 DNL with fIN = 9.7 MHz  
Figure 34. AD9650-65 Power and Current vs. Sample Rate  
Rev. 0 | Page 20 of 44  
AD9650  
AD9650-80  
0
0
–20  
80MSPS  
80MSPS  
141MHz @ –1dBFS  
SNR = 79.3dB (80.3dBFS)  
SFDR = 79.2dBc  
9.7MHz @ –1dBFS  
SNR = 82.2dB (83.2dBFS)  
SFDR = 95.8dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. AD9650-80 Single-Tone FFT with fIN = 9.7 MHz  
Figure 38. AD9650-80 Single-Tone FFT with fIN = 141 MHz  
0
0
80MSPS  
30.3MHz @ –1dBFS  
SNR = 81.8dB (82.8dBFS)  
SFDR = 94.5dBc  
80MSPS  
30.3MHz @ –6dBFS  
SNR = 77.3dB (83.3dBFS)  
SFDR = 94.3dBc  
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 36. AD9650-80 Single-Tone FFT with fIN = 30.3 MHz  
Figure 39. AD9650-80 Single-Tone FFT with fIN = 30.3 MHz at −6 dBFS with  
Dither Disabled  
0
0
80MSPS  
80MSPS  
70.1MHz @ –1dBFS  
30.3MHz @ –6dBFS  
SNR = 80dB (81dBFS)  
SFDR = 86.4dBc  
SNR = 77dB (83dBFS)  
SFDR = 98.4dBc  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. AD9650-80 Single-Tone FFT with fIN = 30.3 MHz at −6 dBFS with  
Dither Enabled  
Figure 37. AD9650-80 Single-Tone FFT with fIN = 70.1 MHz  
Rev. 0 | Page 21 of 44  
 
AD9650  
120  
100  
80  
60  
40  
20  
0
105  
100  
95  
SFDR (dBFS)  
SNR (dBFS)  
SFDR  
90  
SFDR (dBc)  
SNR (dB)  
85  
SNR  
75  
80  
75  
60  
65  
70  
80  
85  
90  
95  
100  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
SAMPLE RATE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 44. AD9650-80 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 30 MHz  
Figure 41. AD9650-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 30.3 MHz  
1400000  
1200000  
1000000  
800000  
900000  
600000  
200000  
0
120  
SFDR (dBFS) DITHER ON  
100  
80  
SFDR (dBFS) DITHER OFF  
60  
40  
20  
0
SNR (dBFS) DITHER OFF  
SNR (dBFS) DITHER ON  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 45. AD9650-80 Grounded Input Histogram  
Figure 42. AD9650-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 30.3 MHz with and Without Dither Enabled  
6
100  
95  
90  
85  
80  
75  
70  
65  
120  
100  
80  
60  
40  
20  
0
DITHER DISABLED  
DITHER ENABLED  
4
2
SFDR  
0
–2  
–4  
–6  
SNR (–40°C)  
SFDR (–40°C)  
SNR  
SNR (+25°C)  
SFDR (+25°C)  
SNR (+85°C)  
SFDR (+85°C)  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
50  
100  
150  
200  
250  
300  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
Figure 43. AD9650-80 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
Figure 46. AD9650-80 INL with fIN = 9.7 MHz  
Rev. 0 | Page 22 of 44  
AD9650  
2.0  
1.5  
800  
700  
600  
500  
400  
300  
200  
100  
0
TOTAL POWER  
LVDS (mW)  
1.0  
0.5  
TOTAL POWER CMOS (mW)  
0
LVDS AND CMOS I  
(mA)  
(mA)  
AVDD  
–0.5  
–1.0  
–1.5  
–2.0  
LVDS I  
DRVDD  
CMOS I  
45  
(mA)  
65  
DRVDD  
0
10000  
20000  
30000  
40000  
50000  
60000  
25  
35  
55  
75  
85  
95  
105 115 125  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 48. AD9650-80 Power and Current vs. Sample Rate  
Figure 47. AD9650-80 DNL with fIN = 9.7 MHz  
Rev. 0 | Page 23 of 44  
AD9650  
AD9650-105  
0
0
–20  
105MSPS  
105MSPS  
9.7MHz @ –1dBFS  
SNR = 81.7dB (82.7dBFS)  
SFDR = 90.7dBc  
141MHz @ –1dBFS  
SNR = 79dB (80dBFS)  
SFDR = 81.1dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 49. AD9650-105 Single-Tone FFT with fIN = 9.7 MHz  
Figure 52. AD9650-105 Single-Tone FFT with fIN = 141 MHz  
0
0
105MSPS  
105MSPS  
30.3MHz @ –1dBFS  
30.3MHz @ –6dBFS  
SNR = 81.2dB (82.2dBFS)  
SFDR = 90.3dBc  
SNR = 77.3dB (83.3dBFS)  
SFDR = 94dBc  
–20  
–40  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 50. AD9650-105 Single-Tone FFT with fIN = 30.3 MHz  
Figure 53. AD9650-105 Single-Tone FFT with fIN = 30.3 MHz @ −6 dBFS  
with Dither Disabled  
0
0
105MSPS  
105MSPS  
70.1MHz @ –1dBFS  
30.3MHz @ –6dBFS  
SNR = 79.2dB (80.2dBFS)  
SNR = 75.7dB (81.7dBFS)  
–20  
–20  
SFDR = 92.2dBc  
–40  
SFDR = 96.2dBc  
–40  
–60  
–80  
–60  
–80  
–100  
–100  
–120  
–140  
–120  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 51. AD9650-105 Single-Tone FFT with fIN = 70.1 MHz  
Figure 54. AD9650-105 Single-Tone FFT with fIN = 30.3 MHz @ −6 dBFS  
with Dither Enabled  
Rev. 0 | Page 24 of 44  
 
