ADP5003ACPZ-R7 [ADI]

Low Noise Micro PMU, 3 A Buck Regulator with 3 A LDO;
ADP5003ACPZ-R7
型号: ADP5003ACPZ-R7
厂家: ADI    ADI
描述:

Low Noise Micro PMU, 3 A Buck Regulator with 3 A LDO

文件: 总30页 (文件大小:988K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise Micro PMU,  
3 A Buck Regulator with 3 A LDO  
Data Sheet  
ADP5003  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
:
PVIN1  
4.2V TO 15V  
Low noise, dc power supply system  
PVIN1  
PVIN1  
High efficiency buck for first stage conversion  
High PSRR, low noise LDO regulator to remove switching  
ripple  
Adaptive LDO regulator headroom control option for  
optimal efficiency and PSRR across full load range  
3 A, low noise, buck regulator  
EN1  
VOUT1  
V
:
SW1  
SW1  
SW1  
COMP1  
PVOUT1  
0.6V TO 5.0V  
BUCK  
REGULATOR  
3A  
VSET1  
PGND1  
PGND1  
PGND1  
Wide input voltage range: 4.2 V to 15 V  
Programmable output voltage range: 0.6 V to 5.0 V  
0.3 MHz to 2.5 MHz internal oscillator  
VREG  
RT  
V
:
PVINSYS  
4.2V TO 15V  
PVINSYS  
PWRGD  
SYSTEM  
0.3 MHz to 2.5 MHz SYNC frequency range  
3 A, low noise, NFET LDO regulator (active filter)  
Wide input voltage range: 0.65 V to 5 V  
Programmable output voltage range: 0.6 V to 3.3 V  
Differential point of load remote sensing  
3 μV rms output noise (independent of output voltage)  
PSRR > 50 dB (to 100 kHz) with 400 mV headroom at 3 A  
Ultrafast transient response  
SYNC  
REFOUT  
PVIN2  
PVIN2  
PVIN2  
VSET2  
VBUF  
V
:
PVOUT2  
PVOUT2  
PVOUT2  
PVOUT2  
LOW NOISE  
LDO ACTIVE  
FILTER  
0.6V TO 3.3V  
Power-good output  
3A  
VREG_LDO  
EN2  
LOAD  
Precision enable inputs for both the buck regulator and LDO  
−40°C to +125°C operating junction temperature range  
32-lead, 5 mm × 5 mm, LFCSP  
VFB2P  
VFB2N  
APPLICATIONS  
AGND1  
AGND2  
Low noise power for high speed analog-to-digital converter  
(ADC) and digital-to-analog converter (DAC) designs  
Powering RF agile transceivers and clocking ICs  
Figure 1.  
GENERAL DESCRIPTION  
The ADP5003 integrates a high voltage buck regulator and an  
ultralow noise low dropout (LDO) regulator in a small, 5 mm ×  
5 mm, 32-lead LFCSP package to provide highly efficient and  
quiet regulated supplies.  
The LDO regulator output can be accurately controlled at the  
point of load (POL) using remote sensing that compensates for the  
printed circuit board (PCB) trace impedance while delivering  
high output currents.  
The buck regulator is optimized to operate at high output  
currents up to 3 A. The LDO is capable of a maximum output  
current of 3 A and operates efficiently with low headroom  
voltage while maintaining high power supply rejection.  
Each regulator is activated via a dedicated precision enable  
input. The buck switching frequency can be synchronized to  
an external signal, or programmed with an external resistor.  
Safety features in the ADP5003 include thermal shutdown (TSD)  
and input undervoltage lockout (UVLO). The ADP5003 is rated  
for a −40°C to +125°C operating junction temperature range.  
The ADP5003 can operate in one of two modes. Adaptive mode  
allows the LDO to operate with a set headroom by adjusting the  
buck output voltage internally. Alternatively, the ADP5003 can  
operate in independent mode, where both regulators operate  
separately from each other, and where the output voltages are  
programmed using resistor dividers.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP5003* PRODUCT PAGE QUICK LINKS  
Last Content Update: 11/21/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADP5003 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
ADP5003 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all ADP5003 EngineerZone Discussions.  
