ADATE209BBCZ [ADI]

4.0 Gbps Dual Driver; 4.0 Gbps的双驱动
ADATE209BBCZ
型号: ADATE209BBCZ
厂家: ADI    ADI
描述:

4.0 Gbps Dual Driver
4.0 Gbps的双驱动

外围驱动器 驱动程序和接口 接口集成电路
文件: 总16页 (文件大小:784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4.0 Gbps Dual Driver  
ADATE209  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
VH1  
VL1  
VT1  
>4.0 Gbps (2 V swings)  
120 ps rise time/fall time (2 V swings)  
<1.0 W for dual driver (<500 mW/channel)  
−1 V to +3.5 V range  
Fast termination mode (VTx)  
Cable loss compensation  
DA1  
DROUT1  
DB1  
TERM1  
CLC1EN  
VH2  
VL2  
VT2  
APPLICATIONS  
Automatic test equipment  
Semiconductor test systems  
Board test systems  
DA2  
DROUT2  
DB2  
TERM2  
Instrumentation and characterization equipment  
High speed memory testing (DDR2/DDR3/DDR4)  
HDMI testing  
CLC2EN  
Figure 1.  
GENERAL DESCRIPTION  
The ADATE209 is a dual pin driver designed for testing DDR2,  
DDR3, and DDR4. It can also be used for high speed SoC applica-  
tions, such as testing PCI Express 1.0 and HDMI™. The device is a  
three-level driver capable of high fidelity swings from 200 mV  
to 4 V over a −1 V to +3.5 V range. It has rise/fall times (20% to  
80%) under 120 ps for a 2 V programmed swing and 150 ps for  
a 3 V programmed swing, and is capable of supporting data  
rates of 4.4 Gbps and 3.2 Gbps, respectively.  
The device is capable of high speed transitions into and out of  
termination mode. It also contains peaking/pre-emphasis circuitry.  
The ADATE209 is available in an 8 mm × 8 mm, 49-ball  
CSP_BGA.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADATE209  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Typical Performance Characteristics ..............................................9  
Applications Information.............................................................. 14  
Data Inputs.................................................................................. 14  
Thermal Diode String................................................................ 14  
Cable Loss Compensation/Peaking Circuitry ........................ 14  
Default Test Conditions............................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
Explanation of Test Levels........................................................... 6  
REVISION HISTORY  
5/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADATE209  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VCC = 7.0 V, VEE = −4.5 V, GND = 0.0 V; all test conditions are as defined in Table 7, unless otherwise specified. All specified values are at  
TJ = 70°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted. Temperature coefficients are measured at TJ =  
70°C 20°C, unless otherwise noted. Typical values are based on design, simulation analyses, and/or limited bench evaluations. Typical  
values are not tested or guaranteed.  
Table 1.  
Test  
Parameter  
Min  
Typ Max  
Unit  
Level1 Test Conditions/Comments  
TOTAL FUNCTION  
DROUTx Pin Range  
−1.0  
+3.5  
V
I
POWER SUPPLIES  
Positive Supply, VCC  
Negative Supply, VEE  
Data and Termination, VDAx, VDBx, VTERMx  
Data and Termination, IDAx, IDBx, ITERMx  
6.65  
−4.73  
−1  
7.0  
7.35  
V
V
V
mA  
I
I
I
I
Defines PSRR conditions  
Defines PSRR conditions  
−4.5 −4.28  
+1.3 +3.3  
40  
Exceeding 40 mA through any input  
termination resistor may cause damage to the  
device or cause long-term reliability concerns  
Positive Supply Current, ICC  
Negative Supply Current, IEE  
Total Power Dissipation  
50  
60  
0.5  
76  
80  
100  
110  
mA  
mA  
W
II  
II  
II  
0.87 1.3  
Quiescent; excludes current draw through data  
input termination resistors  
0.97  
W
III  
VLx = 0.0 V, VHx = 2.0 V; driver toggling into  
open circuit; excludes current draw through  
data input termination resistors  
TEMPERATURE MONITORS  
Temperature Sensor Gain  
Temperature Sensor Offset  
−4.7  
3.1  
III  
III  
mV/°C  
V
Voltage reading at 30°C  
DRIVER DC SPECIFICATIONS  
High Speed Differential Logic Input  
Characteristics (DAx, DBx, TERMx)  
Input Termination Resistance  
45  
48  
55  
Ω
II  
9 mA pushed into DAxB/DBxB/TERMxB signal,  
0.6 V forced on DAx/DBx/TERMx signal; DAxT,  
DBxT, TERMxT open; measure voltage from  
DAx/DBx/ TERMx signal to DAxB/DBxB/TERMxB  
signal, calculate resistance (ΔV/ΔI)  
Input Voltage Differential  
Common-Mode Voltage  
Input Bias Current  
0.25  
−1.0  
−10  
0.8  
+3.3  
+1.2 +10  
V
V
μA  
IV  
IV  
II  
Each pin tested at −1.0 V and +3.3 V, while other  
high speed pins (DAxB, DBx, DBxB, TERMx,  
TERMxB) are left open, termination pins (DAxT,  
DBxT, TERMxT) open  
Pin Output Characteristics  
Output High Range, VHx  
Output Low Range, VLx  
Output Termination Range, VTx  
Output High Range, VHx  
Output Low Range, VLx  
−0.9  
−1.0  
−1.0  
−0.9  
−1.0  
−1.0  
0.2  
+3.5  
+3.4  
+3.5  
+4.0  
+3.9  
+4.0  
4.5  
V
V
V
V
V
V
V
I
I
I
I
I
I
I
VCC = 7.5 V, this range is not production tested  
VCC = 7.5 V, this range is not production tested  
VCC = 7.5 V, this range is not production tested  
Amplitude can be programmed to VHx = VLx,  
accuracy specifications apply when VHx − VLx ≥  
200 mV  
Output Termination Range, VTx  
Functional Amplitude (VHx − VLx)  
DC Output Current-Limit Source  
50  
60  
70  
mA  
II  
Driver high, VHx = 3.5 V, short DROUTx pin to  
−1.0 V, then measure current  
Rev. 0 | Page 3 of 16  
 