AD9650  
120  
100  
80  
60  
40  
20  
0
105  
100  
95  
SFDR (dBFS)  
SNR (dBFS)  
SFDR  
SNR  
90  
SFDR (dBc)  
SNR (dB)  
85  
80  
75  
85  
90  
95  
100  
105  
110  
115  
120  
125  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
SAMPLE RATE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 58. AD9650-105 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 30 MHz  
Figure 55. AD9650-105 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 30.3 MHz  
0
120  
105MSPS  
30.8MHz @ –7dBFS  
SFDR (dBFS) DITHER ON  
115  
110  
105  
100  
95  
25.4MHz @ –7dBFS  
SFDR = 86.6dBc (93.6dBFS)  
–20  
–40  
–60  
SFDR (dBFS) DITHER OFF  
–80  
90  
SNR (dBFS) DITHER OFF  
–100  
–120  
–140  
85  
80  
SNR (dBFS) DITHER ON  
75  
70  
0
10  
20  
30  
40  
50  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 56. AD9650-105 Single Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Figure 59. AD9650-105 Two-Tone FFT with fIN1 = 25.4 MHz and fIN2 = 30.8 MHz  
with fIN = 30.3 MHz with and Without Dither Enabled  
0
100  
95  
90  
85  
80  
75  
70  
65  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–20  
SFDR (dBc)  
SFDR  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
–100  
SNR (–40°C)  
SFDR (–40°C)  
SNR  
SNR (+25°C)  
SFDR (+25°C)  
–120  
SNR (+85°C)  
SFDR (+85°C)  
IMD3 (dBFS)  
–140  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
50  
100  
150  
200  
250  
300  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 60. AD9650-105 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 57. AD9650-105 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
with fIN1 = 25.4 MHz, fIN2 = 30.8 MHz, fS = 105 MSPS  
Rev. 0 | Page 25 of 44  
AD9650  
0
1200000  
1000000  
800000  
600000  
400000  
200000  
0
105MSPS  
124.8MHz @ –7dBFS  
128.3MHz @ –7dBFS  
SFDR = 83.8dBc  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 64. AD9650-105 Grounded Input Histogram  
Figure 61. AD9650-105 Two-Tone FFT with fIN1 = 124.8 MHz and fIN2 = 128.3 MHz  
0
6
4
DITHER DISABLED  
DITHER ENABLED  
–20  
SFDR (dBc)  
–40  
2
IMD3 (dBc)  
–60  
0
–80  
–2  
–4  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
–140  
–6  
0
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
10000  
20000  
30000  
40000  
50000  
60000  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 62. AD9650-105 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
Figure 65. AD9650-105 INL with fIN = 9.7 MHz  
f
IN1 = 128.3 MHz, fIN2 = 124.8 MHz, fs = 105 MSPS  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.0  
1.5  
TOTAL POWER LVDS (mW)  
TOTAL POWER CMOS (mW)  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
LVDS AND CMOS I  
(mA)  
AVDD  
CMOS I  
45  
(mA)  
DRVDD  
LVDS I (mA)  
DRVDD  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
25  
65  
85  
105  
125  
145  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 66. AD9650-105 DNL with fIN = 9.7 MHz  
Figure 63. AD9650-105 Power and Current vs. Sample Rate  
Rev. 0 | Page 26 of 44  
AD9650  
100  
90  
80  
70  
60  
50  
40  
TYPICAL V  
CM  
SNR (dBFS)  
SFDR (dBc)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
COMMON-MODE VOLTAGE (V)  
Figure 67. SNR/SFDR vs. Input Common Mode (VCM)  
with fIN = 30.3 MHz  
Rev. 0 | Page 27 of 44  
 
AD9650  
EQUIVALENT CIRCUITS  
AVDD  
VIN±x  
350  
SENSE  
Figure 68. Equivalent Analog Input Circuit  
Figure 73. Equivalent SENSE Circuit  
AVDD  
DRVDD  
0.9V  
26kΩ  
10k  
10kΩ  
350Ω  
CLK–  
CLK+  
CSB  
Figure 69. Equivalent Clock Input Circuit  
Figure 74. Equivalent CSB Input Circuit  
AVDD  
DRVDD  
VREF  
PAD  
6k  
Figure 75. Equivalent VREF Circuit  
Figure 70. Digital Output  
DRVDD  
26kΩ  
350Ω  
350  
SDIO/DCS  
PDWN  
26kΩ  
Figure 71. Equivalent SDIO/DCS Circuit  
Figure 76. Equivalent PDWN Input Circuit  
DRVDD  
350  
SCLK/DFS  
OR OEB  
26kΩ  
Figure 72. Equivalent SCLK/DFS or OEB Input Circuit  
Rev. 0 | Page 28 of 44  
 
 
AD9650  
THEORY OF OPERATION  
A small resistor in series with each input can help reduce the  
The AD9650 dual-core analog-to-digital converter (ADC) is  
used for digitizing high frequency, wide dynamic range signals with  
input frequencies of up to 300 MHz. The user can sample any fS/2  
frequency segment from dc to 300 MHz using appropriate low-  
pass or band-pass filtering at the ADC inputs with little loss in  
ADC performance. The ADCs can also be operated with  
independent analog inputs.  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the inputs  
to provide dynamic charging currents. This passive network  
creates a low-pass filter at the ADC input; therefore, the precise  
values are dependent on the application.  
In intermediate frequency (IF) undersampling applications, any  
shunt capacitors should be reduced. In combination with the  
driving source impedance, the shunt capacitors limit the input  
bandwidth. Refer to the AN-742 Application Note, Frequency  
Domain Response of Switched-Capacitor ADCs; the AN-827  
Application Note, A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs; and the Analog Dialogue article,  
Transformer-Coupled Front-End for Wideband A/D Converters,”  
for more information on this subject (visit www.analog.com).  
BIAS  
In quadrature applications, the AD9650 can be used as a baseband  
or direct down-conversion receiver, in which one ADC is used  
for I input data, and the other is used for Q input data.  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
Programming and control of the AD9650 are accomplished  
using a 3-wire, SPI-compatible serial interface.  
ADC ARCHITECTURE  
S
S
The AD9650 architecture consists of a dual front-end sample-  
and-hold circuit, followed by a pipelined, switched-capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 16-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
C
FB  
C
S
VIN+x  
C
PAR1  
C
PAR2  
H
S
S
S
C
S
VIN–x  
C
FB  
C
PAR1  
C
PAR2  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the  
reconstructed DAC output and the flash input for the next stage  
in the pipeline. One bit of redundancy is used in each stage to  
facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
S
BIAS  
Figure 77. Switched-Capacitor Input  
For best dynamic performance, the source impedances driving  
VIN+x and VIN−x should be matched, and the inputs should  
be differentially balanced.  
An internal differential reference buffer creates positive and  
negative reference voltages that define the input span of the ADC  
core. The span of the ADC core is set by this buffer to 2 × VREF.  
The input stage of each channel contains a differential sampling  
circuit that can be ac- or dc-coupled in differential or single-  
ended modes. The output staging block aligns the data, corrects  
errors, and passes the data to the output buffers. The output buffers  
are powered from a separate supply, allowing digital output noise to  
be separated from the analog core. During power-down, the output  
buffers go into a high impedance state.  
Input Common Mode  
The analog inputs of the AD9650 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias exter-  
nally. Setting the device so that VCM = 0.5 × AVDD (or 0.9 V) is  
recommended for optimum performance, but the device  
functions over a wider range with reasonable performance  
(see Figure 67). An on-chip, common-mode voltage reference  
is included in the design and is available from the VCM pin.  
Optimum performance is achieved when the common-mode  
voltage of the analog input is set by the VCM pin voltage  
(typically 0.5 × AVDD). The VCM pin must be decoupled to  
ground by a 0.1 μF capacitor, as described in the Applications  
Information section.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9650 is a differential switched-  
capacitor circuit that has been designed for optimum performance  
while processing a differential input signal.  
The clock signal alternatively switches the input between sample  
mode and hold mode (see Figure 77). When the input is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within ½ of a clock cycle.  
Rev. 0 | Page 29 of 44  
 
