ADL5353ACPZ-WP [ADI]

SPECIALTY TELECOM CIRCUIT, QCC20, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHC, LFCSP_VQ-20;
ADL5353ACPZ-WP
型号: ADL5353ACPZ-WP
厂家: ADI    ADI
描述:

SPECIALTY TELECOM CIRCUIT, QCC20, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHC, LFCSP_VQ-20

电信 信息通信管理 电信集成电路
文件: 总24页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2200 MHz to 2700 MHz Balanced Mixer,  
LO Buffer, IF Amplifier, and RF Balun  
ADL5353  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
IFGM  
IFOP  
IFON  
PWDN  
LEXT  
Frequency ranges of 2200 MHz to 2700 MHz (RF) and 30 MHz  
to 450 MHz (IF)  
20  
19  
18  
17  
16  
Power conversion gain: 8.7 dB  
Input IP3 of 24.5 dBm and Input P1dB of 10.4 dBm  
SSB noise figure of 9.8 dB  
ADL5353  
1
2
3
4
5
15  
14  
13  
12  
11  
VPIF  
RFIN  
LOI2  
Typical LO drive of 0 dBm  
VPSW  
VGS1  
VGS0  
LOI1  
Single-ended, 50 Ω RF and LO input ports  
High isolation SPDT LO input switch  
Single-supply operation: 3.3 V to 5 V  
Exposed pad, 5 mm × 5 mm 20-lead LFCSP  
1500 V HBM/500 V FICDM ESD performance  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
APPLICATIONS  
Cellular base station receivers  
Transmit observation receivers  
Radio link downconverters  
6
7
LGM3  
8
9
10  
GENERAL DESCRIPTION  
VLO3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
The ADL5353 uses a highly linear, doubly balanced passive  
mixer core along with integrated RF and local oscillator (LO)  
balancing circuitry to allow for single-ended operation. The  
ADL5353 incorporates an RF balun to provide optimal perfor-  
mance over a 2200 MHz to 2700 MHz input frequency range  
using high-side LO. The balanced passive mixer arrangement  
provides good LO-to-RF leakage, typically better than −36 dBm,  
and excellent intermodulation performance.  
Figure 1.  
The ADL5353 provides two switched LO paths that can be used  
in TDD applications where it is desirable to rapidly switch between  
two local oscillators. LO current can be externally set using a  
resistor to minimize dc current commensurate with the desired  
level of performance. For low voltage applications, the ADL5353 is  
capable of operation at voltages down to 3.3 V with substantially  
reduced current. For low voltage operation, an additional logic  
pin is provided to power down (<200 µA) the circuit when desired.  
The balanced mixer core also provides extremely high input  
linearity, allowing the device to be used in demanding cellular  
applications where in-band blocking signals might otherwise  
result in the degradation of dynamic performance. A high  
linearity IF buffer amplifier follows the passive mixer core to yield a  
typical power conversion gain of 8.8 dB and can be used with a  
wide range of output impedances.  
The ADL5353 is fabricated using a BiCMOS high performance  
IC process. The device is available in a 5 mm × 5 mm, 20-lead  
LFCSP and operates over a −40°C to +85°C temperature range.  
An evaluation board is also available.  
Table 1. Passive Mixers  
Single  
Single Mixer Dual Mixer  
RF Frequency (MHz) Mixer  
and IF Amp  
and IF Amp  
ADL5358  
ADL5356  
ADL5354  
500 to 1700  
1200 to 2500  
2200 to 2700  
ADL5367 ADL5357  
ADL5365 ADL5355  
ADL5353  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADL5353  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
3.3 V Performance...................................................................... 14  
Spur Tables ...................................................................................... 15  
Circuit Description......................................................................... 16  
RF Subsystem.............................................................................. 16  
LO Subsystem ............................................................................. 16  
Applications Information.............................................................. 18  
Basic Connections...................................................................... 18  
Bias Resistor Selection ............................................................... 18  
Mixer VGS Control DAC.......................................................... 18  
Evaluation Board ............................................................................ 19  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Performance Specifications.................................................. 3  
3.3 V Performance Specifications............................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
5 V Performance........................................................................... 7  
REVISION HISTORY  
10/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADL5353  
SPECIFICATIONS  
5 V PERFORMANCE SPECIFICATIONS  
RF Interface  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Return Loss  
Tunable to >20 dB over a limited bandwidth  
18  
50  
dB  
MHz  
Input Impedance  
RF Frequency Range  
OUTPUT INTERFACE  
Output Impedance  
IF Frequency Range  
DC Bias Voltage1  
LO INTERFACE  
2200  
2700  
Differential impedance, f = 200 MHz  
Externally generated  
230||1.5  
5.0  
Ω||pF  
MHz  
V
30  
3.3  
450  
5.5  
LO Power  
−6  
0
+10  
3150  
0.4  
dBm  
dB  
Return Loss  
15  
50  
Input Impedance  
LO Frequency Range  
POWER-DOWN (PWDN) INTERFACE2  
PWDN Threshold  
Logic 0 Level  
2230  
MHz  
1.0  
V
V
Logic 1 Level  
1.4  
V
PWDN Response Time  
Device enabled, IF output to 90% of its final level  
Device disabled, supply current <5 mA  
Device enabled  
160  
220  
0.0  
70  
ns  
ns  
µA  
µA  
PWDN Input Bias Current  
Device disabled  
1 Apply the supply voltage from the external circuit through the choke inductors.  
2 The power-down function is intended for use with VS ≤ 3.6 V only.  
Rev. 0 | Page 3 of 24  
 
