ADA4937-2YCPZ-RL [ADI]

Ultralow Distortion Differential ADC Driver;
ADA4937-2YCPZ-RL
型号: ADA4937-2YCPZ-RL
厂家: ADI    ADI
描述:

Ultralow Distortion Differential ADC Driver

文件: 总28页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion  
Differential ADC Driver  
ADA4937-1/ADA4937-2  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
ADA4937-1  
Extremely low harmonic distortion (HD)  
−112 dBc HD2 at 10 MHz  
−84 dBc HD2 at 70 MHz  
−77 dBc HD2 at 100 MHz  
−102 dBc HD3 at 10 MHz  
−91 dBc HD3 at 70 MHz  
−84 dBc HD3 at 100 MHz  
–FB  
+IN  
1
2
3
4
12  
PD  
11 –OUT  
10  
9
–IN  
+OUT  
+FB  
V
OCM  
Low input voltage noise: 2.2 nV/√Hz  
High speed  
−3 dB bandwidth of 1.9 GHz, G = 1  
Slew rate: 6000 V/μs, 25% to 75%  
Fast overdrive recovery of 1 ns  
0.5 mV typical offset voltage  
Externally adjustable gain  
Figure 1. ADA4937-1  
ADA4937-2  
Differential-to-differential or single-ended-to-differential  
operation  
Adjustable output common-mode voltage  
Single-supply operation: 3.3 V to 5 V  
1
2
3
4
5
6
18  
17  
16  
15  
14  
–IN1  
+OUT1  
+FB1  
V
OCM1  
–V  
–V  
+V  
S1  
S2  
S2  
+V  
S1  
–FB2  
+IN2  
PD2  
APPLICATIONS  
13 –OUT2  
ADC drivers  
Single-ended-to-differential converters  
IF and baseband gain blocks  
Differential buffers  
Figure 2. ADA4937-2  
–55  
–60  
Line drivers  
HD2, V = 5.0V  
S
HD3, V = 5.0V  
S
GENERAL DESCRIPTION  
HD2, V = 3.3V  
S
–65  
HD3, V = 3.3V  
S
The ADA4937-1/ADA4937-2 are low noise, ultralow distortion,  
high speed differential amplifiers. They are an ideal choice for  
driving high performance ADCs with resolutions up to 16 bits  
from dc to 100 MHz. The adjustable level of the output common  
mode allows the ADA4937-1/ADA4937-2 to match the input  
of the ADC. The internal common-mode feedback loop also  
provides exceptional output balance as well as suppression of  
even-order harmonic distortion products.  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–105  
–110  
–115  
With the ADA4937-1/ADA4937-2, differential gain configurations  
are easily realized with a simple external feedback network of  
four resistors that determine the closed-loop gain of the amplifier.  
1
10  
FREQUENCY (MHz)  
100  
Figure 3. Harmonic Distortion vs. Frequency  
The ADA4937-1/ADA4937-2 are fabricated using Analog Devices,  
Inc., proprietary silicon-germanium (SiGe), complementary  
bipolar process, enabling them to achieve very low levels of  
distortion with an input voltage noise of only 2.2 nV/√Hz.  
The low dc offset and excellent dynamic performance of the  
ADA4937-1/ADA4937-2 make them well-suited for a wide  
variety of data acquisition and signal processing applications.  
The ADA4937-1/ADA4937-2 are available in a Pb-free, 3 mm ×  
3 mm, 16-lead LFCSP (ADA4937-1, single) or a Pb-free, 4 mm ×  
4 mm, 24-lead LFCSP (ADA4937-2, dual). The pinout has been  
optimized to facilitate PCB layout and minimize distortion.  
The ADA4937-1/ADA4937-2 are specified to operate over the  
automotive (−40°C to +105°C) temperature range and between  
3.3 V and 5 V supplies.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analyzing an Application Circuit ............................................ 18  
Setting the Closed-Loop Gain .................................................. 18  
Estimating the Output Noise Voltage...................................... 18  
Impact of Mismatches in the Feedback Networks................. 19  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Operation ............................................................................... 3  
3.3 V Operation ............................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits..................................................................................... 16  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
Calculating the Input Impedance for an Application Circuit  
....................................................................................................... 19  
Input Common-Mode Voltage Range in Single-Supply  
Applications ................................................................................ 20  
Setting the Output Common-Mode Voltage.......................... 20  
Power-Down Operation ............................................................ 20  
Layout, Grounding, and Bypassing.............................................. 22  
High Performance ADC Driving ................................................. 23  
3.3 V Operation .......................................................................... 25  
Outline Dimensions ....................................................................... 26  
Ordering Guide .......................................................................... 26  
REVISION HISTORY  
6/2016—Rev. E to Rev. F  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide .......................................................... 26  
Changes to Figure 5 and Figure 6....................................................8  
Added EP Row to Table 7 and EP Row to Table 8 ........................8  
Added Figure 46, Figure 47, and Figure 48; Renumbered  
Sequentially ..................................................................................... 15  
Changes to Table 9.......................................................................... 18  
Changes to Input Common-Mode Voltage Range in Single-  
Supply Applications Section.......................................................... 20  
Changes to Ordering Guide.......................................................... 26  
5/2015—Rev. D to Rev. E  
Changes to Table 6............................................................................ 7  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide .......................................................... 26  
8/2013—Rev. C to Rev. D  
11/2007—Rev. 0 to Rev. A  
Changes to Input Bias Current Parameter, Table 1...................... 3  
Changes to Input Bias Current Parameter, Table 3...................... 5  
Updated Outline Dimensions....................................................... 26  
Added the ADA4937-2......................................................Universal  
Changes to Features ..........................................................................1  
Changes to Specifications.................................................................3  
Changes to Figure 4...........................................................................7  
Changes to Typical Performance Characteristics..........................9  
Inserted Figure 44........................................................................... 15  
Added the Terminating a Single-Ended Input Section ............. 19  
Changes to Table 10 and Table 11 ................................................ 21  
Changes to Layout, Grounding, and Bypassing Section ........... 22  
Inserted Figure 59, Figure 60, and Figure 61.............................. 22  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide.......................................................... 26  
3/2010—Rev. B to Rev. C  
Changes to Table 2, Power Supply Parameter............................... 4  
Changes to Table 4, Power Supply Parameter............................... 6  
Changes to Figure 43...................................................................... 15  
Added the Power-Down Operation Section ............................... 20  
10/2009—Rev. A to Rev. B  
Changes to General Description Section ...................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Operating Temperature Range Parameter, Table 2.. 4  
Changes to Table 3............................................................................ 5  
Changes to Figure 4.......................................................................... 7  
5/2007—Revision 0: Initial Version  
Rev. F | Page 2 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
SPECIFICATIONS  
5 V OPERATION  
TA = 25°C, +VS = 5 V, V S = 0 V, V OCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, Gain (G) = +1, RL, dm = 1 kΩ, unless otherwise noted. All  
specifications refer to single-ended input and differential outputs, unless otherwise noted.  
±±IN to ±OUT Performance  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 2 V p-p  
VOUT, dm = 2 V p-p; 25% to 75%  
VOUT, dm = 2 V p-p  
1900  
200  
1700  
6000  
7
MHz  
MHz  
MHz  
V/µs  
ns  
Settling Time  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VIN = 0 V to 1.5 V step; G = 3.16  
See Figure 51 for distortion test circuit  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
f1 = 70 MHz; f2 = 70.1 MHz; VOUT, dm = 2 V p-p  
f = 100 kHz  
<1  
ns  
−112  
−84  
−77  
−102  
−91  
−84  
−91  
2.2  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
dB  
Third Harmonic  
IMD  
Voltage Noise (RTI)  
Input Current Noise  
Noise Figure  
Crosstalk (ADA4937-2)  
INPUT CHARACTERISTICS  
Offset Voltage  
f = 100 kHz  
4
15  
−72  
G = 4; RT = 136 Ω; RF = 200 Ω; RG = 37 Ω; f = 100 MHz  
f = 100 MHz  
dB  
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = 2.5 V  
TMIN to TMAX variation  
−2.5  
−50  
−2  
0.5  
1
−30  
0.01  
+0.5  
6
3
1
+2.5  
−10  
+2  
mV  
µV/°C  
µA  
µA/°C  
µA  
MΩ  
MΩ  
pF  
Input Bias Current  
TMIN to TMAX variation  
Input Offset Current  
Input Resistance  
Differential  
Common mode  
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
0.3 to 3.0  
−80  
V
dB  
∆VOUT, dm/∆VIN, cm; ∆VIN, cm  
=
1 V  
−69  
0.9  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Output Balance Error  
Maximum ∆VOUT; single-ended output; RF = RG = 10 kΩ  
Per amplifier; RL, dm = 20 Ω; f = 10 MHz  
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V; f = 10 MHz;  
see Figure 50 for test circuit  
4.1  
V
mA  
dB  
70  
−61  
Rev. F | Page 3 of 28  
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
VOCM to ±OUT Performance  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Slew Rate  
Input Voltage Noise (RTI)  
VOCM INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
440  
1150  
7.5  
MHz  
V/µs  
nV/√Hz  
VIN = 1.5 V to 3.5 V; 25% to 75%  
f = 100 kHz  
1.2  
8
3.8  
12  
7.1  
V
10  
2
0.5  
−75  
0.98  
kΩ  
mV  
µA  
dB  
V/V  
VOS, cm = VOUT, cm; VDIN+ = VDIN− = +VS/2  
ΔVOUT, dm/ΔVOCM; ΔVOCM  
ΔVOUT, cm/ΔVOCM; ΔVOCM  
=
=
1 V  
1 V  
−70  
0.97  
Gain  
1.00  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
3.0  
38.0  
5.25  
42.0  
V
Enabled  
TMIN to TMAX variation  
Powered down  
39.5  
17  
0.3  
mA  
µA/°C  
mA  
dB  
0.02  
−70  
0.5  
Power Supply Rejection Ratio  
POWER-DOWN (PD)  
ΔVOUT, dm/ΔVS; ΔVS = 1 V  
−90  
PD Input Voltage  
Powered down  
Enabled  
≤1  
≥2  
1
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
200  
PD Bias Current per Amplifier  
Enabled  
PD = 5 V  
PD = 0 V  
10  
30  
50  
µA  
µA  
°C  
Powered Down  
−300  
−40  
−200  
−150  
+105  
OPERATING TEMPERATURE RANGE  
Rev. F | Page 4 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
3.3 V OPERATION  
TA = 25°C, +VS = 3.3 V, VS = 0 V, V OCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = 1, RL, dm = 1 kΩ, unless otherwise noted. All  
specifications refer to single-ended input and differential outputs, unless otherwise noted.  
±±IN to ±OUT Performance  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Small Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Large Signal Bandwidth  
Slew Rate  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 0.1 V p-p  
VOUT, dm = 2 V p-p  
VOUT, dm = 2 V p-p; 25% to 75%  
VOUT, dm = 2 V p-p  
1800  
200  
1300  
4000  
7
MHz  
MHz  
MHz  
V/µs  
ns  
Settling Time  
Overdrive Recovery Time  
NOISE/HARMONIC PERFORMANCE  
Second Harmonic  
VIN = 0 V to 1.0 V step; G = 3.16  
See Figure 51 for distortion test circuit  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
VOUT, dm = 2 V p-p; 10 MHz  
VOUT, dm = 2 V p-p; 70 MHz  
VOUT, dm = 2 V p-p; 100 MHz  
f1 = 70 MHz; f2 = 70.1 MHz; VOUT, dm = 2 V p-p  
f = 100 kHz  
<1  
ns  
−113  
−85  
−77  
−95  
−77  
−71  
−87  
2.2  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
dB  
Third Harmonic  
IMD  
Voltage Noise (RTI)  
Input Current Noise  
Noise Figure  
Crosstalk (ADA4937-2)  
INPUT CHARACTERISTICS  
Offset Voltage  
f = 100 kHz  
4
15  
−72  
G = 4; RT = 136 Ω; RF = 200 Ω; RG = 37 Ω; f = 100 MHz  
f = 100 MHz  
dB  
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = +VS/2  
TMIN to TMAX variation  
−2.5  
−50  
0.5  
1
−30  
0.01  
6
3
1
+2.5  
−10  
mV  
µV/°C  
µA  
µA/°C  
MΩ  
MΩ  
pF  
Input Bias Current  
Input Resistance  
TMIN to TMAX variation  
Differential  
Common mode  
Input Capacitance  
Input Common-Mode Voltage  
CMRR  
0.3 to 1.2  
−80  
V
dB  
∆VOUT, dm/∆VIN, cm; ∆VIN, cm  
=
1 V  
−67  
0.8  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Output Balance Error  
Maximum ∆VOUT; single-ended output; RF = RG = 10 kΩ  
Per amplifier; RL, dm = 20 Ω; f = 10 MHz  
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V; f = 10 MHz;  
see Figure 50 for test circuit  
2.5  
V
mA  
dB  
47  
−61  
Rev. F | Page 5 of 28  
 