 
AD9650  
typically at very low levels and do not limit SFDR when the  
ADC is quantizing large-signal inputs, dithering converts these  
tones to noise and produces a whiter noise floor.  
Common-Mode Voltage Servo  
In applications where there may be a voltage loss between the VCM  
output of the AD9650 and the analog inputs, the common-mode  
voltage servo can be enabled. When the inputs are ac-coupled and  
a resistance of >100 Ω is placed between the VCM output and the  
analog inputs, a significant voltage drop can occur and the  
common-mode voltage servo should be enabled. Setting Bit 0 in  
Register 0x0F to a logic high enables the VCM servo mode. In  
this mode, the AD9650 monitors the common-mode input level  
at the analog inputs and adjusts the VCM output level to keep the  
common-mode input voltage at an optimal level. If both channels  
are operational, Channel A is monitored. However, if Channel A  
is in power-down or standby mode, the Channel B input is  
monitored.  
Small-Signal FFT  
For small-signal inputs, the front-end sampling circuit typically  
contributes very little distortion, and, therefore, the SFDR is likely  
to be limited by tones caused by DNL errors due to random com-  
ponent mismatches. Therefore, for small-signal inputs (typically,  
those below −6 dBFS), dithering can significantly improve  
SFDR by converting these DNL tones to white noise.  
Static Linearity  
Dithering also removes sharp local discontinuities in the INL  
transfer function of the ADC and reduces the overall peak-to-  
peak INL.  
Dither  
In receiver applications, utilizing dither helps to reduce DNL errors  
that cause small-signal gain errors. Often this issue is overcome  
by setting the input noise 5 dB to 10 dB above the converter  
noise. By using dither within the converter to correct the DNL  
errors, the input noise requirement can be reduced.  
The AD9650 has an optional dither mode that can be selected  
for one or both channels. Dithering is the act of injecting a known  
but random amount of white noise, commonly referred to as  
dither, into the input of the ADC. Dithering has the effect of  
improving the local linearity at various points along the ADC  
transfer function. Dithering can significantly improve the SFDR  
when quantizing small-signal inputs, typically when the input  
level is below −6 dBFS.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9650  
in a differential input configuration. For baseband applications,  
the AD8138, ADA4937-2, and ADA4938-2 differential drivers  
provide excellent performance and a flexible interface to the ADC.  
As shown in Figure 78, the dither that is added to the input of  
the ADC through the dither DAC is precisely subtracted out  
digitally to minimize SNR degradation. When dithering is  
enabled, the dither DAC is driven by a pseudorandom number  
generator (PN gen). In the AD9650, the dither DAC is precisely  
calibrated to result in only a very small degradation in SNR and  
SINAD.  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9650 (see Figure 79), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
15pF  
AD9650  
200Ω  
33Ω  
5pF  
15Ω  
VIN  
DOUT  
ADC CORE  
90Ω  
VIN–x  
VIN+x  
AVDD  
76.8Ω  
VIN  
AD9650  
ADA4938-2  
DITHER  
DAC  
0.1µF  
33Ω  
15Ω  
VCM  
120Ω  
15pF  
200Ω  
PN GEN  
DITHER ENABLE  
Figure 79. Differential Input Configuration Using the ADA4938-2  
Figure 78. Dither Block Diagram  
For baseband applications in which SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 80. To bias the  
analog input, the VCM voltage can be connected to the center  
tap of the secondary winding of the transformer.  
Large-Signal FFT  
In most cases, dithering does not improve SFDR for large-signal  
inputs close to full scale, for example, with a −1 dBFS input. For  
large-signal inputs, the SFDR is typically limited by front-end  
sampling distortion, which dithering cannot improve. However,  
even for such large-signal inputs, dithering may be useful for  
certain applications because it makes the noise floor whiter.  
As is common in pipeline ADCs, the AD9650 contains small  
DNL errors caused by random component mismatches that  
produce spurs or tones that make the noise floor somewhat  
randomly colored part-to-part. Although these tones are  
C2  
R2  
VIN+x  
R1  
2V p-p  
49.9Ω  
C1  
R1  
AD9650  
R2  
VCM  
VIN–x  
0.1µF  
C2  
Figure 80. Differential Transformer-Coupled Configuration  
Rev. 0 | Page 30 of 44  
 
 
 