 
 
ADL5353  
RF Dynamic Performance  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless  
otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
8.7  
14.7  
9.8  
dB  
dB  
dB  
Input Third-Order Intercept (IIP3)  
Input Second-Order Intercept (IIP2)  
fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2738 MHz, each RF  
tone at −10 dBm  
fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2738 MHz, each RF tone  
at −10 dBm  
21  
24.5  
47.5  
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
LO-to-IF Leakage  
LO-to-RF Leakage  
RF-to-IF Isolation  
IF/2 Spurious  
IF/3 Spurious  
10.4  
−15  
−38  
−28  
−70  
−78  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
Unfiltered IF output  
−10 dBm input power  
−10 dBm input power  
POWER SUPPLY  
Positive Supply Voltage  
Quiescent Current  
4.5  
5.0  
100  
90  
5.5  
V
LO supply, resistor programmable  
IF supply, resistor programmable  
VS = 5 V  
mA  
mA  
mA  
Total Quiescent Current  
190  
3.3 V PERFORMANCE SPECIFICATIONS  
VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
DYNAMIC PERFORMANCE  
Power Conversion Gain  
Voltage Conversion Gain  
SSB Noise Figure  
Including 4:1 IF port transformer and PCB loss  
ZSOURCE = 50 Ω, differential ZLOAD = 200 Ω differential  
9
dB  
dB  
dB  
dBm  
15  
8.95  
19  
Input Third-Order Intercept (IIP3)  
fRF1 = 2534.5 MHz, fRF2 = 2535.5 MHz, fLO = 2738 MHz, each RF  
tone at −10 dBm  
Input Second-Order Intercept (IIP2)  
fRF1 = 2535 MHz, fRF2 = 2585 MHz, fLO = 2738 MHz, each RF tone  
at −10 dBm  
41.5  
7.5  
dBm  
dBm  
Input 1 dB Compression Point (IP1dB)  
POWER INTERFACE  
Supply Voltage  
3.0  
3.3  
3.6  
V
Quiescent Current  
Power-Down Current  
Resistor programmable  
Device disabled  
125  
150  
mA  
μA  
Rev. 0 | Page 4 of 24  
 
 
ADL5353  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
5.5 V  
20 dBm  
13 dBm  
6.0 V  
5.5 V  
1.2 W  
25°C/W  
Supply Voltage, VS  
RF Input Level  
LO Input Level  
IFOP, IFON Bias Voltage  
VGS0, VGS1, LOSW, PWDN  
Internal Power Dissipation  
Thermal Resistance, θJA  
Temperature  
ESD CAUTION  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
150°C  
−40°C to +85°C  
−65°C to +150°C  
260°C  
Rev. 0 | Page 5 of 24  
 
 
ADL5353  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
VPIF 1  
RFIN 2  
RFCT 3  
COMM 4  
COMM 5  
15 LOI2  
14 VPSW  
13 VGS1  
12 VGS0  
11 LOI1  
ADL5353  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD. MUST BE SOLDERED  
TO GROUND.  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
VPIF  
RFIN  
Positive Supply Voltage for IF Amplifier.  
RF Input. Must be ac-coupled.  
3
RFCT  
COMM  
RF Balun Center Tap (AC Ground).  
Device Common (DC Ground).  
4, 5  
6, 8  
7
9
10  
VLO3, VLO2 Positive Supply Voltages for LO Amplifier.  
LGM3  
LOSW  
NC  
LO Amplifier Bias Control.  
LO Switch. LOI1 selected for 0 V, and LOI2 selected for 3 V.  
No Connect.  
11, 15  
12, 13  
14  
LOI1, LOI2  
LO Inputs. Must be ac-coupled.  
VGS0, VGS1 Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting.  
VPSW  
Positive Supply Voltage for LO Switch.  
16  
LEXT  
IF Return. This pin must be grounded.  
17  
18, 19  
20  
PWDN  
IFON, IFOP  
IFGM  
Power Down. Connect this pin to ground for normal operation and connect this pin to 3.0 V for disable mode.  
Differential IF Outputs (Open Collectors). Each requires an external dc bias.  
IF Amplifier Bias Control.  
EPAD (EP)  
Exposed Pad. The exposed pad must be soldered to ground.  
Rev. 0 | Page 6 of 24  
 