ADA4937-1/ADA4937-2  
Data Sheet  
VOCM to ±OUT Performance  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VOCM DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Slew Rate  
Input Voltage Noise (RTI)  
VOCM INPUT CHARACTERISTICS  
Input Voltage Range  
Input Resistance  
Input Offset Voltage  
Input Bias Current  
VOCM CMRR  
440  
900  
7.5  
MHz  
V/µs  
nV/√Hz  
VIN = 0.9 V to 2.4 V; 25% to 75%  
f = 100 kHz  
1.2  
2.1  
7.1  
V
10  
2
0.5  
−75  
0.98  
kΩ  
mV  
µA  
dB  
V/V  
VOS, cm = VOUT, cm; VDIN+ = VDIN− = 1.67 V  
∆VOUT, dm/∆VOCM; ∆VOCM  
∆VOUT, cm/∆VOCM; ∆VOCM  
=
=
1 V  
1 V  
−70  
0.97  
Gain  
1.00  
POWER SUPPLY  
Operating Range  
Quiescent Current per Amplifier  
3.0  
36  
5.25  
40  
V
Enabled  
TMIN to TMAX variation  
Powered down  
38  
17  
0.2  
−90  
mA  
µA/°C  
mA  
dB  
0.02  
−70  
0.5  
Power Supply Rejection Ratio  
POWER-DOWN (PD)  
∆VOUT, dm/∆VS; ∆VS = 1 V  
PD Input Voltage  
Powered down  
Enabled  
≤1  
≥2  
1
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
200  
PD Bias Current per Amplifier  
Enabled  
PD = 3.3 V  
PD = 0 V  
10  
20  
30  
µA  
µA  
°C  
Powered Down  
−200  
−40  
−120  
−100  
+105  
OPERATING TEMPERATURE RANGE  
Rev. F | Page 6 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
ABSOLUTE MAXIMUM RATINGS  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive. The quiescent power is the voltage  
between the supply pins (VS) times the quiescent current (IS).  
The power dissipated due to the load drive depends upon the  
particular application. The power due to load drive is calculated  
by multiplying the load current by the associated voltage drop  
across the device. RMS voltages and currents must be used in  
these calculations.  
Table 5.  
Parameter  
Rating  
Supply Voltage  
5.5 V  
Power Dissipation  
See Figure 4  
−65°C to +125°C  
−40°C to +105°C  
300°C  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package  
leads/exposed pad from metal traces, through holes, ground,  
and power planes reduces θJA.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the ADA4937-1 single  
16-lead LFCSP (95°C/W), and the ADA4937-2 dual 24-lead  
LFCSP (67°C/W) on a JEDEC standard 4-layer board.  
3.5  
THERMAL RESISTANCE  
θJA is specified for the device (including exposed pad) soldered  
to a high thermal conductivity 2s2p circuit board, as described  
in EIA/JESD51-7.  
3.0  
2.5  
Table 6. Thermal Resistance  
ADA4937-2  
Package Type  
θJA  
95  
67  
θJC  
Unit  
°C/W  
°C/W  
2.0  
16-Lead LFCSP (Exposed Pad)  
24-Lead LFCSP (Exposed Pad)  
12.6  
8.78  
1.5  
ADA4937-1  
1.0  
Maximum Power ±issipation  
The maximum safe power dissipation in the ADA4937-1/  
0.5  
ADA4937-2 packages is limited by the associated rise in junction  
temperature (TJ) on the die. At approximately 150°C, which is  
the glass transition temperature, the plastic changes the properties.  
Even temporarily exceeding this temperature limit can change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the ADA4937-1/  
ADA4937-2. Exceeding a junction temperature of 150°C for  
an extended period can result in changes in the silicon devices,  
potentially causing failure.  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature, 4-Layer Board  
ESD CAUTION  
Rev. F | Page 7 of 28  
 