AD9650  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
achieved by using a ferrite bead in series with a resistor and  
removing the capacitors. However, these values are dependent  
on the input signal and should be used only as a starting guide.  
Table 10. Example RC Network  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9650. For applications in  
which SNR is a key parameter, differential double balun coupling  
is the recommended input configuration (see Figure 81). In this  
configuration, the input is ac-coupled, and the CML is provided  
to each input through a 33 Ω resistor. These resistors compensate  
for losses in the input baluns to provide a 50 Ω impedance to  
the driver.  
Frequency  
Range  
(MHz)  
R1 Series C1 Differential R2 Series C2 Shunt  
(Ω Each) (pF)  
(Ω Each)  
(pF Each)  
0 to 100  
100 to 200 10  
100 to 300 101  
33  
5
5
15  
10  
66  
15  
10  
Remove  
Remove  
1 In this configuration, R1 is a ferrite bead with a value of 10 Ω at 100 MHz.  
An alternative to using a transformer-coupled input at fre-  
quencies in the second Nyquist zone is to use the AD8352  
differential driver. An example is shown in Figure 82. See the  
AD8352 data sheet for more information.  
In the double balun and transformer configurations, the value of  
the input capacitors and resistors is dependent on the input fre-  
quency and source impedance and may need to be reduced or  
removed. Table 10 displays recommended values to set the RC  
network. At higher input frequencies, good performance can be  
C2  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+x  
2V p-p  
33  
33Ω  
P
A
S
S
P
C1  
R1  
AD9650  
0.1µF  
0.1µF  
VCM  
VIN–x  
C2  
Figure 81. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0  
R
0.1µF  
16  
1
8, 13  
11  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
VIN+x  
2
200Ω  
C
AD9650  
AD8352  
10  
R
G
C
D
D
3
4
5
200Ω  
VCM  
VIN–x  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 82. Differential Input Configuration Using the AD8352  
Rev. 0 | Page 31 of 44  
 
 
 
AD9650  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
VOLTAGE REFERENCE  
The AD9650 can be configured for a stable 1.35 V internal  
reference or a user-applied external reference. The input range  
of the ADC always equals twice the voltage at the reference pin  
(VREF) for either an internal or an external reference. Table 11  
shows a summary of the internal and external reference  
connections.  
Internal Reference Connection  
A stable and accurate 1.35 V reference is built into the AD9650,  
allowing a 2.7 V p-p full-scale input. To configure the AD9650  
for an internal reference, the SENSE pin must be tied low. In  
addition, to achieve optimal noise performance, it is recommended  
that the VREF pin be decoupled by 1.0 μF and 0.1 μF capacitors  
close to the pin. Figure 83 shows the configuration for the internal  
reference connection.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
LOAD CURRENT (mA)  
Figure 84. Reference Voltage Error vs. Load Current  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 85 shows the typical drift characteristics of the  
internal reference in 1.35 V mode.  
VIN+A/VIN+B  
VIN–A/VIN–B  
ADC  
CORE  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
6 kΩ load (see Figure 75). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1.35 V.  
VREF  
1.0µF  
0.1µF  
SELECT  
LOGIC  
SENSE  
V
SELECT  
0
AD9650  
–1  
–2  
–3  
–4  
–5  
–6  
Figure 83. Internal Reference Configuration  
If the internal reference of the AD9650 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 84 shows  
how the internal reference voltage is affected by loading.  
–50  
–30  
–10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
Figure 85. Typical VREF Drift  
Table 11. Reference Configuration Summary  
Selected Mode  
SENSE Voltage (V)  
AGND to 0.2  
AVDD  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
Internal Reference  
External Reference  
1.35  
N/A  
2.7  
2 × external reference  
Rev. 0 | Page 32 of 44  
 
 
 
 
 
AD9650  
Clock Input Considerations  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 89. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517/AD9518 clock  
drivers offer excellent jitter performance.  
For optimum performance, the AD9650 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
(see Figure 86) and require no external bias. If the inputs are  
floated, the CLK− pin is pulled low to prevent spurious clocking.  
AVDD  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9650  
AD951x  
PECL DRIVER  
100  
0.1µF  
0.1µF  
CLOCK  
INPUT  
0.9V  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
CLK+  
CLK–  
Figure 89. Differential PECL Sample Clock (Up to 625 MHz)  
9pF  
9pF  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 90. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517/  
AD9518 clock drivers offer excellent jitter performance.  
Figure 86. Equivalent Clock Input Circuit  
Clock Input Options  
The AD9650 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9650  
AD951x  
100  
LVDS DRIVER  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
Figure 87 and Figure 88 show two preferred methods for clocking  
the AD9650 (at clock rates up to 625 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF balun or an RF transformer.  
50kΩ  
50kΩ  
Figure 90. Differential LVDS Sample Clock (Up to 625 MHz)  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended CMOS signal. In such applica-  
tions, the CLK+ pin should be driven directly from a CMOS gate,  
and the CLK− pin should be bypassed to ground with a 0.1 ꢀF  
capacitor (see Figure 91).  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is recom-  
mended for clock frequencies from 10 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun’s  
secondary windings limit the clock excursions into the AD9650  
to approximately 0.8 V p-p differential.  
V
CC  
OPTIONAL  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
100Ω  
AD951x  
CMOS DRIVER  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9650 while  
preserving the fast rise and fall times of the signal that are critical  
to a low jitter performance.  
CLOCK  
INPUT  
CLK+  
ADC  
AD9650  
50Ω  
CLK–  
0.1µF  
®
Mini-Circuits  
ADC  
1
50RESISTOR IS OPTIONAL.  
ADT1-1WT, 1:1Z  
AD9650  
Figure 91. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
100  
Input Clock Divider  
50Ω  
0.1µF  
The AD9650 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. For  
divide ratios of 1, 2, 4, or 8, the duty cycle stabilizer (DCS) is  
optional. For other divide ratios, divide-by-3, -5, -6, and -7, the  
duty cycle stabilizer must be enabled for proper part operation.  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
Figure 87. Transformer-Coupled Differential Clock (Up to 200 MHz)  
ADC  
AD9650  
The AD9650 clock divider can be synchronized using the external  
SYNC input. Bit 0 to Bit 2 of Register 0x100 allow the clock  
divider to be resynchronized on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
causes the clock divider to reset to its initial state. This synchro-  
nization feature allows multiple parts to have their clock dividers  
aligned to guarantee simultaneous input sampling.  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 88. Balun-Coupled Differential Clock (Up to 625 MHz)  
Rev. 0 | Page 33 of 44  
 