ADL5353  
TYPICAL PERFORMANCE CHARACTERISTICS  
5 V PERFORMANCE  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
220  
210  
200  
190  
180  
170  
160  
70  
60  
50  
40  
30  
20  
10  
T
T
= –40°C  
= +85°C  
A
T
= –40°C  
A
A
T
T
= +25°C  
= +85°C  
A
T
= +25°C  
A
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 3. Supply Current vs. RF Frequency  
Figure 6. Input IP2 vs. RF Frequency  
12  
14  
12  
10  
8
T
= +85°C  
= +25°C  
A
11  
10  
9
T
= –40°C  
A
T
A
T
= –40°C  
A
T
T
= +25°C  
= +85°C  
A
6
A
8
4
7
2
6
0
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 4. Power Conversion Gain vs. RF Frequency  
Figure 7. Input P1dB vs. RF Frequency  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
12  
T
= –40°C  
A
11  
10  
9
T
T
= +85°C  
= +25°C  
A
T
= +25°C  
A
A
T
= +85°C  
A
T
= –40°C  
A
8
7
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 5. Input IP3 vs. RF Frequency  
Figure 8. SSB Noise Figure vs. RF Frequency  
Rev. 0 | Page 7 of 24  
 
 
ADL5353  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
52  
240  
51  
220  
50  
V
V
= 5.25V  
= 5.00V  
S
200  
180  
160  
140  
120  
100  
V
= 5.25V  
S
S
49  
48  
47  
46  
45  
44  
V
= 4.75V  
S
V
= 5.00V  
S
V
= 4.75V  
40  
S
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Input IP2 vs. Temperature  
Figure 9. Supply Current vs. Temperature  
14  
13  
12  
11  
10  
9
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
V
= 4.75V  
S
V
= 5.25V  
S
V
= 5.00V  
V
= 4.75V  
S
S
V
S
= 5.00V  
8
7
6
V
= 5.25V  
40  
S
5
4
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Input P1dB vs. Temperature  
Figure 10. Power Conversion Gain vs. Temperature  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
= 5.25V  
S
V
= 5.25V  
S
V
= 4.75V  
S
V
= 5.00V  
S
9.0  
8.5  
V
= 5.00V  
V
= 4.75V  
S
S
8.0  
7.5  
7.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 14. SSB Noise Figure vs. Temperature  
Figure 11. Input IP3 vs. Temperature  
Rev. 0 | Page 8 of 24  
ADL5353  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
220  
210  
200  
190  
180  
170  
160  
60  
55  
50  
45  
40  
35  
30  
T
= –40°C  
= +25°C  
A
T
= –40°C  
A
T
A
T
T
= +25°C  
= +85°C  
A
T
= +85°C  
A
A
30  
80  
130  
180  
230  
280  
330  
380  
430  
430  
430  
30  
80  
130  
180  
230  
280  
330  
380  
430  
430  
430  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 15.Supply Current vs. IF Frequency  
Figure 18. Input IP2 vs. IF Frequency  
12  
11  
10  
16  
14  
12  
10  
T
= +85°C  
= +25°C  
A
T
T
= –40°C  
A
9
8
7
6
T
= +25°C  
A
T
= –40°C  
A
T
A
8
6
4
= +85°C  
A
30  
80  
130  
180  
230  
280  
330  
380  
30  
80  
130  
180  
230  
280  
330  
380  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Power Conversion Gain vs. IF Frequency  
Figure 19. Input P1dB vs. IF Frequency  
11.0  
30  
28  
26  
24  
22  
20  
18  
16  
10.5  
10.0  
9.5  
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
9.0  
A
8.5  
8.0  
30  
80  
130  
180  
230  
280  
330  
380  
30  
80  
130  
180  
230  
280  
330  
380  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 20. SSB Noise Figure vs. IF Frequency  
Figure 17. Input IP3 vs. IF Frequency  
Rev. 0 | Page 9 of 24  
ADL5353  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
T
= +85°C  
= –40°C  
A
T
= –40°C  
= +25°C  
A
T
A
T
A
T
= +25°C  
A
8
T
= +85°C  
A
7
8
6
7
5
–6  
6
–6  
–4  
–2  
0
2
4
6
8
10  
–4  
–2  
0
2
4
6
8
10  
LO POWER (dBm)  
LO POWER (dBm)  
Figure 24. Input P1dB vs. LO Power  
Figure 21. Power Conversion Gain vs. LO Power  
–50  
–55  
–60  
–65  
–70  
–75  
30  
28  
26  
24  
22  
20  
18  
16  
14  
T
= –40°C  
= +85°C  
A
T
A
T
= –40°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +25°C  
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
–6  
–4  
–2  
0
2
4
6
8
10  