 
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
18  
17  
–IN1  
+OUT1  
–FB  
+IN  
–IN  
1
2
3
4
12 PD  
+FB1  
V
OCM1  
ADA4937-1  
TOP VIEW  
(Not to Scale)  
ADA4937-2  
11 –OUT  
16 –V  
+V  
S1  
S2  
S2  
TOP VIEW  
15  
14  
13  
–V  
+V  
S1  
10  
9
+OUT  
(Not to Scale)  
–FB2  
+IN2  
PD2  
+FB  
V
OCM  
–OUT  
2
NOTES  
1. EXPOSED PADDLE. THE EXPOSED PAD IS NOT  
ELECTRICALLY CONNECTED TO THE DEVICE. IT IS  
TYPICALLY SOLDERED TO GROUND OR A POWER  
PLANE ON THE PCB THAT IS THERMALLY CONDUCTIVE.  
NOTES  
1. EXPOSED PADDLE. THE EXPOSED PAD IS NOT  
ELECTRICALLY CONNECTED TO THE DEVICE. IT IS  
TYPICALLY SOLDERED TO GROUND OR A POWER  
PLANE ON THE PCB THAT IS THERMALLY CONDUCTIVE.  
Figure 5. ADA4937-1 Pin Configuration  
Figure 6. ADA4937-2 Pin Configuration  
Table 7. ADA4937-1 Pin Function Descriptions  
Pin No. Mnemonic Description  
Table 8. ADA4937-2 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
−FB  
Negative Output for Feedback  
Component Connection.  
1
2
3, 4  
5
6
7
8
9, 10  
11  
12  
−IN1  
+FB1  
+VS1  
−FB2  
+IN2  
−IN2  
+FB2  
+VS2  
VOCM2  
+OUT2  
−OUT2  
PD2  
Negative Input Summing Node 1.  
Positive Output Feedback Pin 1.  
Positive Supply Voltage 1.  
Negative Output Feedback Pin 2.  
Positive Input Summing Node 2.  
Negative Input Summing Node 2.  
Positive Output Feedback Pin 2.  
Positive Supply Voltage 2.  
Output Common-Mode Voltage 2.  
Positive Output 2.  
2
3
4
+IN  
−IN  
+FB  
Positive Input Summing Node.  
Negative Input Summing Node.  
Positive Output for Feedback  
Component Connection.  
5 to 8  
9
10  
11  
12  
+VS  
Positive Supply Voltage.  
VOCM  
+OUT  
−OUT  
PD  
Output Common-Mode Voltage.  
Positive Output for Load Connection.  
Negative Output for Load Connection.  
Power-Down Pin.  
13  
14  
Negative Output 2.  
Power-Down Pin 2.  
13 to 16 −VS  
EP  
Negative Supply Voltage.  
Exposed Paddle. The exposed pad is not  
electrically connected to the device. It is  
typically soldered to ground or a power  
plane on the PCB that is thermally  
conductive.  
15, 16  
17  
18  
19  
20  
−VS2  
Negative Supply Voltage 2.  
Output Common-Mode Voltage 1.  
Positive Output 1.  
Negative Output 1.  
Power-Down Pin 1.  
VOCM1  
+OUT1  
−OUT1  
PD1  
21, 22  
23  
24  
−VS1  
−FB1  
+IN1  
Negative Supply Voltage 1.  
Negative Output Feedback Pin 1.  
Positive Input Summing Node 1.  
EP  
Exposed Paddle. The exposed pad is  
not electrically connected to the  
device. It is typically soldered to  
ground or a power plane on the PCB  
that is thermally conductive.  
Rev. F | Page 8 of 28  
 
Data Sheet  
ADA4937-1/ADA4937-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, +VS = 5 V, VS = 0 V, VOUT, dm = 2 V p-p, VOCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = 1, RL, dm = 1 kꢀ, unless otherwise  
noted. Refer to Figure 49 for the test setup circuit.  
6
6
3
3
0
0
–3  
–6  
–9  
–12  
–15  
–3  
–6  
–9  
–12  
–15  
G = +1, R = 200  
G = +1, R = 200  
F
F
G = +2, R = 402Ω  
G = +2, R = 402Ω  
F
F
G = +5, R = 402Ω  
G = +5, R = 402Ω  
F
F
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
Figure 7. Small Signal Frequency Response for Various Gains,  
VOUT, dm = 100 mV p-p  
Figure 10. Large Signal Frequency Response for Various Gains  
6
6
V
V
= 3.3V  
= 5.0V  
V
V
= 3.3V  
= 5.0V  
S
S
S
S
3
0
3
0
–3  
–3  
–6  
–6  
–9  
–9  
–12  
–15  
–12  
–15  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Large Signal Frequency Response for Various Supplies  
Figure 8. Small Signal Frequency Response for Various Supplies,  
VOUT, dm = 100 mV p-p  
6
6
+105°C  
+105°C  
+25°C  
+25°C  
–40°C  
–40°C  
3
3
0
–3  
0
–3  
–6  
–6  
–9  
–9  
–12  
–12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Small Signal Frequency Response for Various Temperatures,  
VOUT, dm = 100 mV p-p  
Figure 12. Large Signal Frequency Response for Various Temperatures  
Rev. F | Page 9 of 28  
 