 
 
 
 
 
AD9650  
82  
80  
78  
76  
74  
72  
70  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate a variety  
of internal timing signals and, as a result, may be sensitive to clock  
duty cycle. The AD9650 requires a tight tolerance on the clock duty  
cycle to maintain dynamic performance characteristics.  
2V p-p CLK AMPLITUDE  
1V p-p CLK AMPLITUDE  
The AD9650 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock signal  
with a nominal 50% duty cycle. This allows the user to provide  
a wide range of clock input duty cycles without affecting the  
performance of the AD9650. Noise and distortion performance  
are nearly flat for a wide range of duty cycles with the DCS  
enabled.  
1
2
3
4
CLK DIVIDE RATIO  
Jitter in the rising edge of the input is still of paramount concern  
and is not easily reduced by the internal stabilization circuit. The  
duty cycle control loop does not function for clock rates of less  
than 20 MHz, nominally. The loop has a time constant associated  
with it that must be considered in applications in which the clock  
rate can change dynamically. A wait time of 1.5 μs to 5 μs is  
required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal. During the  
time period that the loop is not locked, the DCS loop is bypassed,  
and internal device timing is dependent on the duty cycle of the  
input clock signal. In such applications, it may be appropriate to  
disable the duty cycle stabilizer. In all other applications, enabling  
the DCS circuit is recommended to maximize ac performance.  
Figure 92. SNR vs. CLK Divide Ratio for fIN = 141 MHz and a  
Sample Rate of 105 MSPS  
The clock input should be treated as an analog signal in cases in  
which aperture jitter may affect the dynamic range of the AD9650.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources.  
Refer to the AN-501 Application Note and the AN-756 Application  
Note (visit www.analog.com) for more information about jitter  
performance as it relates to ADCs.  
CHANNEL/CHIP SYNCHRONIZATION  
Jitter Considerations  
The AD9650 has a SYNC input that offers the user flexible  
synchronization options for synchronizing the clock divider.  
The clock divider sync feature is useful for guaranteeing synchro-  
nized sample clocks across multiple ADCs. The input clock  
divider can be enabled to synchronize on a single occurrence of  
the SYNC signal or on every occurrence.  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. For inputs near full scale, the degradation in  
SNR from the low frequency SNR (SNRLF) at a given input  
frequency (fINPUT) due to jitter (tJRMS) can be calculated by  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
The SYNC input is internally synchronized to the sample clock;  
however, to ensure that there is no timing uncertainty between  
multiple parts, the SYNC input signal should be externally syn-  
chronized to the input clock signal, meeting the setup and hold  
times shown in Table 5. The SYNC input should be driven using  
a single-ended CMOS-type signal.  
In the equation, the rms aperture jitter represents the clock input  
jitter specification.  
Improvements in SNR can be achieved for IF undersampling  
applications by minimizing the effects of aperture jitter. This  
can be accomplished by applying a high frequency clock input  
and using the integrated clock divider to achieve the desired  
sample rate of the ADC core. Inherently, the jitter performance  
of the AD9650 improves as the frequency of the clock increases.  
This is a result of the slew rate of the clock affecting the noise  
performance of the ADC, where fast transition edges result in  
the best performance. Figure 92 shows the improvement in SNR  
for the different clock divide ratios for the 1 V p-p and 2 V p-p  
sinusoidal clock inputs. Measurements in Figure 92 were taken  
for the AD9650BCPZ-105 where the input frequency was  
141 MHz. The same analysis can be performed for the various  
speed grades of the AD9650 family of parts.  
POWER DISSIPATION AND STANDBY MODE  
The power dissipated by the AD9650 varies with its sample rate.  
In CMOS output mode, the digital power dissipation is determined  
primarily by the strength of the digital drivers and the load on  
each output bit.  
The maximum DRVDD current (IDRVDD) can be calculated as  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (32 plus two DCO outputs  
in the case of the AD9650).  
This maximum current occurs when every output bit switches on  
every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is estab-  
lished by the average number of output bits switching, which is  
Rev. 0 | Page 34 of 44  
 
 
 
AD9650  
determined by the sample rate and the characteristics of the  
analog input signal.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
Reducing the capacitive load presented to the output drivers  
reduces digital power consumption.  
Table 12. SCLK/DFS Mode Selection (External Pin Mode)  
By asserting PDWN (either through the SPI port or by asserting  
the PDWN pin high), the AD9650 is placed in power-down  
mode. In this state, the ADC typically dissipates 3.3 mW.  
During power-down, the output drivers are placed in a high  
impedance state. Asserting the PDWN pin low returns the  
AD9650 to its normal operating mode.  
Voltage at Pin  
SCLK/DFS  
SDIO/DCS  
AGND  
AVDD  
Offset binary (default)  
Twos complement  
DCS disabled  
DCS enabled  
(default)  
Digital Output Enable Function (OEB)  
The AD9650 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled using the OEB pin or  
through the SPI. If the OEB pin is low, the output data drivers and  
DCOs are enabled. If the OEB pin is high, the output data drivers  
and DCOs are placed in a high impedance state. This OEB  
function is not intended for rapid access to the data bus. Note  
that OEB is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and must be recharged when returning to normal  
operation.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required.  
When using the SPI, the data outputs and DCO of each channel  
can be independently three-stated by using the output enable  
bar bit (Bit 4) in Register 0x14.  
DIGITAL OUTPUTS  
TIMING  
The AD9650 output drivers can be configured to interface with  
1.8 V CMOS logic families. The AD9650 can also be configured  
for LVDS outputs (standard ANSI or reduced output swing mode)  
using a DRVDD supply voltage of 1.8 V.  
The AD9650 provides latched data with a pipeline delay of  
12 clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
In CMOS output mode, the output drivers are sized to provide  
sufficient output current to drive a wide variety of logic families.  
However, large drive currents tend to cause current glitches on  
the supplies that may affect converter performance.  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9650.  
These transients can degrade converter dynamic performance.  
The lowest typical conversion rate of the AD9650 is 10 MSPS.  
At clock rates below 10 MSPS, dynamic performance can  
degrade.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
The default output mode is CMOS, with each channel output  
on a separate bus, as shown in Figure 2. The output can also be  
configured for interleaved CMOS via the SPI port. In interleaved  
CMOS mode, the data for both channels is output through the  
Channel A output pins, and the Channel B output is placed into  
high impedance mode. The timing diagram for interleaved  
CMOS output mode is shown in Figure 3.  
Data Clock Output (DCO)  
The AD9650 provides two data clock output (DCO) signals  
intended for capturing the data in an external register. In CMOS  
output mode, the data outputs are valid on the rising edge of DCO,  
unless the DCO clock polarity has been changed via the SPI. In  
LVDS output mode, the DCO and data output switching edges  
are closely aligned. Additional delay can be added to the DCO  
output using SPI Register 0x17 to increase the data setup time.  
In this case, the Channel A output data is valid on the rising  
edge of DCO, and the Channel B output data is valid on the  
falling edge of DCO. See Figure 2, Figure 3, and Figure 4 for a  
graphical timing description of the output modes.  
The output data format can be selected for either offset binary  
or twos complement by setting the SCLK/DFS pin when operating  
in the external pin mode (see Table 12).  
Table 13. Output Data Format  
Input (V)  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
Condition (V)  
< −VREF − 0.5 LSB  
= −VREF  
= 0 V  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
Offset Binary Output Mode  
0000 0000 0000 0000  
0000 0000 0000 0000  
1000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
Twos Complement Mode  
1000 0000 0000 0000  
1000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 1111 1111  
0111 1111 1111 1111  
ORx  
1
0
0
0
1
Rev. 0 | Page 35 of 44  
 