ADP5003: Low Noise Micro PMU, 3 A Buck Regulator with  
3 A LDO Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-1083: Evaluating the ADP5003 Low Noise Micro PMU,  
3 A Buck Regulator with 3 A LDO  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADP5003  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Setting the Switching Frequency for the Buck Regulator ....... 21  
Setting the Output Voltage for the Buck Regulator ................. 21  
Selecting the Inductor for the Buck Regulator......................... 21  
Selecting the Output Capacitor for the Buck Regulator.......... 21  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Buck Regulator Specifications .................................................... 4  
LDO Specifications ...................................................................... 5  
Adaptive Headroom Controller Specifications ........................ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 14  
Power Management Unit........................................................... 14  
Buck Regulator............................................................................ 14  
LDO Regulator............................................................................ 16  
Power-Good ................................................................................ 17  
Output Voltage of the Buck Regulator..................................... 17  
Output Voltage of the LDO Regulator..................................... 17  
Voltage Conversion Limitations............................................... 17  
Component Selection................................................................. 18  
Compensation Components Design........................................ 20  
Junction Temperature ................................................................ 20  
Buck Regulator Design Example .................................................. 21  
Designing the Compensation Network for the Buck  
Regulator ..................................................................................... 22  
Selecting the Input Capacitor for the Buck Regulator............. 22  
Adaptive Headroom Control Design Example .......................... 23  
Setting the Switching Frequency for the Buck Regulator Using  
Adaptive Headroom Control.................................................... 23  
Setting the Output Voltage for the Buck Regulator Using  
Adaptive Headroom Control.................................................... 23  
Selecting the Inductor for the Buck Regulator Using Adaptive  
Headroom Control..................................................................... 23  
Selecting the Output Capacitors for the Buck Regulator Using  
Adaptive Headroom Control.................................................... 23  
Designing the Compensation Network for the Buck  
Regulator Using Adaptive Headroom Control....................... 24  
Selecting the Input Capacitor for the Buck Regulator Using  
Adaptive Headroom Control.................................................... 24  
Recommended Buck External Components for the Buck  
Regulator ...................................................................................... 25  
Buck Configurations ...................................................................... 26  
Independent................................................................................ 26  
Adaptive Headroom................................................................... 27  