ADA4937-1/ADA4937-2  
Data Sheet  
6
6
3
R
R
R
= 1k  
= 100Ω  
= 200Ω  
R
R
R
= 1k  
= 100Ω  
= 200Ω  
L
L
L
L
L
L
3
0
0
–3  
–6  
–9  
–3  
–6  
–9  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Small Signal Frequency Response for Various Loads,  
VOUT, dm = 100 mV p-p  
Figure 16. Large Signal Frequency Response for Various Loads  
6
3
6
3
0
0
–3  
–6  
–9  
–12  
–3  
–6  
–9  
–12  
V
V
V
= 3.3V, G = +1, R = 200  
V
V
V
= 3.3V, G = +1, R = 200  
S
S
S
F
S
S
S
F
= 3.3V, G = +2, R = 402Ω  
= 3.3V, G = +2, R = 402Ω  
F
F
= 3.3V, G = +5, R = 402Ω  
= 3.3V, G = +5, R = 402Ω  
F
F
–15  
–15  
1
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
Figure 17. Large Signal Frequency Response for Various Gains, VS = 3.3 V  
Figure 14. Small Signal Frequency Response for Various Gains,  
VS = 3.3 V, VOUT, dm = 100 mV p-p  
6
6
3
3
0
0
–3  
–6  
–9  
–3  
–6  
–9  
–12  
–12  
–15  
G = +1, R = 348  
G = +1, R = 348  
F
F
G = +2, R = 348Ω  
G = +2, R = 348Ω  
F
F
G = +5, R = 348Ω  
G = +5, R = 348Ω  
F
F
–15  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
Figure 18. Large Signal Frequency Response for Various Gains, RF = 348 Ω  
Figure 15. Small Signal Frequency Response for Various Gains,  
VOUT, dm = 100 mV p-p, RF = 348 Ω  
Rev. F | Page 10 of 28  
Data Sheet  
ADA4937-1/ADA4937-2  
3
–50  
–60  
HD2, G = +1, R = 200Ω  
V
V
V
= 1.0V  
= 2.5V  
= 3.9V  
F
OCM  
HD3, G = +1, R = 200Ω  
F
OCM  
OCM  
HD2, G = +2, R = 402Ω  
F
HD3, G = +2, R = 402Ω  
0
–3  
F
–70  
–80  
–90  
–6  
–100  
–110  
–120  
–9  
–12  
1
10  
100  
1000  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19. Small Signal Frequency Response for Various VOCM  
Figure 22. Harmonic Distortion vs. Frequency and Gain  
1.5  
–50  
HD2, R = 1kΩ  
L
R
R
R
R
= 1k, ADA4937-1  
= 100, ADA4937-1  
= 1k, ADA4937-2  
= 100, ADA4937-2  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
L
L
L
L
HD3, R = 1kΩ  
L
HD2, R = 200Ω  
–60  
–70  
L
HD3, R = 200Ω  
L
–80  
–90  
–100  
–110  
–120  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 20. 0.1 dB Flatness Response for Various Loads  
Figure 23. Harmonic Distortion vs. Frequency and Load  
–55  
–60  
–50  
HD2, V = 5.0V  
HD2, V = 3.3V  
S
S
HD3, V = 5.0V  
HD3, V = 3.3V  
S
S
–60  
–70  
HD2, V = 3.3V  
HD2, V = 5.0V  
S
S
–65  
HD3, V = 3.3V  
HD3, V = 5.0V  
S
S
–70  
–75  
–80  
–80  
–85  
–90  
–90  
–100  
–110  
–120  
–130  
–95  
–100  
–105  
–110  
–115  
1
10  
100  
–1  
0
1
2
3
4
5
6
7
FREQUENCY (MHz)  
V
(V)  
OUT  
Figure 21. Harmonic Distortion vs. Frequency and Supply Voltage  
Figure 24. Harmonic Distortion vs. VOUT and Supply Voltage  
Rev. F | Page 11 of 28  
ADA4937-1/ADA4937-2  
Data Sheet  
–30  
0
–20  
HD2, f = 10MHz  
HD3, f = 10MHz  
HD2, f = 75MHz  
HD3, f = 75MHz  
–40  
–50  
–60  
–70  
–40  
–60  
–80  
–90  
–80  
–100  
–110  
–120  
–100  
–120  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
69.4  
69.6  
69.8  
70.0  
70.2  
70.4  
70.6  
1000  
1000  
V
(V)  
FREQUENCY (MHz)  
OCM  
Figure 25. Harmonic Distortion vs. VOCM and Frequency  
Figure 28. 70 MHz Intermodulation Distortion  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
HD2, f = 30MHz  
HD3, f = 30MHz  
HD2, f = 75MHz  
HD3, f = 75MHz  
R
= 200  
L
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
(V)  
1.7  
1.8  
1.9  
2.0  
1
10  
100  
V
FREQUENCY (MHz)  
OCM  
Figure 26. Harmonic Distortion vs. VOCM and Frequency, VS = 3.3 V  
Figure 29. CMRR vs. Frequency  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
HD2, 1V p-p  
HD3, 1V p-p  
HD2, 2V p-p  
R
= 200Ω  
L
–60  
HD3, 2V p-p  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. Harmonic Distortion vs. Frequency and VOUT, VS = 3.3 V  
Figure 30. Output Balance vs. Frequency  
Rev. F | Page 12 of 28  
Data Sheet  
ADA4937-1/ADA4937-2  
–30  
V
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
PSRR, V = 3.3V  
G = +1  
G = +2  
G = +4  
OUT, dm  
S
V
PSRR, V = 5.0V  
S
OUT, dm  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. PSRR vs. Frequency, RL = 200 Ω  
Figure 34. Noise Figure vs. Frequency  
0
5
4
S11  
S22  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
V
V
× 3.16  
IN  
OUT, dm  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
1
10  
100  
1000  
TIME (4ns/DIV)  
FREQUENCY (MHz)  
Figure 32. Return Loss (S11, S22) vs. Frequency  
Figure 35. Overdrive Recovery Time (Pulse Input)  
–55  
–60  
5
4
SFDR, R = 1kΩ  
L
V
V
× 3  
IN  
OUT, dm  
SFDR, R = 200Ω  
L
–65  
3
–70  
2
–75  
1
–80  
–85  
0
–90  
–1  
–2  
–3  
–4  
–5  
–95  
–100  
–105  
–110  
–115  
+V = +2.5V  
S
–V = –2.5V  
S
0
100  
200  
300  
400  
500  
600  
1
10  
FREQUENCY (MHz)  
100  
TIME (ns)  
Figure 33. Spurious-Free Dynamic Range vs. Frequency and Load  
Figure 36. Overdrive Amplitude Characteristics (Triangle Wave Input)  
Rev. F | Page 13 of 28  
ADA4937-1/ADA4937-2  
Data Sheet  
60  
55  
50  
45  
40  
35  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+105°C  
+55°C  
+25°C  
0°C  
30  
+25°C  
+105°C  
25  
+55°C  
20  
0°C  
15  
–40°C  
–40°C  
10  
5
0
1.0  
0
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
POWER-DOWN VOLTAGE (V)  
POWER-DOWN VOLTAGE (V)  
PD  
PD  
for Various Temperatures, VS = 3.3 V  
Figure 37. Supply Current vs.  
for Various Temperatures  
Figure 40. Supply Current vs.  
0.20  
3.5  
3.0  
+V = +2.5V  
+V = +2.5V  
S
S
V
V
= 4V p-p  
= 2V p-p  
OUT, dm  
OUT, dm  
–V = –2.5V  
–V = –2.5V  
S
S
0.15  
0.10  
0.05  
0
V
= 0V  
V = 0V  
OCM  
OCM  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–0.05  
–0.10  
–0.15  
–0.20  
TIME (1ns/DIV)  
TIME (1ns/DIV)  
Figure 41. Large Signal Pulse Response  
Figure 38. Small Signal Pulse Response  
4.00  
3.75  
3.50  
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
V
= +5V  
S
V
= +5V  
S
G = 1  
G = 1  
R
= 1kΩ  
L, dm  
R
= 1k  
L, dm  
TIME (2ns/DIV)  
TIME (2ns/DIV)  
Figure 42. Large Signal VOCM Pulse Response  
Figure 39. Small Signal VOCM Pulse Response  
Rev. F | Page 14 of 28  
Data Sheet  
ADA4937-1/ADA4937-2  
10  
9
8
7
6
5
4
3
2
1
0
10  
G = 1  
POWER-DOWN PULSE  
1
OUTPUT  
0.1  
0.01  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0.1  
1
10  
100  
1k  
TIME (ms)  
FREQUENCY (MHz)  
PD  
Figure 46. Closed-Loop Output Impedance  
Figure 43.  
Response vs. Time  
2
1
1.0  
–40  
–50  
–60  
V
IN  
INPUT2, OUTPUT1  
0.5  
0.1  
–70  
SETTLING ERROR  
–80  
0
0
–0.1  
–90  
–100  
–110  
–120  
–130  
–140  
INPUT1, OUTPUT2  
–1  
–2  
–0.5  
–1.0  
0.3  
1
10  
FREQUENCY (MHz)  
100  
1000  
TIME (1ns/DIV)  
Figure 44. Crosstalk vs. Frequency for ADA4937-2  
Figure 47. 0.1% Settling Time  
100  
10  
1
70  
50  
PHASE  
60  
50  
0
GAIN  
–50  
–100  
–150  
–200  
–250  
–300  
40  
30  
20  
10  
0
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k 100k 1M 10M 100M 1G 10G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. Voltage Spectral Noise Density, RTI  
Figure 48. Open-Loop Gain and Phase vs. Frequency  
Rev. F | Page 15 of 28  
ADA4937-1/ADA4937-2  
TEST CIRCUITS  
Data Sheet  
200  
5V  
50Ω  
200Ω  
V
V
IN  
OCM  
61.9Ω  
ADA4937  
1kΩ  
200Ω  
27.5Ω  
200Ω  
Figure 49. Equivalent Basic Test Circuit  
200  
5V  
50Ω  
200Ω  
50Ω  
V
V
IN  
OCM  
61.9Ω  
ADA4937  
200Ω  
50Ω  
27.5Ω  
200Ω  
Figure 50. Test Circuit for Output Balance  
200  
5V  
0.1µF  
50Ω  
200Ω  
412Ω  
FILTER  
FILTER  
61.9Ω  
V
V
IN  
OCM  
ADA4937  
0.1µF  
200Ω  
412Ω  
27.5Ω  
200Ω  
Figure 51. Test Circuit for Distortion Measurements  
Rev. F | Page 16 of 28  
 