ADATE209  
Test  
Parameter  
Min  
Typ Max  
Unit  
Level1 Test Conditions/Comments  
DC Output Current-Limit Sink  
−70  
−60 −50  
mA  
II  
Driver high, VHx = −1.0 V, short DROUTx pin to  
3.5 V, then measure current  
Output Resistance, 30 mA  
Absolute Accuracy  
46.5  
48.5 50.5  
Ω
II  
Source: driver high, VHx = 3.0 V, IDUT = 1 mA and  
9 mA; sink: driver low, VLx = 0.0 V, IDUT = −1 mA  
and −9 mA; ΔVDROUTx/ΔIDROUTx  
VHx tests conducted with VLx = −1.0 V and  
VTx = −1.0 V; VLx tests conducted with VHx =  
3.5 V and VTx = 3.5 V; VTx tests conducted with  
VLx = −1.0 V and VHx = 3.5 V  
VHx, VLx, VTx Offset  
−150  
+20 +150 mV  
II  
Measured at 0.0 V, target: improve offset  
VHx, VLx, VTx Offset Temperature  
Coefficient  
270  
μV/°C  
III  
Measured at calibration points, 0.0 V and 2.0 V  
VHx, VLx, VTx Gain  
VHx, VLx, VTx Linearity  
0.97  
−15  
1.02 1.03  
2.4 +15  
%FSR  
mV  
II  
II  
Relative to straight line from 0.0 V to 2.0 V  
After two-point gain/offset calibration, relative  
to straight line from 0.0 V to 2.0 V  
VLx, VHx, VTx Interaction  
0.3  
mV  
III  
VLx = −1.0 V, VHx swept from −0.9 V to +3.5 V,  
VTx swept from −1.0 V to 3.5 V,  
VHx = 3.5 V, VLx swept from −1.0 V to +3.4 V,  
VTx swept from −0.8 V to +3.5 V,  
VTx = 1.5 V, VLx swept from −1.0 V to +3.5 V,  
VHx swept from −1.0 V to +3.5 V  
VHx, VLx, VTx DC PSRR  
−36  
−10  
+24 +36  
mV/V  
μA  
II  
II  
Change in output voltage as power supplies are  
moved by 5%; measured at calibration points,  
0.0 V and 2.0 V  
VHx, VLx, VTx Input Bias Current  
DRIVER AC SPECIFICATIONS  
Rise/Fall Times  
+1  
+10  
Toggle DAx inputs  
0.2 V Programmed Swing  
0.5 V Programmed Swing  
1.0 V Programmed Swing  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
4.0 V Programmed Swing  
Rise-to-Fall Matching  
115  
90  
90  
110 130  
150  
190  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
V
V
V
II/V  
V
VHx = 0.2 V, VLx = 0.0 V, terminated, 20% to 80%  
VHx = 0.5 V, VLx = 0.0 V, terminated, 20% to 80%  
VHx = 1.0 V, VLx = 0.0 V, terminated, 20% to 80%  
VHx = 2.0 V, VLx = 0.0 V, terminated, 20% to 80%  
VHx = 3.0 V, VLx = 0.0 V, terminated, 20% to 80%  
VHx = 3.5V, VLx = −0.5V, terminated, 20% to 80%  
90  
V
V
10  
VHx = 1.0 V, VLx = 0.0 V, terminated; rise to fall  
within one channel  
Minimum Pulse Width  
Toggle both DAx and DBx inputs  
0.2 V Programmed Swing  
200  
180  
180  
200  
300  
2.5  
ps  
V
V
V
V
V
V
V
V
VHx = 0.2 V, VLx = 0.0 V, terminated, timing error  
less than 25 ps  
VHx = 0.5 V, VLx = 0.0 V, terminated, timing error  
less than 25 ps  
VHx = 1.0 V, VLx = 0.0 V, terminated, timing error  
less than 25 ps  
VHx = 2.0 V, VLx = 0.0 V, terminated, timing error  
less than 25 ps  
VHx = 3.0 V, VLx = 0.0 V, terminated, timing error  
less than 25 ps  
VHx = 1.0 V, VLx = 0.0 V, terminated, 10%  
amplitude degradation  
VHx = 2.0 V, VLx = 0.0 V, terminated, 10%  
amplitude degradation  
VHx = 3.0 V, VLx = 0.0 V, terminated, 10%  
amplitude degradation  
0.5 V Programmed Swing  
1.0 V Programmed Swing  
2.0 V Programmed Swing  
3.0 V Programmed Swing  
Maximum Toggle Rate  
ps  
ps  
ps  
ps  
GHz  
GHz  