RF FREQUENCY (GHz)  
LO POWER (dBm)  
Figure 25. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm  
Figure 22. Input IP3 vs. LO Power  
60  
55  
50  
45  
40  
35  
30  
–60  
–65  
–70  
T
= –40°C  
= +85°C  
A
T
= –40°C  
A
–75  
–80  
–85  
–90  
T
A
T
= +25°C  
A
T
= +85°C  
A
T
= +25°C  
A
–6  
–4  
–2  
0
2
4
6
8
10  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
LO POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 23. Input IP2 vs. LO Power  
Figure 26. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm  
Rev. 0 | Page 10 of 24  
ADL5353  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
100  
80  
60  
40  
20  
0
500  
400  
300  
200  
100  
0
10  
8
6
4
2
0
8.70  
8.75  
8.80  
8.85  
8.90  
30  
80  
130  
180  
230  
280  
330  
380  
430  
CONVERSION GAIN (dB)  
IF FREQUENCY (MHz)  
Figure 27. Power Conversion Gain Distribution  
Figure 30. IF Differential Output Impedance (R Parallel C Equivalent)  
100  
80  
60  
40  
20  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
22  
23  
24  
25  
26  
27  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
INPUT IP3 (dBm)  
RF FREQUENCY (GHz)  
Figure 28. Input IP3 Distribution  
Figure 31. RF Port Return Loss, Fixed IF  
100  
80  
60  
40  
20  
0
0
–5  
–10  
SELECTED  
–15  
–20  
UNSELECTED  
–25  
–30  
2.0  
9.0  
9.4  
9.8  
10.2  
10.6  
11.0  
11.4  
11.8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
INPUT P1dB (dBm)  
LO FREQUENCY (GHz)  
Figure 29. Input P1dB Distribution  
Figure 32. LO Return Loss, Selected and Unselected  
Rev. 0 | Page 11 of 24  
ADL5353  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
60  
55  
50  
45  
40  
35  
30  
–20  
–25  
–30  
–35  
–40  
–45  
T
= –40°C  
A
T
= –40°C  
A
T
= +25°C  
A
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 33. LO Switch Isolation vs. LO Frequency  
Figure 36. LO-to-RF Leakages vs. LO Frequency  
0
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–10  
2LO TO RF  
2LO TO IF  
–20  
–30  
–40  
–50  
–60  
T
= +85°C  
A
T
= –40°C  
A
T
= +25°C  
A
2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 37. 2LO Leakage vs. LO Frequency  
Figure 34. RF-to-IF Isolation vs. RF Frequency  
–10  
0
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
–20  
–5  
T
= +85°C  
= +25°C  
A
3LO TO IF  
3LO TO RF  
–10  
–15  
–20  
–25  
–30  
T
A
T
= –40°C  
A
2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 35. LO-to-IF Leakage vs. LO Frequency  
Figure 38. 3LO Leakage vs. LO Frequency  
Rev. 0 | Page 12 of 24  
ADL5353  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
10  
9
8
7
6
5
4
3
2
1
0
15  
14  
13  
12  
11  
10  
9
160  
140  
120  
100  
80  
LO SUPPLY CURRENT  
8
IF SUPPLY CURRENT  
7
VGS = 00  
VGS = 01  
VGS = 10  
VGS = 11  
60  
6
5
40  
600  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
800  
1000  
1200  
1400  
1600  
1800  
RF FREQUENCY (GHz)  
BIAS RESISTOR VALUE (Ω)  
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency  
Figure 42. LO and IF Supply Current vs. IF and LO Bias Resistor Value  
12  
11  
10  
9
30  
25  
20  
15  
10  
5
15  
14  
13  
12  
11  
10  
9
28  
26  
24  
22  
20  
18  
INPUT IP3  
SSB NOISE FIGURE  
CONVERSION GAIN  
8
VGS = 00  
7
VGS = 01 16  
VGS = 10  
VGS = 11  
6
0.6  
0
1.6  
8
14  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
IF BIAS RESISTOR VALUE (kΩ)  
RF FREQUENCY (GHz)  
Figure 43. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. IF Bias  
Resistor Value  
Figure 40. Input IP3 and Input P1dB vs. RF Frequency  
12  
30  
INPUT IP3  
11  
10  
9
25  
20  
15  
10  
5
SSB NOISE FIGURE  
CONVERSION GAIN  
8
7
6
0.6  
0
1.8  
0.8  
1.0  
1.2  
1.4  
1.6  
LO BIAS RESISTOR VALUE (kΩ)  
Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. LO Bias  
Resistor Value  
Rev. 0 | Page 13 of 24  
 