 
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
TERMINOLOGY  
–FB  
Common-Mode Voltage  
Common-mode voltage refers to the average of two node  
voltages. The output common-mode voltage is defined as  
R
F
R
G
+IN  
–OUT  
+D  
IN  
V
R
V
OUT, dm  
OCM  
L, dm  
ADA4937  
V
OUT, cm = (V+OUT + V−OUT)/2  
–D  
IN  
–IN  
+OUT  
R
G
R
F
Output Balance  
+FB  
Output balance is a measure of how close the differential signals  
are to being equal in amplitude and opposite in phase. Output  
balance is most easily determined by placing a well-matched  
resistor divider between the differential voltage nodes and  
comparing the magnitude of the signal at the midpoint of the  
divider with the magnitude of the differential signal (see Figure 50).  
By this definition, output balance is the magnitude of the output  
common-mode voltage divided by the magnitude of the output  
differential mode voltage.  
Figure 52. Circuit Definitions  
Differential Voltage  
Differential voltage refers to the difference between two node  
voltages. For example, the output differential voltage (or  
equivalently, output differential-mode voltage) is defined as  
V
OUT, dm = (V+OUT V−OUT)  
where V+OUT and V−OUT refer to the voltages at the +OUT and  
−OUT terminals with respect to a common reference.  
VOUT, cm  
Output Balance Error  
VOUT , dm  
Rev. F | Page 17 of 28  
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
THEORY OF OPERATION  
The ADA4937-1/ADA4937-2 differ from conventional  
operational amplifiers in that they have two outputs whose voltages  
move in opposite directions. Like an operational amplifier, they  
rely on open-loop gain and negative feedback to force these  
outputs to the desired voltages. The ADA4937-1/ADA4937-2  
behave much like standard voltage feedback operational amplifiers,  
which makes it easier to perform single-ended-to-differential  
conversions, common-mode level shifting, and amplifications  
of differential signals. Also like an operational amplifier, the  
ADA4937-1/ADA4937-2 have high input impedance and low  
output impedance.  
SETTING THE CLOSED-LOOP GAIN  
The differential-mode gain of the circuit in Figure 52 can be  
determined by  
VOUT, dm  
RF  
RG  
VIN, dm  
This assumes that the input resistors (RG) and feedback resistors  
(RF) on each side are equal.  
ESTIMATING THE OUTPUT NOISE VOLTAGE  
To estimate the differential output noise of the ADA4937-1/  
ADA4937-2 use the noise model in Figure 53. The input-referred  
noise voltage density, vnIN, is modeled as a differential input, and  
the noise currents, inIN− and inIN+, appear between each input and  
ground. The noise currents are assumed to be equal and produce  
a voltage across the parallel combination of the gain and feedback  
resistances. vn, cm is the noise voltage density at the VOCM pin. Each  
of the four resistors contributes (4kTRx)1/2. Table 9 summarizes  
the input noise sources, the multiplication factors, and the output-  
referred noise density terms.  
Two feedback loops control the differential and common-mode  
output voltages. The differential feedback loop, set with external  
resistors, controls only the differential output voltage. The  
common-mode feedback loop controls only the common-mode  
output voltage. This architecture makes it easy to set the output  
common-mode level to any arbitrary value. It is forced, by internal  
common-mode feedback, to be equal to the voltage applied to  
the VOCM input without affecting the differential output voltage.  
The ADA4937-1/ADA4937-2 architecture results in outputs  
that are highly balanced over a wide frequency range without  
requiring tightly matched external components. The common-  
mode feedback loop forces the signal component of the output  
common-mode voltage to zero. This results in nearly perfectly  
balanced differential outputs that are identical in amplitude and  
are exactly 180° apart in phase.  
V
V
nRG1  
nRF1  
R
R
F1  
G1  
inIN+  
+
V
nIN  
V
nOD  
inIN–  
ADA4937  
V
OCM  
ANALYZING AN APPLICATION CIRCUIT  
V
nCM  
The ADA4937-1/ADA4937-2 use open-loop gain and negative  
feedback to force their differential and common-mode output  
voltages in such a way as to minimize the differential and  
common-mode error voltages. The differential error voltage is  
defined as the voltage between the differential inputs labeled  
+IN and −IN (see Figure 52). For most purposes, this voltage  
can be assumed to be zero. Similarly, the difference between the  
actual output common-mode voltage and the voltage applied to  
R
R
F2  
G2  
V
V
nRG2  
nRF2  
Figure 53. ADA4937-1/ADA4937-2 Noise Model  
VOCM can also be assumed to be zero. Starting from these two  
assumptions, any application circuit can be analyzed.  
Table 9. Output Noise Voltage Density Calculations  
Output Noise Voltage  
Density Term  
vnO1 = GN(vnIN  
vnO2 = GN[inIN− × (RG2||RF2)]  
vnO3 = GN[inIN+ × (RG1||RF1)]  
Input Noise Contribution Input Noise Term Input Noise Voltage Density Output Multiplication Factor  
Differential Input  
Inverting Input  
Noninverting Input  
VOCM Input  
vnIN  
inIN−  
inIN+  
vn, cm  
vnRG1  
vnRG2  
vnRF1  
vnRF2  
vnIN  
GN  
GN  
GN  
)
inIN− × (RG2||RF2)  
inIN+ × (RG1||RF1)  
vn, cm  
GN1 − β2)  
vnO4 = GN1 − β2)(vn, cm)  
Gain Resistor RG1  
Gain Resistor RG2  
Feedback Resistor RF1  
Feedback Resistor RF2  
(4kTRG1)1/2  
(4kTRG2)1/2  
(4kTRF1)1/2  
(4kTRF2)1/2  
GN(1 − β1)  
GN(1 − β2)  
1
1
vnO5 = GN(1 − β1)(4kTRG1)1/2  
vnO6 = GN(1 − β2)(4kTRG2)1/2  
vnO7 = (4kTRF1)1/2  
vnO8 = (4kTRF2)1/2  
Rev. F | Page 18 of 28  
 