GHz  
2.2  
1.8  
Rev. 0 | Page 4 of 16  
ADATE209  
Test  
Parameter  
Min  
Typ Max  
Unit  
Level1 Test Conditions/Comments  
Dynamic Performance, Drive (VHx to VLx)  
Propagation Delay Time  
Propagation Delay Temperature  
Coefficient  
Toggle DAx inputs  
VHx = 2.0 V, VLx = 0.0 V, terminated  
VHx = 2.0 V, VLx = 0.0 V, terminated  
300  
660 1400 ps  
0.7 ps/ºC  
II/V  
III  
Delay Matching, Edge to Edge  
Delay Change vs. Duty Cycle  
15  
10  
ps  
ps  
V
V
VHx = 2.0 V, VLx = 0.0 V, terminated, rising vs. falling  
VHx = 2.0 V, VLx = 0.0 V, terminated, 5% to 95%  
duty cycle  
Preshoot and Undershoot  
Settling Time (VHx to VLx)  
To Within 3% of Final Value  
To Within 1% of Final Value  
Rise/Fall Times (VTx to/from VHx/VLx)  
1.0 V Programmed Swing  
10  
mV  
V
VHx = 2.0 V, VLx = 0.0 V, terminated  
Toggle DAx Inputs  
VHx = 2.0 V, VLx = 0.0 V, terminated  
VHx = 2.0 V, VLx = 0.0 V, terminated  
Toggle DAx inputs  
VHx = 1.0 V, VTx = 0.5V, VLx = 0.0 V, terminated,  
20% to 80%  
VHx = 2.0 V, VTx = 1.0 V, VLx = 0.0 V, terminated,  
20% to 80%  
0.4  
2
ns  
ns  
V
V
110  
170  
ps  
ps  
V
V
2.0 V Programmed Swing  
Dynamic Performance, VTERM  
(VHx or VLx to/from VTx)  
Toggle TERMx inputs  
Propagation Delay Time  
Cable Loss Compensation  
Logic Control Inputs, CLCxEN  
Logic High  
Logic Low  
ICLCxEN  
Compensation Constants  
Boost Time Constant  
720  
ns  
V
VHx = 3.0 V, VTx = 1.5 V, VLx = 0.0 V, terminated  
0
0.9  
0
3.3  
3.3  
0.7  
V
V
V
μA  
I
IV  
IV  
II  
−10  
1.2 +10  
275  
18  
VIN = 0.0 V and 3.3 V  
ps  
%
V
V
CLCxEN = 3.3 V, VHx = 1.0 V, VLx = 0.0 V,  
terminated  
CLCxEN = 3.3 V, VHx = 1.0 V, VLx = 0.0 V,  
terminated  
Boost Peaking Amplifier  
1 See the Explanation of Test Levels section.  
Rev. 0 | Page 5 of 16  
ADATE209  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the following conditions: JEDEC 4L PCB,  
50°C, and 100 LFM forced convection. θJC is specified for a 50°C  
cold plate and 50°C ambient temperature.  
Parameter  
Rating  
Supply Voltages  
Positive Supply Voltage (VCC to GND)  
Negative Supply Voltage (VEE to GND)  
Supply Voltage Difference (VCC to VEE)  
Reference Ground (DUTGND to GND)  
Input Voltages  
−0.5 V to +8.0 V  
−5.0 V to +0.5 V  
−1.0 V to +13 V  
−0.5 V to +0.5 V  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
49-Ball CSP_BGA  
48.4  
3.9  
°C/W  
Input Common-Mode Voltage  
Short-Circuit Voltage (RL = 0 Ω, VDUT  
Continuous Short-Circuit Condition)  
VEE to VCC  
−1.5 V to +4.0 V  
EXPLANATION OF TEST LEVELS  
I.  
Definition.  
High Speed Input Voltage  
(Data and Termination Inputs, DAx, DBx,  
and TERMx)  
High Speed Differential Input Voltage  
(DAx, DBx, TERMx to Termination Pin  
DAxT, DBxT, TERMxT)  
−1.5 V to +3.9 V  
2 V  
II.  
III.  
IV.  
V.  
100% Production Tested.  
Characterized on Tester.  
Functionally Checked During Production Test.  
Characterized on Bench.  
VHx, VLx, VTx  
CLCxEN  
−2 V to +4.5 V  
−1 V to +3.5 V  
ESD CAUTION  
DROUTx I/O Pin Current  
DCL Maximum Short-Circuit Current  
(RL = 0 Ω, VDUT = −1.5 V to +4 V; DCL  
Current Limit)  
100 mA  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 16  
 