 
 
ADL5353  
3.3 V PERFORMANCE  
VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2738 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
138  
136  
134  
132  
130  
128  
126  
124  
60  
55  
50  
45  
40  
35  
30  
T
= –40°C  
= +25°C  
A
A
T
= –40°C  
A
T
T
= +25°C  
A
T
= +85°C  
A
T
= +85°C  
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 44. Supply Current vs. RF Frequency at 3.3 V  
Figure 47. Input IP2 vs. RF Frequency at 3.3 V  
12  
9
T
= +25°C  
T
= +85°C  
A
A
8
7
6
5
4
3
2
1
0
11  
10  
9
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
T
= –40°C  
A
8
7
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 45. Power Conversion Gain vs. RF Frequency at 3.3 V  
Figure 48. Input P1dB vs. RF Frequency at 3.3 V  
14  
24  
22  
13  
12  
11  
10  
9
T
T
= –40°C  
= +85°C  
A
20  
18  
16  
14  
12  
10  
T
= +85°C  
A
A
T
= +25°C  
A
T
= +25°C  
A
8
T
= –40°C  
7
6
A
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. SSB Noise Figure vs. RF Frequency at 3.3 V  
Figure 46. Input IP3 vs. RF Frequency at 3.3 V  
Rev. 0 | Page 14 of 24  
 
ADL5353  
SPUR TABLES  
SPUR TABLES  
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured  
in dBc from the IF output power level. Data was measured for frequencies less than 6 GHz only. Typical noise floor of the measurement  
system = −100 dBm.  
5 V Performance  
VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 2600 MHz, fLO = 2803MHz, LO power = 0 dBm, RF power = −10 dBm, VGS0 = VGS1 = VGS2 = 0 V,  
and ZO = 50 Ω, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−14.9  
0.00  
−33.1  
−63.4  
−66.8  
<−100  
<−100  
1
−36.5  
−80.2  
−59.8  
−86.8  
−96.7  
<−100  
<−100  
2
−87.8  
<−100  
3
<−100  
<−100  
<−100  
<−100  
4
<−100  
<−100  
<−100  
<−100  
5
<−100  
<−100  
<−100  
<−100  
6
<−100  
N
7
<−100 <−100  
<−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
8
9
10  
11  
12  
13  
14  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
3.3 V Performance  
VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 2600 MHz, fLO = 2803 MHz, LO power = 0 dBm, RF power = −10 dBm, R9 = 226 ꢀ, R14 =  
604 ꢀ, VGS0 = VGS1 = 0 V, and ZO = 50 ꢀ, unless otherwise noted.  
M
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
−20.2  
0.00  
−74.3  
−45.0  
−57.7  
−63.7  
1
−36.9  
−81.7  
−66.5  
−81.9  
−69.2  
2
3
<−100 −97.9  
<−100  
4
<−100 <−100 <−100 <−100  
5
<−100 <−100 <−100 <-100  
<−100 <−100 <-100  
6
<−100  
7
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100 <−100  
N
8
9
10  
11  
12  
13  
14  
15  
<−100 <−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100 <−100  
<−100 <−100 <−100  
<−100 <−100  
Rev. 0 | Page 15 of 24  
 