 
 
 
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
R
F
Similar to the case of a conventional operational amplifier, the  
output noise voltage densities can be estimated by multiplying  
the input-referred terms at +IN and −IN by the appropriate output  
factor, where:  
ADA4937  
+V  
S
R
R
G
+IN  
+D  
–D  
IN  
V
OCM  
V
2
OUT, dm  
GN  
is the circuit noise gain.  
IN  
β1 β2  
RG1  
F1 RG1  
–IN  
G
RG2  
R
F
and  
are the feedback factors.  
β1   
β2   
R
RF2 RG2  
Figure 54. ADA4937-1/ADA4937-2 Configured for Balanced (Differential) Inputs  
When RF1/RG1 = RF2/RG2, then β1 = β2 = β, and the noise gain  
becomes  
For an unbalanced, single-ended input signal (see Figure 55),  
the input impedance is  
1
β
RF  
RG  
GN  
1  
RG  
RF  
RG RF  
RIN, cm  
Note that the output noise from VOCM goes to zero in this case.  
The total differential output noise density, vnOD, is the root-sum-  
square of the individual output noise terms.  
1   
2   
R
F
+V  
8
S
vnOD  
v2  
nOi  
R
R
G
S
i1  
R
V
OCM  
T
IMPACT OF MISMATCHES IN THE FEEDBACK  
NETWORKS  
V
ADA4937  
OUT, dm  
R
G
As previously mentioned in the Setting the Closed-Loop Gain  
section), even if the external feedback networks (RF/RG) are  
mismatched, the internal common-mode feedback loop still  
forces the outputs to remain balanced. The amplitudes of the  
signals at each output remain equal and 180° out of phase. The  
input-to-output differential mode gain varies proportionately to  
the feedback mismatch, but the output balance is unaffected.  
R
R
T
S
R
F
Figure 55. ADA4937-1/ADA4937-2 Configured for Unbalanced  
(Single-Ended) Input  
The input impedance of the circuit is effectively higher than it is  
for a conventional operational amplifier connected as an inverter  
because a fraction of the differential output voltage appears at  
the inputs as a common-mode signal, partially bootstrapping  
the voltage across the Input Gain Resistor RG.  
As well as causing a noise contribution from VOCM, ratio matching  
errors in the external resistors result in a degradation of the  
ability of the circuit to reject input common-mode signals, much  
the same as for a four-resistor difference amplifier made from a  
conventional operational amplifier.  
Terminating a Single-Ended Input  
This section explains how to properly terminate a single-ended  
input to the ADA4937-1/ADA4937-2. Using a simple example  
with an input source of 2 V and a source resistor of 50 ꢀ, four  
simple steps must be followed.  
In addition, if the dc levels of the input and output common-  
mode voltages are different, matching errors result in a small  
differential-mode output offset voltage. When G = 1, with a  
ground referenced input signal and the output common-mode  
level set to 2.5 V, an output offset of as much as 25 mV (1% of  
the difference in common-mode levels) can result if 1% tolerance  
resistors are used. Resistors of 1% tolerance result in a worst-  
case input CMRR of approximately 40 dB, a worst-case  
1. The input impedance must be calculated using the formula  
RG  
RF  
200  
200  
2 (200 200)  
RIN  
267 Ω  
1   
1   
2 (RG RF )  
R
F
differential-mode output offset of 25 mV due to 2.5 V level  
shift, and no significant degradation in output balance error.  
R
200  
+V  
IN  
267Ω  
S
CALCULATING THE INPUT IMPEDANCE FOR AN  
APPLICATION CIRCUIT  
R
S
R
G
50Ω  
200Ω  
V
2V  
S
The effective input impedance of a circuit depends on whether  
the amplifier is being driven by a single-ended or differential  
signal source. For balanced differential input signals, as shown  
in Figure 54, the input impedance (RIN, dm) between the inputs  
(+DIN and −DIN) is simply RIN, dm = 2 × RG.  
V
OCM  
ADA4937  
R
V
O
L
R
G
200Ω  
–V  
S
R
F
200Ω  
Figure 56. Single-Ended Input Impedance RIN  
Rev. F | Page 19 of 28  
 
 
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
R
F
2. For the source termination to be 50 Ω, the termination  
resistor (RT) is calculated using RT||RIN = 50 Ω, which  
makes RT equal to 61.9 Ω.  
+V  
S
R
R
S
G
R
F
50  
200Ω  
R
61.9Ω  
T
200Ω  
+V  
V
2V  
S
50Ω  
V
OCM  
ADA4937  
R
V
O
L
S
R
G
R
R
S
G
200Ω  
R
TS  
27.4Ω  
50Ω  
200Ω  
R
61.9Ω  
T
V
S
V
OCM  
ADA4937  
–V  
S
R
V
O
2V  
L
R
F
R
G
200Ω  
Figure 60. Complete Single-Ended-to-Differential System  
–V  
S
INPUT COMMON-MODE VOLTAGE RANGE IN  
SINGLE-SUPPLY APPLICATIONS  
R
F
200Ω  
Figure 57. Adding Termination Resistor RT  
The ADA4937-1/ADA4937-2 are optimized for level-shifting  
ground-referenced input signals. As such, the center of the input  
common-mode range is shifted approximately 1 V down from  
midsupply. For 5 V single-supply operation, the input common-  
mode range at the summing nodes of the amplifier is 0.3 V to  
3.0 V, and 0.3 V to 1.2 V with a 3.3 V supply. To avoid clipping  
at the outputs, the voltage swing at the +IN and −IN terminals  
must be confined to these ranges.  
3. To compensate for the imbalance of the gain resistors,  
a correction resistor (RTS) is added in series with the  
inverting Input Gain Resistor RG. RTS is equal to the  
Thevenin equivalent of the Source Resistance RS||RT.  
R
R
S
TH  
50  
R
61.9Ω  
27.4Ω  
T
V
V
S
2V  
TH  
1.1V  
SETTING THE OUTPUT COMMON-MODE VOLTAGE  
The VOCM pin of the ADA4937-1/ADA4937-2 is internally biased  
at a voltage approximately equal to the midsupply point, [(+VS) +  
(−VS)]/2. Relying on this internal bias results in an output  
common-mode voltage that is within about 100 mV of the  
expected value.  
Figure 58. Calculating Thevenin Equivalent  
RTS = RTH = RS||RT = 27.4 Ω. Note that VTH is not equal to VS/2,  
which is the case if the termination is not affected by the  
amplifier circuit.  
R
F
In cases where more accurate control of the output common-  
mode level is required, it is recommended that an external source,  
or resistor divider (10 kΩ or greater resistors), be used. The output  
common-mode offset listed in Table 2 and Table 4 assumes that the  
200  
+V  
S
R
R
TH  
G
27.4Ω  
200Ω  
V
TH  
1.1V  
V
O
V
VOCM input is driven by a low impedance voltage source.  
OCM  
ADA4937  
R
0.97V  
L
R
G
It is also possible to connect the VOCM input to a common-mode  
level (CML) output of an ADC. However, care must be taken to  
ensure that the output has sufficient drive capability. The input  
impedance of the VOCM pin is approximately 10 kΩ. If multiple  
ADA4937-1/ADA4937-2 devices share one reference output, it is  
recommended that a buffer be used.  
200Ω  
R
TS  
27.4Ω  
–V  
S
R
F
200Ω  
Figure 59. Balancing Gain Resistor RG  
4. The feedback resistor is calculated to adjust the output  
voltage.  
Table 10 and Table 11 list several common gain settings, asso-  
ciated resistor values, input impedances, and output noise density  
values for both balanced and unbalanced input configurations.  
a. To make the output voltage VOUT = 1 V, RF must be  
calculated using the following formula:  
POWER-DOWN OPERATION  
The ADA4937-1/ADA4937-2 power-down pin features an  
internal 25 kꢀ pull-up resistor to the positive supply (+VS).  
This ensures that, with the power-down pin left unconnected  
(floating), the ADA4937-1/ADA4937-2 turn on. Applying a  
voltage of ≤1 V turns the ADA4937-1/ADA4937-2 off.  
VOUT (RG RTS )  
1 (200 27.4)  
RF   
207 ꢀ  
VTH  
1.1  
To make VO = VS = 2 V to recover the loss due to the input  
termination, RF must be  
VOUT (RG RTS )  
2 (200 27.4)  
RF  
414 ꢀ  
VTH  
1.1  
Rev. F | Page 20 of 28  
 