Layout Considerations................................................................... 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
REVISION HISTORY  
11/2017—Revision 0: Initial Version  
Rev. 0 | Page 2 of 29  
 
Data Sheet  
ADP5003  
SPECIFICATIONS  
VPVIN1 = VPVINSYS = 4.2 V to 15 V, VPVIN2 = 0.65 V to 5 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for  
typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min Typ Max Unit Test Conditions/Comments  
INPUT VOLTAGE RANGE  
VPVIN1, VPVINSYS 4.2  
15  
5
V
V
VPVIN2  
0.65  
THERMAL SHUTDOWN  
Threshold  
Hysteresis  
TSD  
TSD-HYS  
155  
15  
°C  
°C  
TJ rising  
SYNC INPUT  
Input Logic  
High  
VIH  
1.1  
V
Low  
VIL  
VI-LEAKAGE  
0.4  
1
V
µA  
Input Leakage Current  
ADAPTIVE MODE INPUT (VSET1)  
Input Rising Threshold  
Input Hysteresis  
VADPR  
VADPH  
2.5  
16  
V
mV  
PRECISION ENABLING  
High Level Threshold  
Low Level Threshold  
Shutdown Mode  
EN1, EN2 Pull-Down Resistance  
INPUT CURRENT  
VTH_H  
VTH_L  
VTH_S  
RENPD  
1.125 1.15 1.175 V  
1.025 1.05 1.075 V  
0.4  
V
1.5  
MΩ  
Both Channels Enabled  
Both Channels Disabled  
REFOUT CHARACTERISTICS  
Output Voltage  
ISTBY-NOSW  
ISHUTDOWN  
0.5  
5
1
10  
mA No load  
µA TJ = −40°C to +125°C  
VREFOUT  
2.0  
5
V
%
Accuracy  
−0.5  
+0.5  
+2  
VREG AND VREG_LDO CHARACTERISTICS  
Output Voltage  
Accuracy  
Current Limit1  
VREG, VREG_LDO  
V
%
mA  
−2  
10  
POWER-GOOD PIN (PWRGD)  
Lower Limit  
Lower Hysteresis  
Output Voltage Level  
Deglitch Time  
PWRGDF  
PWRGDFH  
VOL  
80  
85 90  
2.5  
25 50  
60  
%
%
Nominal VOUT1 and nominal VFB2P/VFB2N low threshold  
Nominal VOUT1 and nominal VFB2P/VFB2N low hysteresis  
mV Sink current (ISINK) = 1 mA  
µs  
tPWRGDD  
PVINSYS UNDERVOLTAGE LOCKOUT (UVLO)  
Input Voltage  
Rising  
Falling  
UVLOPVINSYSRISE  
UVLOPVINSYSFALL 3.9  
4.2  
V
V
1 Do not use VREG and VREG_LDO to supply the external loads. This current limit protects against a pin short to ground.  
Rev. 0 | Page 3 of 29  
 
ADP5003  
Data Sheet  
BUCK REGULATOR SPECIFICATIONS  
VPVIN1 = VPVINSYS = 4.2 V to 15 V, VPVIN2 = 0.65 V to 5 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical  
specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min Typ  
Max Unit Test Conditions/Comments  
OUTPUT CHARACTERISTICS  
Programmable Output Voltage Range1  
Buck Regulator Gain  
Error Amplifier Transconductance  
Buck Output Voltage Accuracy2  
Regulation  
VVOUT1  
ABUCK  
gm1  
0.6  
2.5  
5.0  
V
509  
−1  
600  
661  
+1  
µS  
%
σVOUT1  
Load 1 current (ILOAD1) = 10 mA  
ILOAD1 = 10 mA  
Line  
Load  
(ΔVVOUT1/VVOUT1)/ΔVPVIN1  
(ΔVVOUT1/VVOUT1)/ΔIVOUT1  
σBUCK  
IIN  
0.004  
0.04  
1.5  
%/V  
%/A 0 mA ≤ ILOAD1 ≤ 3 A, VPVIN1 = 12 V  
%
Total Output Voltage Accuracy  
OPERATING SUPPLY CURRENT  
SW1 CHARACTERISTICS  
SW1 On Resistance  
4.2 V ≤ VPVIN1 ≤ 15 V, 1 mA ≤ ILOAD1 ≤ 3 A  
ILOAD1 = 0 mA, LDO disabled  
3.8  
mA  
RPFET  
RNFET  
ILIMIT1  
130  
60  
200  
100  
mΩ  
mΩ  
A
VPVIN1 = 15 V (PVIN1 to SW1)  
VPVIN1 = 15 V (SW1 to PGND1)  
Negative channel field effect  
transistor (NFET) switch valley  
current limit  
Current Limit 1  
3.5  
−1  
A
Negative current limit  
Slew Rate  
Minimum On Time3  
Minimum Off Time  
SLEWSW1  
tMIN_ON  
tMIN_OFF  
RPDWN-B  
tSSBUCK  
1.6  
35  
100  
90  
2
V/ns VPVIN1 = 15 V, IVOUT1 = 1 A  
ns  
ns  
128  
150  
BUCK REGULATOR ACTIVE PULL DOWN  
BUCK REGULATOR SOFT START (SS)  