ADATE209  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
GND  
VEE  
DROUT2  
GND  
DROUT1  
VEE  
GND  
A
B
C
D
E
F
VEE  
VCC  
GND  
VH2  
VL2  
GND  
GND  
VEE  
VCC  
GND  
VH1  
VL1  
VCC  
TERM1T  
DA1T  
TERM1  
TERM1B  
DA1  
TERM2  
TERM2B  
DA2  
VCC  
TERM2T  
DA2T  
GND  
GND  
GND  
DA1B  
DB1  
DA2B  
DB2  
GND  
VCCTHERM  
DB1T  
DB2T  
DB2B  
CLC2EN  
VT2  
THERM  
VT1  
CLC1EN  
DB1B  
G
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
Mnemonic  
Description  
GND  
VEE  
DROUT2  
GND  
DROUT1  
VEE  
GND  
TERM2  
VCC  
Ground.  
Negative Power Supply, −4.5 V.  
Driver Output, Channel 2.  
Ground.  
Driver Output, Channel 1.  
Negative Power Supply, −4.5 V.  
Ground.  
Termination Mode Data Input. Noninverting input for Channel 2.  
Positive Power Supply, 7.0 V.  
B2  
B3  
VEE  
Negative Power Supply, −4.5 V.  
B4  
GND  
Ground.  
B5  
VEE  
Negative Power Supply, − 4.5 V.  
B6  
VCC  
Positive Power Supply, 7.0 V.  
B7  
TERM1  
TERM2B  
TERM2T  
VCC  
GND  
VCC  
TERM1T  
TERM1B  
DA2  
DA2T  
GND  
Termination Mode Data Input. Noninverting input for Channel 1.  
Termination Mode Data Input. Inverting input for Channel 2.  
Termination Pin for Termination Mode Data Input, Channel 2.  
Positive Power Supply, 7.0 V.  
Ground.  
Positive Power Supply, 7.0 V.  
Termination Pin for Termination Mode Data Input, Channel 1.  
Termination Mode Data Input. Inverting input for Channel 1.  
Data Input A. Noninverting input for Channel 2.  
Termination for Data Input A, Channel 2.  
Ground.  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
Rev. 0 | Page 7 of 16  
 