 
 
AD9650  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9650 includes built-in test features designed to enable  
verification of the integrity of each channel as well as facilitate  
board level debugging. A BIST (built-in self-test) feature is included  
that verifies the integrity of the digital datapath of the AD9650.  
Various output test options are also provided to place predictable  
values on the outputs of the AD9650.  
The outputs are not disconnected during this test; therefore, the  
PN sequence can be observed as it runs. The PN sequence can  
be continued from its last value or reset from the beginning,  
based on the value programmed in Register 0x0E, Bit 2. The  
BIST signature result varies based on the channel configuration.  
OUTPUT TEST MODES  
BUILT-IN SELF-TEST (BIST)  
The output test modes are shown in Table 17. When an output  
test mode is enabled, the analog section of the ADC is discon-  
nected from the digital back end blocks and the test pattern is run  
through the output formatting block. Some of the test patterns are  
subject to output formatting, and some are not. The seed value for  
the PN sequence tests can be forced if the PN reset bits are used  
to hold the generator in reset mode by setting Bit 4 or Bit 5 of  
Register 0x0D. These tests can be performed with or without  
an analog signal (if present, the analog signal is ignored), but  
they do require an encode clock. For more information, see the  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
The BIST is a thorough test of the digital portion of the selected  
AD9650 signal path. When enabled, the test runs from an internal  
pseudorandom noise (PN) source through the digital datapath  
starting at the ADC block output. The BIST sequence runs for  
512 cycles and stops. The BIST signature value for Channel A or  
Channel B is placed in Register 0x24 and Register 0x25. If one  
channel is chosen, its BIST signature is written to the two registers.  
If both channels are chosen, the results from Channel A are placed  
in the BIST signature registers.  
Rev. 0 | Page 36 of 44  
 
AD9650  
SERIAL PORT INTERFACE (SPI)  
The AD9650 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For detailed operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 93  
and Table 5.  
Other modes involving the CSB are available. When the CSB is  
held low indefinitely, which permanently enables the device,  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI secondary pin functions.  
CONFIGURATION USING THE SPI  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
Three pins define the SPI of this ADC: the SCLK/DFS pin, the  
SDIO/DCS pin, and the CSB pin (see Table 14). The SCLK/DFS  
(a serial clock) is used to synchronize the read and write data  
presented from and to the ADC. The SDIO/DCS (serial data  
input/output) is a dual-purpose pin that allows data to be sent  
to and read from the internal ADC memory map registers. The  
CSB (chip select bar) is an active-low control that enables or  
disables the read and write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is a  
readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input to  
an output at the appropriate point in the serial frame.  
Table 14. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
All data is composed of 8-bit words. Data can be sent in MSB-first  
mode or in LSB-first mode. MSB first is the default on power-up  
and can be changed via the SPI port configuration register. For  
more information about this and other features, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
CSB  
Chip select bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 93. Serial Port Interface Timing Diagram  
Rev. 0 | Page 37 of 44  
 
 
 
AD9650  
When the device is in SPI mode, the PDWN and OEB pins  
remain active. For SPI control of output enable and power-down,  
the OEB and PDWN pins should be set to their default states.  
HARDWARE INTERFACE  
The pins described in Table 14 comprise the physical interface  
between the user programming device and the serial port of the  
AD9650. The SCLK pin and the CSB pin function as inputs  
when using the SPI. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during  
readback.  
Table 15. Mode Selection  
External  
Voltage  
Pin  
Configuration  
SDIO/DCS  
AVDD (default) Duty cycle stabilizer enabled  
AGND  
AVDD  
Duty cycle stabilizer disabled  
Twos complement enabled  
The SPI is flexible enough to be controlled by either FPGAs or  
microcontrollers. One method for SPI configuration is  
described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
SCLK/DFS  
OEB  
AGND (default) Offset binary enabled  
AVDD Outputs in high impedance  
AGND (default) Outputs enabled  
AVDD  
Chip in power-down or  
standby  
AGND (default) Normal operation  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9650 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
PDWN  
SPI ACCESSIBLE FEATURES  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail in  
the AN-877 Application Note, Interfacing to High Speed ADCs via  
SPI. The AD9650 part-specific features are described in detail  
following Table 17, the external memory map register table.  
Some pins serve a dual function when the SPI is not being used.  
When the pins are strapped to AVDD or ground during device  
power-on, they are associated with a specific function. The  
Digital Outputs section describes the strappable functions  
supported on the AD9650.  
Table 16. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Allows the user to set either power-down mode  
or standby mode  
Allows the user to access the DCS, set the  
clock divider, set the clock divider phase, and  
enable the sync  
Allows the user to digitally adjust the  
converter offset  
Allows the user to set test modes to have  
known data on output bits  
CONFIGURATION WITHOUT THE SPI  
Clock  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS pin, the SCLK/DFS pin, the OEB pin, and the  
PDWN pin serve as standalone CMOS-compatible control pins.  
When the device is powered up, it is assumed that the user  
intends to use the pins as static control lines for the duty cycle  
stabilizer, output data format, output enable, and power-down  
feature control. In this mode, the CSB chip select bar should be  
connected to AVDD, which disables the serial port interface.  
Offset  
Test I/O  
Output Mode  
Allows the user to set the output mode,  
including LVDS  
Output Phase  
Output Delay  
VREF  
Allows the user to set the output clock polarity  
Allows the user to vary the DCO delay  
Allows the user to set the reference voltage  
Rev. 0 | Page 38 of 44  
 