HICCUP TIME  
Ω
Channel disabled  
ms  
ms  
nA  
tHICCUP  
33  
10  
VSETx ADJUSTABLE INPUT BIAS CURRENT  
OSCILLATOR  
IVSET1, IVSET2  
4.2 V ≤ VPVINSYS ≤ 15 V  
Internal Switching Frequency 1  
Internal Switching Frequency 2  
SYNC  
fSW1  
fSW2  
2.25 2.5  
0.26 0.3  
2.75 MHz RT current (IRT) = 10 µA  
0.34 MHz IRT = 1 µA  
Frequency Range  
fSYNC  
0.3  
2.5  
MHz  
Minimum Pulse Width  
Positive  
Negative  
20  
10  
ns  
ns  
1 The switching frequency, minimum on time, and minimum off time dictates the output voltage range.  
2 The buck output voltage accuracy is relative to the nominal output voltage and accounts for reference voltage, gain, and offset error.  
3 The minimum on time indicates the minimum turn on time to ensure fixed frequency switching.  
Rev. 0 | Page 4 of 29  
 
Data Sheet  
ADP5003  
LDO SPECIFICATIONS  
VPVIN1 = VPVINSYS = 4.2 V to 15 V, VPVIN2 = 0.65 V to 5 V, LDO headroom voltage (VHR) = 300 mV, TJ = −40°C to +125°C for  
minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min Typ  
Max Unit  
Test Conditions/Comments  
OUTPUT CHARACTERISTICS  
Programmable Output Voltage Range1  
LDO Gain  
Output Voltage Accuracy2  
Regulation  
VPVOUT2  
ALDO  
σPVOUT2  
0.6  
1.65  
−1  
3.3  
+1  
V
%
Load 2 current (ILOAD2) = 150 mA  
Line  
(ΔVPVOUT2/VPVOUT2)/ΔVPVIN2  
0.007  
%/V  
(VPVOUT2 + VHR) ≤ VPVIN2 ≤ 6 V,  
ILOAD2 = 100 mA  
Load  
(ΔVPVOUT2/VPVOUT2)/ΔIPVOUT2  
σLDO  
0.08  
1.5  
%/A  
%
10 mA ≤ ILOAD2 ≤ 3 A  
(VPVOUT2 + VHR) ≤ VPVIN2 ≤ 6 V,  
10 mA ≤ ILOAD2 ≤ 3 A  
Total Output Voltage Accuracy  
OPERATING SUPPLY CURRENT  
IGND  
1.8  
2.3  
2.5  
4.5  
mA  
mA  
ILOAD2 = 0 μA  
ILOAD2 = 3 A  
ILOAD2 = 3 A  
MINIMUM VOLTAGE REQUIREMENTS  
PVINSYS to PVOUT23  
VREG_LDO to PVOUT24  
Dropout5  
CURRENT-LIMIT THRESHOLD6  
LDO SOFT START (SS) TIME  
LDO ACTIVE PULL-DOWN  
OUTPUT NOISE  
VLDO-PVINSYS  
VLDO-VREG_LDO  
VDROPOUT  
ILIMIT2  
1.5  
1.35  
100  
V
V
mV  
A
Required to drive NFET  
3.1  
tSSLDO  
400  
µs  
Ω
RPDWNLDO  
NPVOUT2  
300  
Channel disabled  
3
µV rms 10 Hz to 100 kHz, IOUT = 1 A  
VPVIN2 = VPVOUT2 + 0.3 V, IOUT = 1 A  
LDO POWER SUPPLY REJECTION RATIO  
VPVOUT2 = 1.3 V  
PSRRLDO  
87  
82  
61  
38  
89  
83  
61  
37  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 kHz  
10 kHz  
100 kHz  
1000 kHz  
1 kHz  
10 kHz  
100 kHz  
1000 kHz  
VPVOUT2 = 3.3 V  
1 Limited by minimum PVINSYS to PVOUT2 and VREG_LDO to PVOUT2 voltage.  
2 The LDO output voltage accuracy is relative to the nominal output voltage and accounts for reference voltage, gain, and offset error.  