ADATE209  
Pin No.  
D4  
D5  
D6  
D7  
E1  
Mnemonic  
GND  
GND  
DA1T  
DA1  
DA2B  
GND  
Description  
Ground.  
Ground.  
Termination for Data Input A, Channel 1.  
Data Input A. Noninverting input for Channel 1.  
Data Input A. Inverting input for Channel 2.  
Ground.  
E2  
E3  
VH2  
VH Input, Channel 2.  
E4  
GND  
Ground.  
E5  
VH1  
VH Input, Channel 1.  
E6  
GND  
Ground.  
E7  
F1  
F2  
F3  
DA1B  
DB2  
DB2T  
VL2  
Data Input A. Inverting input for Channel 1.  
Data Input B. Noninverting input for Channel 2.  
Termination for Data Input B, Channel 2.  
VL Input, Channel 2.  
F4  
F5  
VCCTHERM  
VL1  
Positive Power Supply for Thermal Diode String, 7.0 V.  
VL Input, Channel 1.  
F6  
F7  
DB1T  
DB1  
DB2B  
CLC2EN  
VT2  
THERM  
VT1  
CLC1EN  
DB1B  
Termination for Data Input B, Channel 1.  
Data Input B. Noninverting input for Channel 1.  
Data Input B. Inverting input for Channel 2.  
Cable-Loss Compensation Control Pin, Channel 2.  
VT Input, Channel 2.  
Thermal Diode Connection.  
VT Input, Channel 1.  
Cable-Loss Compensation Control Pin, Channel 1.  
Data Input B. Inverting input for Channel 1.  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
Rev. 0 | Page 8 of 16  
ADATE209  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.30  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.5V  
0.25  
0.20  
0.15  
0.2V  
0.10  
0.05  
0
CLC ENABLED  
CLC DISABLED  
–0.05  
–0.2  
TIME (ns)  
TIME (ns)  
Figure 3. Small Signal Response, VHx = 500 mV, 200 mV, VLx = 0.0 V  
Figure 6. VHx = 2.0 V, VLx = 0.0 V, 1.5 GHz Waveform,  
CLC Disabled and Enabled  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CLC ENABLED  
CLC DISABLED  
–0.2  
–0.2  
TIME (ns)  
TIME (ns)  
Figure 7. VHx = 2.0 V, VLx = 0.0 V, 2.0 GHz Waveform,  
CLC Disabled And Enabled  
Figure 4. Large Signal Response, VHx = 3.0 V, 2.0 V, 1.0 V, VLx = 0.0 V  
2.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CLC ENABLED  
CLC DISABLED  
CLC ENABLED  
CLC DISABLED  
1.5  
1.0  
0.5  
0
–0.5  
–0.2  
TIME (ns)  
TIME (ns)  
Figure 8. VHx = 2.0 V, VLx = 0.0 V, 1.0 GHz Waveform,  
CLC Disabled and Enabled  
Figure 5. Large Signal Response, VHx = 3.0 V, 2.0 V, 1.0 V, VLx = 0.0 V,  
CLC Disabled and Enabled  
Rev. 0 | Page 9 of 16  
 