ADL5353  
CIRCUIT DESCRIPTION  
adds minimum noise to the frequency translation. The only  
noise contribution from the mixer is due to the resistive loss  
of the switches, which is in the order of a few ohms.  
The ADL5353 consists of two primary components: the radio  
frequency (RF) subsystem and the local oscillator (LO) subsystem.  
The combination of design, process, and packaging technology  
allows the functions of these subsystems to be integrated into a  
single die, using mature packaging and interconnection technolo-  
gies to provide a high performance, low cost design with excellent  
electrical, mechanical, and thermal properties. In addition, the  
need for external components is minimized, thereby optimizing  
cost and size.  
Because the mixer is inherently broadband and bidirectional, it  
is necessary to properly terminate all the idler (M × N product)  
frequencies generated by the mixing process. Terminating the  
mixer avoids the generation of unwanted intermodulation pro-  
ducts and reduces the level of unwanted signals at the input of  
the IF amplifier, where high peak signal levels can compromise the  
compression and intermodulation performance of the system. This  
termination is accomplished by the addition of a sum network  
between the IF amplifier and the mixer and also in the feedback  
elements in the IF amplifier.  
The RF subsystem consists of an integrated, low loss RF balun,  
passive MOSFET mixer, sum termination network, and IF  
amplifier.  
The LO subsystem consists of an SPDT-terminated FET switch  
and a three stage, limiting LO amplifier. The purpose of the LO  
subsystem is to provide a large, fixed amplitude, balanced signal  
to drive the mixer independent of the level of the LO input. A  
block diagram of the device is shown in Figure 50.  
The IF amplifier is a balanced feedback design that simultaneously  
provides the desired gain, noise figure, and input impedance that  
are required to achieve the overall performance. The balanced  
open-collector output of the IF amplifier, with impedance mod-  
ified by the feedback within the amplifier, permits the output to be  
connected directly to a high impedance filter, differential amplifier,  
or to an analog-to-digital input while providing optimum second-  
order intermodulation suppression. The differential output  
impedance of the IF amplifier is approximately 200 Ω. If operation  
in a 50 Ω system is desired, the output can be transformed to  
50 Ω by using a 4:1 transformer.  
IFGM  
IFOP  
19  
IFON  
18  
PWDN  
17  
LEXT  
16  
20  
ADL5353  
1
2
3
4
5
15  
14  
13  
12  
11  
VPIF  
RFIN  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
The intermodulation performance of the design is generally  
limited by the IF amplifier. The Input IP3 performance can be  
optimized by adjusting the IF current with an external resistor.  
Figure 41, Figure 42, and Figure 43 illustrate how various IF and  
LO bias resistors affect the performance with a 5 V supply. Addi-  
tionally, dc current can be saved by increasing either or both  
resistors. It is permissible to reduce the dc supply voltage to as  
low as 3.3 V, further reducing the dissipated power of the part.  
(Note that no performance enhancement is obtained by reducing  
the value of these resistors, and excessive dc power dissipation  
may result.)  
RFCT  
COMM  
COMM  
BIAS  
GENERATOR  
6
7
8
9
10  
VLO3  
LGM3  
VLO2  
LOSW  
NC  
NC = NO CONNECT  
LO SUBSYSTEM  
Figure 50. Simplified Schematic  
The ADL5353 has two LO inputs permitting multiple synthe-  
sizers to be rapidly switched with extremely short switching  
times (<40 ns) for frequency agile applications. The two inputs  
are applied to a high isolation SPDT switch that provides a  
constant input impedance, regardless of whether the port is  
selected, to avoid pulling the LO sources. This multiple section  
switch also ensures high isolation to the off input, minimizing  
any leakage from the unwanted LO input that may result in  
undesired IF responses.  
RF SUBSYSTEM  
The single-ended, 50 Ω RF input is internally transformed to a  
balanced signal using a low loss (<1 dB) unbalanced-to-balanced  
(balun) transformer. This transformer is made possible by an  
extremely low loss metal stack, which provides both excellent  
balance and dc isolation for the RF port. Although the port can  
be dc connected, it is recommended that a blocking capacitor be  
used to avoid running excessive dc current through the part.  
The RF balun can easily support an RF input frequency range  
of 2200 MHz to 2700 MHz.  
The single-ended LO input is converted to a fixed amplitude  
differential signal using a multistage, limiting LO amplifier.  
This results in consistent performance over a range of LO input  
power. Optimum performance is achieved from −6 dBm to  
+10 dBm, but the circuit continues to function at considerably  
lower levels of LO input power.  
The resulting balanced RF signal is applied to a passive mixer  
that commutates the RF input with the output of the LO subsystem.  
The passive mixer is essentially a balanced, low loss switch that  
Rev. 0 | Page 16 of 24  
 
 
 