3 PVINSYS must be higher than PVOUT2 for VLDO-PVINSYS to keep the LDO regulating.  
4 PVOUT2 must be lower than VREG_LDO for VLDO-VREG_LDO to keep the LDO regulating.  
5 The dropout voltage is the input to output voltage differential when the input voltage is set to the nominal output voltage.  
6 The current-limit threshold is the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 1.0 V output  
voltage is the current that causes the output voltage to drop to 90% of 1.0 V or 0.9 V.  
ADAPTIVE HEADROOM CONTROLLER SPECIFICATIONS  
VPVIN1 = VPVINSYS = 4.2 V to 15 V, VPVIN2 = 0.65 V to 5 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical  
specifications, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
160  
280  
400  
Max  
Unit  
mV  
mV  
mV  
Test Conditions/Comments  
ILOAD2 = 1 mA  
ILOAD2 = 1.5 A  
HEADROOM VOLTAGE (PVIN2 − PVOUT2)  
VHR  
ILOAD2 = 3 A  
Rev. 0 | Page 5 of 29  
 
 
 
ADP5003  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
Parameter  
Rating  
PVIN1/PVINSYS to AGND1/AGND2  
PVIN2 to AGND1/AGND2  
AGND1 to AGND2  
PGND1 to AGND1/AGND2  
PVOUT2 to AGND1/AGND2  
VFB2N to AGND1/AGND2  
VOUT1, VFB2P, EN1, EN2, SYNC, RT,  
REFOUT, VBUF, VSET1, VSET2,  
COMP1 to AGND1/AGND2  
−0.3 V to +16 V  
−0.3 V to +6.0 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to (PVIN2 + 0.3 V)  
−0.3 V to +0.3 V  
−0.3 V to (VREG + 0.3 V)  
Table 6. Thermal Resistance  
1
1
Package Type  
θJA  
θJC  
20.95  
Unit  
CP-32-7  
46.91  
°C/W  
1 θJA and θJC are based on a 4-layer PCB (two signal and two power planes)  
with nine thermal vias connecting the exposed pad to the ground plane as  
recommended in the Layout Considerations section.  
SW1 to PGND1  
−0.3 V to (PVIN1 + 0.3 V)  
VREG, VREG_LDO to AGND1/AGND2 −0.3 V to the lower of  
(PVINSYS + 0.3 V) or +6.0 V  
ESD CAUTION  
VREG to VREG_LDO  
Storage Temperature Range  
Operating Junction Temperature  
Range  
−0.3 V to +0.3 V  
−65°C to +150°C  
−40°C to +125°C  
Soldering Conditions  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 6 of 29  
 
 
 
 
Data Sheet  
ADP5003  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
24 AGND1  
23  
22 RT  
PGND1  
VOUT1  
EN1  
1
2
3
4
5
6
7
8
VREG  
ADP5003  
21 COMP1  
EN2  
TOP VIEW  
20  
19  
18  
PWRGD  
VSET1  
REFOUT  
SYNC  
PVIN2  
PVIN2  
PVIN2  
(Not to Scale)  
17 VSET2  
NOTES  
1. EXPOSED THERMAL PAD. CONNECT THE  
EXPOSED THERMAL PAD TO AGND1.  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 31, 32  
2
3
PGND1  
VOUT1  
EN1  
Buck Regulator Dedicated Power Ground.  
Buck Regulator Feedback Input. Connect a short sense trace to the buck output capacitor.  
Buck Regulator Precision Enable Pin. Drive the EN1 pin high to turn on the buck regulator, and drive the EN1 pin  
low to turn off the buck regulator.  
4
5
EN2  
LDO Precision Enable Pin. Drive the EN2 pin high to turn on the LDO regulator, and drive the EN2 pin low to turn  
off the LDO regulator.  
Synchronization Input. To synchronize the switching frequency of the device to an external clock, connect this  
pin to an external clock with a frequency from 300 kHz to 2.5 MHz.  