 
AD9650  
MEMORY MAP  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
READING THE MEMORY MAP REGISTER TABLE  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into four sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
channel index and transfer registers (Address 0x05 and  
Address 0xFF); the ADC functions registers, including setup,  
control, and test (Address 0x08 to Address 0x30); and the digital  
feature control register (Address 0x100).  
Transfer Register Map  
Address 0x08 through Address 0x18 and Address 0x30 are  
shadowed. Writes to these addresses do not affect part  
operation until a transfer command is issued by writing 0x01 to  
Address 0xFF, setting the transfer bit. This allows these registers  
to be updated internally and simultaneously when the transfer  
bit is set. The internal update takes place when the transfer bit is  
set, and the bit autoclears.  
The memory map register table (see Table 17) documents the  
default hexadecimal value for each hexadecimal address shown.  
The column with the heading Bit 7 (MSB) is the start of the  
default hexadecimal value given. For more information on this  
function and others, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI. This application note details the  
functions controlled by Register 0x00 to Register 0xFF. The  
remaining register, Register 0x100, is documented in the Memory  
Map Register Table section.  
Channel-Specific Registers  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed differently for each channel. In  
these cases, channel address locations are internally duplicated for  
each channel. These registers and bits are designated in Table 17  
as local. These local registers and bits can be accessed by setting  
the appropriate Channel A or Channel B bits in Register 0x05.  
If both bits are set, the subsequent write affects the registers of  
both channels. In a read cycle, only Channel A or Channel B  
should be set to read one of the two registers. If both bits are set  
during an SPI read cycle, the part returns the value for Channel A.  
Registers and bits designated as global in Table 17 affect the entire  
part or the channel features for which independent settings are not  
allowed between channels. The settings in Register 0x05 do not  
affect the global registers and bits.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x17).  
Default Values  
After the AD9650 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
Logic Levels  
An explanation of logic level terminology follows:  
Rev. 0 | Page 39 of 44  
 
 
AD9650  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17. Memory Map Registers  
Default Default  
Address Register  
(Hex) Name  
Chip Configuration Registers  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x00  
SPI port  
configuration  
(global)  
0
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
0
0x18  
The nibbles  
are mirrored  
so that LSB-  
first mode or  
MSB-first mode  
registers  
correctly,  
regardless of  
shift mode.  
0x01  
0x02  
Chip ID  
(global)  
8-bit Chip ID[7:0]  
(AD9650 = 0x32, default)  
0x32  
0x03  
Read only.  
Chip grade  
(global)  
Open  
Speed grade ID  
Open  
Open  
Open  
Open  
Open  
Speed grade  
ID used to  
differentiate  
devices; read  
only.  
001 = 105 MSPS  
010 = 80 MSPS  
011 = 65 MSPS  
100 = 25 MSPS  
Channel Index and Transfer Registers  
0x05  
Channel  
index  
Open  
Open  
Open  
Open  
Open  
Data  
Channel  
B
Data  
Channel  
A
Bits are set  
to determine  
which device  
on the chip  
receives the  
next write  
(default)  
(default)  
command;  
applies to local  
registers only.  
0xFF  
Transfer  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Transfer  
0x00  
0x80  
Synchronously  
transfers data  
from the  
master shift  
register to the  
slave.  
ADC Functions  
0x08  
Power  
modes (local)  
1
External  
power-  
down pin  
function  
(local)  
0 = pdwn  
1 = stndby  
Internal power-  
down mode (local)  
00 = normal  
operation  
01 = full power-  
down  
10 = standby  
11 = normal  
operation  
Determines  
various generic  
modes of chip  
operation.  
0x09  
0x0B  
Global clock  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty  
cycle  
stabilizer  
(default)  
0x01  
0x00  
Clock divide  
(global)  
Clock divide ratio  
Clock divide  
values other  
than 000  
automatically  
cause the duty  
cycle stabilizer  
to become  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
active.  
Rev. 0 | Page 40 of 44  
 
 
 