 
ADL5353  
The performance of this amplifier is critical in achieving a high  
intercept passive mixer without degrading the noise floor of the  
system. This is a critical requirement in an interferer rich environ-  
ment, such as cellular infrastructure, where blocking interferers can  
limit mixer performance. The bandwidth of the intermodulation  
performance is somewhat influenced by the current in the LO  
amplifier chain. For dc current sensitive applications, it is per-  
missible to reduce the current in the LO amplifier by raising the  
value of the external bias control resistor. For dc current critical  
applications, the LO chain can operate with a supply voltage as  
low as 3.3 V, resulting in substantial dc power savings.  
In addition, when operating with supply voltages below 3.6 V, the  
ADL5353 has a power-down mode that permits the dc current to  
drop to <200 μA.  
All of the logic inputs are designed to work with any logic family  
that provides a Logic 0 input level of less than 0.4 V and a Logic 1  
input level that exceeds 1.4 V. All logic inputs are high impedance  
up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection  
circuitry permits operation of up to 5.5 V, although a small bias  
current is drawn.  
All pins, including the RF pins, are ESD protected and have been  
tested to a level of 1500 V HBM and 500 V CDM.  
Rev. 0 | Page 17 of 24  
ADL5353  
APPLICATIONS INFORMATION  
need for a transformer. This results in a voltage conversion gain  
that is approximately 6 dB higher than the power conversion gain,  
as shown in Table 3. When a 50 Ω output impedance is needed,  
use a 4:1 impedance transformer, as shown in Figure 51.  
BASIC CONNECTIONS  
The ADL5353 mixer is designed to downconvert radio frequen-  
cies (RF) primarily between 2200 MHz and 2700 MHz to lower  
intermediate frequencies (IF) between 30 MHz and 450 MHz.  
Figure 51 depicts the basic connections of the mixer. To prevent  
nonzero dc voltages from damaging the RF balun or LO input  
circuit, ac couple the RF and LO input ports. The RFIN matching  
network consists of a series 1.5 pF capacitor and a shunt 10 nH  
inductor to provide the optimized RF input return loss for the  
desired frequency band IF port.  
BIAS RESISTOR SELECTION  
Two external resistors, RBIAS IF and RBIAS LO, are used to adjust the  
bias current of the integrated amplifiers at the IF and LO terminals.  
It is necessary to have a sufficient amount of current to bias both  
the internal IF and LO amplifiers to optimize dc current vs.  
optimum IIP3 performance.  
The mixer differential IF interface requires pull-up choke inductors  
to bias the open-collector outputs and to set the output match.  
The shunting impedance of the choke inductors used to couple  
dc current into the IF amplifier should be selected to provide  
the desired output return loss.  
MIXER VGS CONTROL DAC  
The ADL5353 features two logic control pins, VGS0 (Pin 12) and  
VGS1 (Pin 13), that allow programmability for internal gate-to-  
source voltages for optimizing mixer performance over desired  
frequency bands. The evaluation board defaults both VGS0 and  
VGS1 to ground.  
The real part of the output impedance is approximately 200 Ω,  
which matches many commonly used SAW filters without the  
+5V  
100pF  
150pF  
470nH  
470nH  
4:1  
IF OUT  
R
10k  
BIAS IF  
+5V  
20  
19  
18  
17  
16  
10pF  
4.7µF  
22pF  
ADL5353  
+5V  
1
2
3
4
5
15  
14  
13  
12  
11  
LO2 IN  
+5V  
1.5pF  
RF IN  
10pF  
10nH  
10pF  
0.1µF  
BIAS  
GENERATOR  
22pF  
LO1 IN  
6
7
8
9
10  
R
BIAS LO  
10kΩ  
+5V  
10pF  
10pF  
Figure 51. Typical Application Circuit  
Rev. 0 | Page 18 of 24  
 
 
 
 
 
ADL5353  
EVALUATION BOARD  
An evaluation board is available for the family of double balanced  
mixers. The standard evaluation board schematic is shown in  
Figure 52. The evaluation board is fabricated using Rogers®  
RO3003 material.  
Table 7 describes the various configuration options of the  
evaluation board. Evaluation board layout is shown in Figure 53 to  
Figure 56.  
L5  
470nH  
T1  
IF1-OUT  
V
S
C18  
100pF  
C19  
100pF  
L4  
470nH  
R1  
0  
C17  
150pF  
R24  
0Ω  
R25  
0Ω  
PWR_UP  
R21  
10kΩ  
R14  
910Ω  
L3  
0Ω  
C12  
22pF  
LO2_IN  
V
S
V
VPIF  
LOI2  
VPSW  
VGS1  
VGS0  
LOI1  
S
C2  
C21  
C20  
R22  
10µF  
10pF  
10pF  
10kΩ  
RFIN  
RF-IN  
C1  
1.5pF  
Z1  
10nH  
C22  
1nF  
R23  
15kΩ  
ADL5353  
RFCT  
COMM  
COMM  
VGS1  
C5  
0.01µF  
C4  
10pF  
VGS0  
LO1_IN  
C10  
22pF  
LOSEL  
V
S
R9  
1.1kΩ  
C6  
10pF  
R4  
10kΩ  
V
S
C8  
10pF  
Figure 52. Evaluation Board Schematic  
Rev. 0 | Page 19 of 24  
 