ADATE209  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CLC ENABLED  
CLC DISABLED  
–0.2  
–0.1  
–0.2  
CLC ENABLED  
CLC DISABLED  
–0.4  
TIME (ns)  
TIME (ns)  
Figure 9. VHx = 2.0 V, VLx = 0.0 V, 500 MHz Waveform,  
CLC Disabled and Enabled  
Figure 12. VHx = 1.0 V, VLx = 0.0 V, 1.0 GHz Waveform,  
CLC Disabled and Enabled  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.1  
–0.2  
CLC ENABLED  
CLC DISABLED  
CLC ENABLED  
CLC DISABLED  
TIME (ns)  
TIME (ns)  
Figure 10. VHx = 1.0 V, VLx = 0.0 V, 500 MHz Waveform,  
CLC Disabled and Enabled  
Figure 13. VHx = 1.0 V, VLx = 0.0 V, 1.5 GHz Waveform,  
CLC Disabled and Enabled  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CLC ENABLED  
CLC DISABLED  
–0.1  
–0.1  
TIME (ns)  
TIME (ns)  
Figure 11. VHx = 1.0 V, VLx = 0.0 V, 2.0 GHz Waveform,  
CLC Disabled and Enabled  
Figure 14. VHx = 1.0 V, VTx = 0.5 V, VLx = 0.0 V,  
Transitions Between VHx/VLx and VTx  
Rev. 0 | Page 10 of 16  
ADATE209  
30  
20  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
NEGATIVE PULSE  
10  
0
POSITIVE PULSE  
–10  
–20  
–30  
–0.2  
0.1  
1
PULSE WIDTH (ns)  
10  
TIME (ns)  
Figure 18. 3 V Minimum Pulse Width (VHx = 3.0 V, VLx = 0.0 V), CLC Disabled  
Figure 15. VHx = 2.0 V, VTx = 1.0 V, VLx = 0.0 V,  
Transitions Between VHx/VLx and VTx  
30  
20  
5
0
10  
–5  
NEGATIVE PULSE  
POSITIVE PULSE  
0
–10  
50°C  
–15  
–10  
–20  
–30  
70°C  
–20  
90°C  
–25  
0.1  
1
10  
–2  
–1  
0
1
2
3
4
PULSE WIDTH (ns)  
VHx (V)  
Figure 16. 1 V Minimum Pulse Width (VHx = 1.0 V, VLx = 0.0 V), CLC Disabled  
Figure 19. Driver Linearity (VHx), VLx = −1.1 V, VTx = 1.0 V  
4
30  
20  
3
90°C  
70°C  
50°C  
NEGATIVE PULSE  
2
10  
1
POSITIVE PULSE  
0
0
–10  
–20  
–30  
–1  
–2  
–3  
–2  
–1  
0
1
2
3
4
0.1  
1
10  
VLx (V)  
PULSE WIDTH (ns)  
Figure 17. 2 V Minimum Pulse Width (VHx = 2.0 V, VLx = 0.0 V), CLC Disabled  
Figure 20. Driver Linearity (VLx), VHx = 3.6 V, VTx = 1.0 V  
Rev. 0 | Page 11 of 16  
ADATE209  
1.5  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
90°C  
1.0  
0.5  
70°C  
0
–0.5  
–1.0  
–1.5  
–2.0  
50°C  
–2.5  
–3.0  
–3.5  
–2  
–1  
0
1
2
3
4
0
20  
40  
60  
80  
100  
120  
VTx (V)  
TEMPERATURE (°C)  
Figure 24. Temperature Sensor Output Voltage vs. Temperature  
Figure 21. Driver Linearity (VTx), VHx = 2.0 V, VLx = 0.0 V  
1.040  
GAIN VHx CH1  
GAIN VHx CH2  
1.035  
1.030  
1.025  
1.020  
1.015  
1.010  
40  
50  
60  
70  
80  
90  
100  
TEMPERATURE (°C)  
200ps/DIV  
Figure 22. Gain of VHx  
Figure 25. VHx = 1.8 V, VLx = 0.0 V, PRBS31, 1.6 Gbps, CLC Disabled  
10  
5
CH2 OFFSET  
CH1 OFFSET  
0
–5  
–10  
–15  
–20  
–25  
40  
50  
60  
70  
80  
90  
100  
TEMPERATURE (°C)  
200ps/DIV  
Figure 26. VHx = 1.8 V, VLx = 0.0 V, PRBS31, 2.1 Gbps, CLC Disabled  
Figure 23. Driver Offset vs. Temperature  
Rev. 0 | Page 12 of 16  
ADATE209  
100ps/DIV  
50ps/DIV  
Figure 27. VHx = 1.5 V, VLx = 0.0 V, PRBS31, 3.2 Gbps, CLC Disabled  