SYNC  
6 to 8  
9 to 11  
12  
PVIN2  
PVOUT2  
VFB2P  
LDO Regulator Power Input. Connect a 10 µF ceramic capacitor between this pin and AGND2.  
LDO Regulator Power Output. Connect a 10 µF ceramic capacitor between this pin and AGND2.  
LDO Regulator Positive Sense Feedback Input. Connect a sense trace to the LDO output at the load. Route this  
pin with the VFB2N pin on the PCB.  
13  
VFB2N  
LDO Regulator Ground Sense Feedback Input. Connect a sense trace to ground at the load. Route this pin with  
the VFB2P pin on the PCB.  
14  
15  
16  
VBUF  
AGND2  
VREG_LDO  
Output of the LDO Reference Buffer. Connect a 0.1 µF ceramic capacitor between this pin and VFB2N.  
LDO Dedicated Analog Ground.  
Internal Regulator Output for the LDO. Connect a 1 µF ceramic decoupling capacitor between this pin and  
AGND2. Do not use this pin to power external devices.  
17  
18  
VSET2  
REFOUT  
LDO Regulator Output Voltage Configuration Input.  
Internal Reference Output Required for Driving the External Resistor Dividers for VSET1 and VSET2. Connect a  
0.22 µF ceramic capacitor between this pin and AGND2.  
19  
VSET1  
Buck Regulator Output Voltage Configuration Input. Connect this pin to VREG to enable adaptive headroom  
control.  
20  
21  
22  
23  
PWRGD  
COMP1  
RT  
Power-Good Digital Output (Open-Drain NFET Pull-Down Driver).  
Buck Regulator External Compensation Pin.  
Resistor Adjustable Frequency Programming Input.  
Internal Regulator Output. Connect a 1 µF ceramic decoupling capacitor between this pin and AGND1. Do not  
use this pin to power external devices.  
VREG  
24  
25  
26, 27  
28 to 30  
AGND1  
PVINSYS  
PVIN1  
SW1  
Analog Ground.  
System Power Supply for the ADP5003. Connect a 10 µF ceramic capacitor between this pin and AGND1.  
Buck Regulator Power Input. Connect a 10 µF ceramic capacitor between this pin and PGND1.  
Buck Regulator Switching Output.  
EPAD  
Exposed Thermal Pad. Connect the exposed thermal pad to AGND1.  
Rev. 0 | Page 7 of 29  
 
ADP5003  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
3.3V  
3.3V  
2.5V  
1.8V  
1.3V  
1.1V  
20  
2.5V  
1.8V  
10  
1.3V  
1.1V  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 6. Adaptive Mode Efficiency vs. Load Current, VPVIN1 = 5 V at  
Various Buck Output Voltages  
Figure 3. Buck Efficiency vs. Load Current, VPVIN1 = 5 V, fSW = 600 kHz at  
Various Buck Output Voltages  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
3.3V  
3.3V  
2.5V  
1.8V  
1.3V  
1.1V  
20  
10  
0
2.5V  
1.8V  
10  
0
1.3V  
1.1V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 7. Adaptive Mode Efficiency vs. Load Current, VPVIN1 = 12 V at  
Various Buck Output Voltages  
Figure 4. Buck Efficiency vs. Load Current, VPVIN1 = 12 V, fSW = 600 kHz at  
Various Buck Output Voltages  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
300kHz  
600kHz  
1MHz  
300kHz  
10  
0
10  
0
600kHz  
1MHz  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 8. Adaptive Mode Efficiency vs. Load Current, VPVIN1 = 12 V,  
PVOUT2 = 3.3 V at Various Buck Switching Frequencies  
Figure 5. Buck Efficiency vs. Load Current, VPVIN1 = 12 V, VVOUT1 = 3.3 V at  
Various Buck Switching Frequencies  
V
Rev. 0 | Page 8 of 29  
 
Data Sheet  
ADP5003  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.1A  