AD9650  
Default Default  
Address Register  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Open  
Bit 2  
Bit 1  
0x0D  
Test mode  
(local)  
Open  
Open  
ResetPN  
long gen  
Reset  
PN short  
gen  
Output test mode  
000 = off (default)  
001 = midscale short  
010 = positive FS  
011 = negative FS  
0x00  
When this  
register is set,  
the test data  
is placed on  
the output  
pins in place of  
normal data.  
100 = alternating checkerboard  
101 = PN long sequence  
110 = PN short sequence  
111 = one/zero word toggle  
0x0E  
0x0F  
BIST enable  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Reset BIST Open  
sequence  
BIST  
enable  
0x04  
ADC input  
(global)  
Open  
Open  
Common- 0x00  
mode  
servo  
enable  
0x10  
0x14  
Offset adjust  
(local)  
Offset adjust in LSBs from +127 to −128  
(twos complement format)  
0x00  
Output  
mode  
Drive  
Output  
type  
CMOS  
output  
0 = CMOS interleave  
Output  
enable  
bar  
Open  
Output  
invert  
(local)  
Output format  
00 = offset binary  
01 = twos  
complement  
01 = gray code  
11 = offset binary  
(local)  
0x00  
Configures the  
outputs and  
the format of  
the data.  
strength  
0 = ANSI  
LVDS;  
(must be  
written  
low)  
(local)  
1 = LVDS  
(global)  
enable  
1 =  
(global)  
reduced  
swing  
LVDS  
(global)  
0x16  
Clock phase  
control  
(global)  
Invert  
DCO  
clock  
Open  
Open  
Open  
Open  
Input clock divider phase adjust  
000 = no delay  
0x00  
Allows  
selection of  
clock delays  
into the input  
clock divider.  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
0x17  
DCO output  
delay (global)  
Open  
Open  
Open  
DCO clock delay  
(delay = 2500 ps × register value/31)  
00000 = 0 ps  
0x00  
00001 = 81 ps  
00010 = 161 ps  
11110 = 2419 ps  
11111 = 2500 ps  
0x24  
0x25  
0x30  
BIST signature  
LSB (local)  
BIST signature[7:0]  
0x00  
0x00  
0x00  
Read only.  
Read only.  
BIST signature  
MSB (local)  
BIST signature[15:8]  
Dither  
enable (local)  
Open  
Open  
Open  
Open  
Open  
Open  
Dither  
enable  
Open  
Open  
Open  
Open  
Open  
Digital Feature Control  
0x100  
SYNC control  
(global)  
Open  
Clock  
divider  
next  
Clock  
divider  
SYNC  
Master  
SYNC  
enable  
0x00  
SYNC  
only  
enable  
Rev. 0 | Page 41 of 44  
AD9650  
Bit 1—Clock Divider SYNC Enable  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Bit 1 gates the SYNC pulse to the clock divider. The SYNC  
signal is enabled when Bit 1 is high and Bit 0 is high. This is  
continuous SYNC mode.  
SYNC Control (Register 0x100)  
Bits[7:3]—Reserved  
Bit 0—Master SYNC Enable  
Bit 0 must be high to enable any of the SYNC functions. If the  
SYNC capability is not used, this bit should remain low to  
conserve power.  
Bit 2—Clock Divider Next SYNC Only  
If the master SYNC enable bit (Address 0x100, Bit 0) and the clock  
divider SYNC enable bit (Address 0x100, Bit 1) are high, Bit 2  
allows the clock divider to synchronize to the first SYNC pulse it  
receives and to ignore the rest. The clock divider SYNC enable bit  
(Address 0x100, Bit 1) resets after it synchronizes.  
Rev. 0 | Page 42 of 44  
 
AD9650  
APPLICATIONS INFORMATION  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. These vias should be filled or plugged to  
prevent solder wicking through the vias, which can compromise  
the connection.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9650 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements that are needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the ADC and the PCB. For detailed  
information about packaging and PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP), at www.analog.com.  
Power and Ground Recommendations  
When connecting power to the AD9650, it is recommended that  
two separate 1.8 V supplies be used. Use one supply for the analog  
outputs (AVDD); use a separate supply for the digital outputs  
(DRVDD). For both AVDD and DRVDD, several different  
decoupling capacitors should be used to cover both high and  
low frequencies. Place these capacitors close to the point of  
entry at the PCB level and close to the pins of the part, with  
minimal trace length.  
A single PCB ground plane should be sufficient when using the  
AD9650. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 ꢀF  
capacitor, as shown in Figure 80.  
RBIAS  
LVDS Operation  
The AD9650 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
The AD9650 defaults to CMOS output mode on power-up.  
If LVDS operation is desired, this mode must be programmed,  
using the SPI configuration registers after power-up. When the  
AD9650 powers up in CMOS mode with LVDS termination  
resistors (100 Ω) on the outputs, the DRVDD current can be  
higher than the typical value until the part is placed in LVDS  
mode. This additional DRVDD current does not cause damage  
to the AD9650, but it should be taken into account when consid-  
ering the maximum DRVDD current for the part.  
Reference Decoupling  
The VREF pin should be externally decoupled to ground with  
a low ESR, 1.0 ꢀF capacitor in parallel with a low ESR, 0.1 ꢀF  
ceramic capacitor.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9650 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
To avoid this additional DRVDD current, the AD9650 outputs  
can be disabled at power-up by taking the OEB pin high. After  
the part is placed in LVDS mode via the SPI port, the OEB pin  
can be taken low to enable the outputs.  
Exposed Paddle Thermal Heat Slug Recommendations  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask) copper plane on the PCB should mate to the  
AD9650 exposed paddle, Pin 0.  
Rev. 0 | Page 43 of 44  
 
 
AD9650  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
7.65  
7.50 SQ  
7.35  
8.75  
BSC SQ  
TOP VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
16  
17  
33  
32  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 94. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-6  
CP-64-6  
AD9650BCPZ-25  
AD9650BCPZRL7-25  
AD9650BCPZ-65  
AD9650BCPZRL7-65  
AD9650BCPZ-80  
AD9650BCPZRL7-80  
AD9650BCPZ-105  
AD9650BCPZRL7-105  
AD9650-25EBZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
AD9650-65EBZ  
Evaluation Board  
AD9650-80EBZ  
Evaluation Board  
AD9650-105EBZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08919-0-7/10(0)  
Rev. 0 | Page 44 of 44  
 
 
 
 
 

相关型号:

AD9650BCPZRL7-80

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9650USVZ-105EP

16-Bit, 25 MSPS/65 MSPS/80 MSPS/105 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9650USVZR7-105EP

Dual 16-Bit, 105 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9652

Analog-to-Digital Converter (ADC)
ADI

AD9652-310EBZ

Analog-to-Digital Converter (ADC)
ADI

AD9652BBCZ-310

Analog-to-Digital Converter (ADC)
ADI

AD9652BBCZRL7-310

Analog-to-Digital Converter (ADC)
ADI

AD9652_17

Analog-to-Digital Converter (ADC)
ADI

AD9653

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9653-125EBZ

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9653BCPZ-125

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI

AD9653BCPZRL7-125

Quad, 16-Bit, 125 MSPS, Serial LVDS 1.8 V
ADI