Figure 29. VHx = 0.5 V, VLx = 0.0 V, PRBS31, 5.0 Gbps, CLC Disabled  
100ps/DIV  
50ps/DIV  
Figure 28. VHx = 1.5 V, VLx = 0.0 V, PRBS31, 4.0 Gbps, CLC Disabled  
Figure 30. VHx = 0.5 V, VLx = 0.0 V, PRBS31, 5.0 Gbps, CLC Enabled  
Rev. 0 | Page 13 of 16  
ADATE209  
APPLICATIONS INFORMATION  
VCCTHERM  
THERM  
DATA INPUTS  
40  
The ADATE209 contains three high speed differential inputs  
for each channel. Two of the inputs, combined in an on-chip  
exclusive-OR gate, control the VHx/VLx transitions. The  
exclusive-OR gate can be used as a data mux or for data inversion.  
The third input is used to control the transitions to the VTx level.  
GND  
ADATE209  
Table 5. Logic Truth Table  
Figure 32. Thermal Diode String Schematic  
DAx  
Low  
High  
Low  
High  
X1  
DBx  
Low  
Low  
High  
High  
X1  
TERMx  
DROUTx  
CABLE LOSS COMPENSATION/PEAKING  
CIRCUITRY  
Low  
Low  
Low  
Low  
VL  
VH  
VH  
VL  
VT  
The ADATE209 has two different CLC/peaking modes: nominal  
and boost. In nominal mode, a small amount of high frequency  
energy is injected in the driver output signal to compensate for  
high frequency losses in the test interface. In boost mode, a  
much larger percentage of high frequency energy is injected in  
the driver output signal. The two modes are controlled through  
the CLCxEN signal.  
High  
1 X = don’t care.  
The high speed inputs are designed to be compatible with most  
types of differential inputs. Each side of the differential inputs is  
terminated through 50 Ω to a common point. For connection to  
PECL inputs, connect the DAxT/DBxT/TERMxT input  
termination to VCC − 2.0 V (VCC of the input signal, not of the  
ADATE209) or to an appropriate resistor to ground. For connec-  
tion to LVDS, do not connect DAxT/DBxT/TERMxT. For  
connection to CML signals, either leave DAxT/DBxT/TERMxT  
open or connect DAxT/DBxT/TERMxT to the appropriate  
Table 6.  
CLCxEN  
CLC/Peaking Mode  
Nominal  
Boost  
Logic low  
Logic high  
For applications using very short path lengths, very high fidelity  
cables and connectors, and/or lower data rates, nominal mode  
should be used. For applications using lower fidelity cables and  
connectors (and often lower cost) and/or at higher data rates,  
use boost mode.  
V
CC/VDD level.  
DAxT, DBxT,  
TERMxT  
DEFAULT TEST CONDITIONS  
50  
50Ω  
Table 7 lists the default test conditions.  
DAx, DBx,  
TERMx  
Table 7.  
Name  
DB1/DB1B  
DAxB, DBxB,  
TERMxB  
Default Test Condition  
Figure 31. Input Termination Schematic Diagram  
Logic high  
Logic high  
1.3 V  
2.0 V  
0.0 V  
DB2/DB2B  
DA1T/DA2T/DB1T/DB2T  
VHx  
VLx  
VTx  
THERMAL DIODE STRING  
Figure 32 shows a simplified schematic of the thermal diode  
string. To use the diode string, connect VCCTHERM to 7.0 V  
and measure the voltage at THERM. The nominal gain of the  
thermal diode string is −4.7 mV/°C.  
1.0 V  
Rev. 0 | Page 14 of 16  
 