0.1A  
1A  
1A  
–10  
2A  
3A  
2A  
3A  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. LDO PSRR vs. Frequency, VHR = 0.3 V, VPVOUT2 = 1.3 V at  
Various LDO Load Currents  
Figure 12. LDO PSRR vs. Frequency, VHR = 0.3 V, VPVOUT2 = 3.3 V at  
Various LDO Load Currents  
0
0
0.2V  
0.2V  
0.3V  
0.4V  
0.5V  
0.3V  
–10  
–10  
0.4V  
0.5V  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. LDO PSRR vs. Frequency, VPVOUT2 = 3.3 V, IPVOUT2 = 1 A at  
Various LDO Headroom Voltages  
Figure 10. LDO PSRR vs. Frequency, VPVOUT2 = 1.3 V, IPVOUT2 = 1 A at  
Various LDO Headroom Voltages  
1000  
1000  
0.1A  
1A  
3A  
0.9V  
3.3V  
100  
10  
1
100  
10  
1
V = 3.3V  
PVOUT2  
I
= 1A  
PVOUT2  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. LDO Noise Spectral Density vs. Frequency, IPVOUT2 = 1 A at  
Various LDO Output Voltages  
Figure 14. LDO Noise Spectral Density vs. Frequency, VPVOUT2 = 3.3 V at  
Various LDO Load Currents  
Rev. 0 | Page 9 of 29  
ADP5003  
Data Sheet  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
4.2 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
Figure 18. Buck Line Regulation, VVOUT1 = 3.3 V, IVOUT1 = 1 A, fSW = 600 kHz  
Figure 15. Buck Load Regulation, VPVIN1 = 12 V, VVOUT1 = 3.3 V, fSW = 600 kHz  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
HEADROOM (V)  
LOAD CURRENT (A)  
Figure 16. LDO Load Regulation, VPVOUT2 = 3.3 V, VHR = 0.3 V  
Figure 19. LDO Line Regulation, VPVOUT2 = 3.3 V, IPVOUT2 = 1 A  
1.0  
3
0.8  
0.6  
2
1
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–50  
–20  
10  
40  
70  
100  
130  
–50  
–20  
10  
40  
70  
100  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. REFOUT Voltage (VREFOUT) vs. Temperature  
Figure 20. Switching Frequency vs. Temperature  
Rev. 0 | Page 10 of 29  
Data Sheet  
ADP5003  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
4
6
8
10  
12  
14  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
Figure 21. Buck Quiescent Current vs. Input Voltage  
Figure 24. Adaptive Mode Headroom vs. Load Current  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1,0  
0.5  
0
I
L
1
V
SW1  
2
3
V
VOUT1  
CH1 500mA CH2 5V  
CH3 10mV B  
M200ns  
94ns  
A CH2  
8V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
T
W
LOAD CURRENT( A)  
Figure 25. SW1 Waveform, VVOUT1 = 5 V, IVOUT1 = 100 mA  
Figure 22. LDO Quiescent Current vs. Load Current  
V
VOUT1  
V
VOUT1  
2
2
V
SW1  
V
SW1  
3
1
3
1
I
I
L
L
B
CH1 5.00AB CH2 500mV  
M20.0ms  
40.0080ms  
A CH2  
510mV  
B
CH1 5.00AB CH2 500mV  
M20.0ms  
40.0080ms  
A CH2  
510mV  
W
W
W
W
CH3 10.0V B  
CH3 10.0V B  
T
W
T
W
Figure 26. Exiting Hiccup Mode  
Figure 23. Entering Hiccup Mode (VVOUT1 is the Voltage of the VOUT1 Pin, and  
VSW1 is the Voltage of the SW1 Pin, and IL is Inductor Current)  
Rev. 0 | Page 11 of 29  
 
ADP5003  
Data Sheet  
I
= 1A  
PVOUT2  
V
/V  
EN1 EN2  
V
EN1  
2
3
V
VOUT1  
V
PVOUT2  
V
VOUT1  
3
1
4
I
VOUT1  
4
2
1
I
VOUT1  
V
SW1  
B
CH1 1A  
CH3 1V  
CH2 2V  
CH4 10V B  
M400µs  
A
CH2  
1.56V  
W
CH1 1.00A  
CH3 2.00V  
CH2 1.00V  
CH4 1.00V  
M1.00ms  
A CH3  
2.04V  
B
W
W
T
3.00400ms  
Figure 27. Buck Startup, VVOUT1 = 3.3V, IVOUT1 = 3 A  
(VEN1 is the EN1 voltage, and IVOUT1 is the VOUT1 current.)  