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
Table 10. Differential Ground-Referenced Input, DC-Coupled, 1 kΩ Load; See Figure 54  
Nominal Gain (dB)  
RF (Ω)  
RG (Ω) RIN, dm (Ω) Differential Output Noise Density (nV/√Hz)  
0
6
10  
14  
200  
402  
402  
402  
200  
200  
127  
80.6  
400  
400  
254  
161  
5.8  
9.6  
12.1  
16.2  
Table 11. Single-Ended Ground-Referenced Input, DC-Coupled, RS = 50 Ω, RL = 1 kΩ; See Figure 55  
Nominal Gain (dB)  
RF (Ω) RG1 (Ω)  
RT (Ω) RIN, cm (Ω)  
RG2 (Ω)1  
226  
228  
155  
Differential Output Noise Density (nV/√Hz)  
0
6
10  
14  
200  
402  
402  
402  
200  
200  
127  
80.6  
61.9  
60.4  
66.5  
76.8  
267  
301  
205  
138  
5.5  
8.6  
10.1  
12.2  
111  
1 RG2 = RG1 + (RS||RT)  
Rev. F | Page 21 of 28  
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
LAYOUT, GROUNDING, AND BYPASSING  
As high speed devices, the ADA4937-1/ADA4937-2 are sensitive  
to the PCB environment in which they operate. Realizing their  
superior performance requires attention to the details of high  
speed PCB design. This section shows a detailed example of  
how the design issues of the ADA4937-1 is addressed.  
Bypass the power supply pins as close to the device as possible  
and directly to a nearby ground plane. Use high frequency ceramic  
chip capacitors. It is recommended that two parallel bypass capaci-  
tors (1000 pF and 0.1 μF) be used for each supply with the 1000 pF  
capacitor placed closer to the device; further away, provide low  
frequency bypassing using 10 μF tantalum capacitors from each  
supply to ground.  
The first requirement is a solid ground plane that covers as  
much of the board area around the ADA4937-1 as possible.  
However, the area near the feedback resistors (RF), input gain  
resistors (RG), and the input summing nodes (Pin 2 and Pin 3)  
must be cleared of all ground and power planes (see Figure 61).  
Clearing the ground and power planes minimizes any stray capa-  
citance at these nodes and prevents peaking of the response of  
the amplifier at high frequencies.  
Signal routing must be short and direct to avoid parasitic  
effects. Wherever complementary signals exist, provide a sym-  
metrical layout to maximize balanced performance. When  
routing differential signals over a long distance, keep PCB  
traces close together and twist any differential wiring to mini-  
mize loop area. Doing this reduces radiated energy and makes  
the circuit less susceptible to interference.  
The thermal resistance, θJA, is specified for the device, including  
the exposed pad, soldered to a high thermal conductivity 4-layer  
circuit board, as described in EIA/JESD 51-7.  
1.30  
0.80  
1.30 0.80  
Figure 62. Recommended PCB Thermal Attach Pad Dimensions (mm)  
Figure 61. Ground and Power Plane Voiding in Vicinity of RF and RG  
1.30  
TOP METAL  
GROUND PLANE  
0.30  
PLATED  
VIA HOLE  
POWER PLANE  
BOTTOM METAL  
Figure 63. Cross-Section of 4-layer PCB Showing Thermal Via Connection to Buried Ground Plane (Dimensions in mm)  
Rev. F | Page 22 of 28  
 
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
HIGH PERFORMANCE ADC DRIVING  
The ADA4937-1/ADA4937-2 are ideally suited for broadband IF  
applications. The circuit in Figure 64 shows a front-end connection  
for an ADA4937-1 driving an AD9445, 14-bit, 105 MSPS ADC.  
The AD9445 achieves optimum performance when driven  
differentially. The ADA4937-1/ADA4937-2 eliminate the need for  
a transformer to drive the ADC and performs a single-ended-  
to-differential conversion and buffering of the driving signal.  
The signal generator has a symmetric, ground-referenced  
bipolar output. The VOCM pin of the ADA4937-1/ADA4937-2  
remains unconnected allowing the internal divider to set the  
output common-mode voltage at midsupply; one half of the  
common-mode voltage is fed back to the summing nodes, biasing  
−IN and +IN at 1.25 V. For a common-mode voltage of 2.5 V,  
each ADA4937-1/ADA4937-2 output swings between 2.0 V and  
3.0 V, providing a 2 V p-p differential output.  
The ADA4937-1/ADA4937-2 are configured with a single 5 V  
supply and unity gain for a single-ended input to differential  
output. The 61.9 ꢀ termination resistor, in parallel with the single-  
ended input impedance of 267 ꢀ, provides a 50 ꢀ termination  
for the source. The additional 26 ꢀ (226 ꢀ total) at the inverting  
input balances the parallel impedance of the 50 ꢀ source and the  
termination resistor driving the noninverting input.  
The output of the amplifier is ac-coupled to the ADC through a  
second-order, low-pass filter with a cutoff frequency of 100 MHz.  
This reduces the noise bandwidth of the amplifier and isolates  
the driver outputs from the ADC inputs.  
The AD9445 is configured for a 2 V p-p full-scale input by  
connecting the SENSE pin to AGND, as shown in Figure 64.  
5V (A) 3.3V (A) 3.3V (D)  
200Ω  
5V  
AVDD2 AVDD1 DRVDD  
30nH  
0.1µF  
0.1µF  
200Ω  
50Ω  
VIN–  
47pF  
VIN+  
AD9445  
+
BUFFER T/H  
24.3Ω  
24.3Ω  
V
61.9Ω  
OCM  
ADA4937-1  
14  
ADC  
SIGNAL  
GENERATOR  
30nH  
226Ω  
CLOCK/  
TIMING  
REF  
200Ω  
AGND  
SENSE  
Figure 64. Driving an AD9445, 14-Bit, 105 MSPS ADC  
Rev. F | Page 23 of 28  
 