 
 
ADATE209  
OUTLINE DIMENSIONS  
8.10  
8.00 SQ  
7.90  
A1 BALL  
CORNER  
3.275  
REF  
A1 BALL  
CORNER  
7
6
5
4
3
2
1
A
B
C
D
E
F
6.00  
BSC SQ  
3.225  
REF  
1.00  
BSC  
G
BOTTOM VIEW  
0.305 REF  
TOP VIEW  
DETAIL A  
DETAIL A  
*
1.60 MAX  
1.21 NOM  
0.60  
0.56  
0.52  
0.100 REF  
0.55  
0.50  
0.45  
0.68  
0.63  
0.58  
COPLANARITY  
0.10  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-192-ABB-1 WITH  
EXCEPTION TO PACKAGE HEIGHT.  
Figure 33. 49-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-49-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADATE209BBCZ1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
49-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
BC-49-4  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 15 of 16  
 
ADATE209  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07277-0-5/08(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADATE302-02

500 MHz Dual Integrated DCL with Differential Drive/Receive, Level Setting DACs, and Per Pin PMU
ADI

ADATE302-02BBCZ

500 MHz Dual Integrated DCL with Differential Drive/Receive, Level Setting DACs, and Per Pin PMU
ADI

ADATE302-02BSVZ

500 MHz Dual Integrated DCL
ADI

ADATE302-02_17

500 MHz Dual Integrated DCL
ADI

ADATE304

200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE304BBCZ

200 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE305

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE305BSVZ

250 MHz Dual Integrated DCL with Level Setting DACs, Per Pin PMU, and Per Chip VHH
ADI

ADATE318

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE318BCPZ

600 MHz Dual Integrated DCL with PPMU, VHH Drive Capability, Level Setting DACs, and On-Chip
ADI

ADATE320

1.25 GHz Dual Integrated DCL
ADI

ADATE320-1KCPZ

1.25 GHz Dual Integrated DCL
ADI