 
ADL5353  
Table 7. Evaluation Board Configuration  
Components  
Function  
Description  
Default Conditions  
C2, C6, C8, C18, Power  
Nominal supply decoupling consists of a 10 µF capacitor to  
ground in parallel with a 10 pF capacitor to ground positioned  
as close to the device as possible.  
C2 = 10 µF (size 0603)  
C19, C20, C21  
C1, C4, C5, Z1  
supply  
C6, C8, C20, C21 = 10 pF (size 0402)  
C18, C19 = 100 pF (size 0402)  
C1 = 1.5 pF (size 0402)  
decoupling  
RF input  
interface  
The input channels are ac-coupled through C1. C4 and C5  
provide bypassing for the center taps of the RF input baluns.  
C4 = 10 pF (size 0402)  
C5 = 0.01 µF (size 0402)  
Z1 = 10 nH (size 0402)  
T1, C17, L4, L5,  
R1, R24, R25  
IF output  
interface  
The open-collector IF output interfaces are biased through  
pull-up choke inductors, L4 and L5. T1 is a 4:1 impedance  
transformer used to provide a single-ended IF output interface,  
with C17 providing center-tap bypassing. Remove R1 for  
balanced output operation.  
T1 = TC4-1W+ (Mini-Circuits )  
C17 = 150 pF (size 0402)  
L4, L5 = 470 nH (size 1008)  
R1, R24, R25 = 0 Ω (size 0402)  
C10, C12, R4  
LO interface  
C10 and C12 provide ac coupling for the LO1_IN and LO2_IN  
local oscillator inputs. LOSEL selects the appropriate LO input  
for both mixer cores. R4 provides a pull-down to ensure that  
LO1_IN is enabled when the LOSEL test point is logic low. LO2_IN  
is enabled when LOSEL is pulled to logic high.  
C10, C12 = 22 pF (size 0402)  
R4 = 10 kΩ (size 0402)  
R21  
PWDN  
interface  
R21 pulls the PWDN logic low and enables the device. The  
PWR_UP test point allows the PWDN interface to be exercised  
using the external logic generator. Grounding the PWDN pin  
for nominal operation is allowed. Using the PWDN pin when  
supply voltages exceed 3.3 V is not allowed.  
R21 = 10 kΩ (size 0402)  
C22, L3, R9, R14, Bias control  
R22, R23, VGS0,  
VGS1  
R22 and R23 form a voltage divider to provide 3 V for logic  
control, bypassed to ground through C22. VGS0 and VGS1  
jumpers provide programmability at the VGS0 and VGS1 pins.  
It is recommended to pull these two pins to ground for  
nominal operation. R9 sets the bias point for the internal LO  
buffers. R14 sets the bias point for the internal IF amplifier.  
C22 = 1 nF (size 0402)  
L3 = 0 Ω (size 0603)  
R9 = 1.1 k Ω (size 0402)  
R14 = 910 Ω (size 0402)  
R22 = 10 k Ω (size 0402)  
R23 = 15 kΩ (size 0402)  
VGS0 = VGS1 = 3-pin shunt  
Rev. 0 | Page 20 of 24  
 
ADL5353  
Figure 53. Evaluation Board Top Layer  
Figure 55. Evaluation Board Power Plane, Internal Layer 2  
Figure 56. Evaluation Board Bottom Layer  
Figure 54. Evaluation Board Ground Plane, Internal Layer 1  
Rev. 0 | Page 21 of 24  
 
 
ADL5353  
OUTLINE DIMENSIONS  
0.60 MAX  
5.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
15  
16  
20  
1
5
0.65  
BSC  
PIN 1  
INDICATOR  
4.75  
BSC SQ  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
6
0.75  
0.60  
0.50  
TOP VIEW  
2.60 BSC  
0.70  
0.65  
0.60  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.90  
0.85  
0.80  
0.05 MAX  
0.01 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.05  
0.35  
0.28  
0.23  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHC  
Figure 57. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-20-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model1  
Package Description  
Ordering Quantity  
1,500 7Tape and Reel  
36, Waffle Package  
1
ADL5353ACPZ-R7  
ADL5353ACPZ-WP  
ADL5353-EVALZ  
−40°C to +85°C  
−40°C to +85°C  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-20-5  
CP-20-5  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 22 of 24  
 
 
 
ADL5353  
NOTES  
Rev. 0 | Page 23 of 24  
ADL5353  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09117-0-10/10(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADL5353XCPZ-R7

IC,RF MIXER,BICMOS,LLCC,20PIN,PLASTIC
ADI

ADL5353XCPZ-R71

IC SPECIALTY TELECOM CIRCUIT, QCC20, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHC, LFCSP-20, Telecom IC:Other
ADI

ADL5353XCPZ-WP

IC,RF MIXER,BICMOS,LLCC,20PIN,PLASTIC
ADI

ADL5353XCPZ-WP1

IC SPECIALTY TELECOM CIRCUIT, QCC20, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHC, LFCSP-20, Telecom IC:Other
ADI

ADL5354

2300 MHz to 2900 MHz Balanced Mixer
ADI

ADL5354ACPZ-R2

IC SPECIALTY TELECOM CIRCUIT, QCC36, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-1, LFCSP-36, Telecom IC:Other
ADI

ADL5354ACPZ-R7

2200 MHz TO 2700 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
ADI

ADL5355

1200 MHz to 2500 MHz Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
ADI

ADL5355-EVALZ

1200 MHz to 2500 MHz Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
ADI

ADL5355ACPZ-R7

1200 MHz to 2500 MHz Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
ADI

ADL5355ACPZ-WP

1200 MHz to 2500 MHz Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
ADI

ADL5356

1200 MHz to 2500 MHz, Dual-Balanced Mixer, LO Buffer, IF Amplifier, and RF Balun
ADI