 
ADA4937-1/ADA4937-2  
Data Sheet  
The circuit in Figure 66 shows a simplified front-end connection  
for an ADA4937-1 driving an AD9246, 14-bit, 125 MSPS ADC.  
The AD9246 achieves optimum performance when driven  
differentially. The ADA4937-1/ADA4937-2 perform the single-  
ended-to-differential conversion, eliminating the need for a  
transformer to drive the ADC.  
The AD9246 is set for a 2 V p-p full-scale input by connecting  
the SENSE pin to AGND. The inputs of the AD9246 are biased  
at 1 V by connecting the CML output, as shown in Figure 66.  
The circuit was tested with a −1 dBFS signal at various frequencies.  
Figure 65 shows a plot of the second- and third-order harmonic  
distortion (HD2/HD3) vs. frequency.  
The ADA4937-1/ADA4937-2 are configured with a single 5 V  
supply and a gain of ~2 V/V for a single-ended input to  
differential output. The 76.8 ꢀ termination resistor, in parallel  
with the single-ended input impedance of 137 ꢀ, provides a 50 ꢀ  
ac termination for the source. The additional 30 ꢀ (120 ꢀ total) at  
the inverting input balances the parallel ac impedance of the  
50 ꢀ source and the termination resistor driving the  
noninverting input.  
–75  
G = +2  
–80  
HD3  
–85  
HD2  
–90  
The signal generator has a symmetric, ground-referenced bipolar  
output. The VOCM pin of the ADA4937-1/ADA4937-2 remains  
unconnected; therefore, the internal pull-ups set the output  
common-mode voltage to midsupply. A portion of this is fed back  
to the summing nodes, biasing −IN and +IN at 0.55 V. For a  
common-mode voltage of 2.5 V, each ADA4937-1/ADA4937-2  
output swings between 2.0 V and 3.0 V, providing a 2 V p-p  
differential output.  
–95  
–100  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
Figure 65. HD2/HD3 for Combination of ADA4937-1/ADA4937-2 and  
AD9246 ADC  
The output is ac-coupled to a single-pole, low-pass filter. This  
reduces the noise bandwidth of the amplifier and provides some  
level of isolation from the switched capacitor inputs of the ADC.  
200  
1.8V  
5V  
76.8Ω  
10µF  
10µF  
50Ω  
33Ω  
10pF  
90Ω  
AVDD DRVDD  
VIN–  
+
200Ω  
200Ω  
D13 TO  
V
IN  
AD9246  
D0  
ADA4937-1  
10µF  
90Ω  
VIN+  
AGND SENSE CML  
33Ω  
10µF  
50Ω  
76.8Ω  
200Ω  
Figure 66. Driving an AD9246, 14-Bit, 125 MSPS ADC  
Rev. F | Page 24 of 28  
 
 
Data Sheet  
ADA4937-1/ADA4937-2  
ended input impedance of 306 ꢀ, provides a 50 ꢀ termination for  
the source. The additional 26 ꢀ (226 ꢀ total) at the inverting input  
balances the parallel impedance of the 50 ꢀ source and the  
termination resistor that drives the noninverting input. The signal  
generator has a symmetric, ground-referenced bipolar output. The  
VOCM pin is connected to the CML output of the AD9230, and sets  
the output common mode of the ADA4937-1/ADA4937-2 at 1.4 V.  
One third of the output common-mode voltage of the amplifier is  
fed back to the summing nodes, biasing −IN and +IN at ~0.5 V.  
For a common-mode voltage of 1.4 V, each ADA4937-1/  
ADA4937-2 output swings between 1.09 V and 1.71 V,  
providing a 1.25 V p-p differential output.  
3.3 V OPERATION  
The ADA4937-1/ADA4937-2 provide excellent performance in  
3.3 V single-supply applications. Significant power savings can  
be realized when the ADA4937-1/ADA4937-2 are used in  
combination with a low voltage ADC.  
The circuit in Figure 67 is an example of the ADA4937-1 driving  
an AD9230, 12-bit, 250 MSPS ADC that is specified to operate with  
a single 1.8 V supply. The performance of the ADC is optimized  
when it is driven differentially, making the best use of the signal  
swing available within the 1.8 V supply. The ADA4937-1/  
ADA4937-2 perform the single-ended-to-differential conversion,  
common-mode level-shifting, and buffering of the driving signal.  
A third-order, 125 MHz, low-pass filter between the ADA4937-1/  
ADA4937-2 and the AD9230 reduces the noise bandwidth of  
the amplifier and isolates the driver outputs from the ADC inputs.  
The ADA4937-1/ADA4937-2 are configured with a single 3.3 V  
supply and a gain of 2 V/V for a single-ended input to differential  
output. The 59 ꢀ termination resistor, in parallel with the single-  
453  
1.8V  
3.3V  
56nH  
50Ω  
33Ω  
200Ω  
AVDD DRVDD  
+
VIN–  
V
D11 TO  
D0  
59Ω  
OCM  
V
AD9230  
10pF  
30pF  
ADA4937-1  
IN  
VIN+  
AGND  
CML  
33Ω  
56nH  
226Ω  
453Ω  
Figure 67. Driving an AD9230, 12-Bit, 250 MSPS ADC  
Rev. F | Page 25 of 28  
 
 
ADA4937-1/ADA4937-2  
OUTLINE DIMENSIONS  
Data Sheet  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
12  
1
4
EXPOSED  
PAD  
1.45  
1.30 SQ  
1.15  
9
0.25 MIN  
8
5
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED.  
Figure 68. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-21)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
24  
19  
18  
0.50  
BSC  
1
6
EXPOSED  
PAD  
2.20  
2.10 SQ  
2.00  
13  
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8.  
Figure 69. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-24-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
16-Lead LFCSP  
16-Lead LFCSP  
16-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
Package Option  
Ordering Quantity  
Branding  
H1S  
H1S  
ADA4937-1YCPZ-R2  
ADA4937-1YCPZ-RL  
ADA4937-1YCPZ-R7  
ADA4937-2YCPZ-R2  
ADA4937-2YCPZ-RL  
ADA4937-2YCPZ-R7  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
CP-16-21  
CP-16-21  
CP-16-21  
CP-24-10  
CP-24-10  
CP-24-10  
250  
5,000  
1,500  
250  
5,000  
1,500  
H1S  
1 Z = RoHS Compliant Part.  
Rev. F | Page 26 of 28  
 
 
Data Sheet  
NOTES  
ADA4937-1/ADA4937-2  
Rev. F | Page 27 of 28  
ADA4937-1/ADA4937-2  
NOTES  
Data Sheet  
©2007–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06591-0-6/16(F)  
Rev. F | Page 28 of 28  

相关型号:

ADA4937-2_15

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-1

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1ACPZ-R2

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1ACPZ-R7

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1ACPZ-RL

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-R2

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-R7

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1YCPZ-RL

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_06

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_07

Ultra-Low Distortion Differential ADC Driver
ADI

ADA4938-1_15

Ultralow Distortion Differential ADC Driver
ADI

ADA4938-1_16

Ultralow Distortion Differential ADC Driver
ADI