Figure 30. Adaptive Mode Startup, VPVOUT2 = 3.3 V, IPVOUT2 = 1 A  
(VEN2 is the EN2 voltage.)  
I
V
VOUT1  
PVIN1  
2.3A/µs  
3.1A/µs  
4
V
V
VOUT1  
VOUT1  
4
2
2
10V OFFSET  
CH2 500mV B CH4 20.0mVB M80µs  
A CH2  
12.4V  
CH2 500mV  
CH4 1A  
M200µs  
A
CH4  
1.46A  
W
W
T 25.50%  
T
493.480µs  
Figure 31. Buck Load Transient, VPVIN1 = 12 V, VVOUT1 = 1.2 V, IVOUT1 = 0.5 A to 3 A  
Figure 28. Buck Line Transient, VPVIN1 = 12 V to 13 V, VVOUT1 = 1.2 V, IVOUT1 = 1 A  
2.3A/µs  
3A/µs  
I
PVOUT2  
V
PVIN2  
4
2
1
2
3V OFFSET  
V
PVOUT2  
V
PVOUT2  
B
CH2 20.0mV  
CH4 1.00A  
M8.00µs  
A
CH4  
1.34A  
CH1 500mV CH2 1.00mV  
M80.0µs  
A
CH1  
3.81V  
W
T
18.4800µs  
T
200.960µs  
Figure 32. LDO Load Transient, VPVIN2 = 3.6 V, VPVOUT2 = 3.3 V,  
PVOUT2 = 0.5 A to 3 A  
Figure 29. LDO Line Transient, VPVIN2 = 3.6 V to 4.1 V, VPVOUT2 = 3.3 V,  
PVOUT2 = 1 A  
I
I
Rev. 0 | Page 12 of 29  
Data Sheet  
ADP5003  
V
1.2A/µs  
I
1.3A/µs  
PVIN1  
PVOUT2  
3
4
V
PVOUT2  
V
PVOUT2  
4
10V OFFSET  
2
CH2 500mV B CH4 1.00mV B  
M80µs  
25.90%  
A
CH2  
12.5V  
CH3 500mA  
CH4 10.0mVB M80µs  
A
CH2  
1.52V  
W
W
W
T
T 24.70%  
Figure 33. Adaptive Mode Line Transient, VPVIN1 = 11 V to 13 V, VPVOUT2 = 3.3 V,  
PVOUT2 = 1 A  
Figure 34 Adaptive Mode Load Transient, VPVIN1 = 12 V, VPVOUT2 = 3.3 V,  
PVOUT2 = 1 A to 1.5 A  
I
I
Rev. 0 | Page 13 of 29  
ADP5003  
Data Sheet  
THEORY OF OPERATION  
Active Pull Down  
POWER MANAGEMENT UNIT  
Both regulators have active pull-down resistors discharging the  
respective output capacitors when the regulators are disabled.  
The pull-down resistors are connected between VOUT1 to  
AGND1 and PVOUT2 to AGND2. Active pull-down resistors  
are disabled when the regulators are turned on.  
The ADP5003 is a micropower management unit combing a  
step-down (buck) dc-to-dc converter and an ultralow noise low  
dropout linear (LDO)regulator. The high switching frequency  
and 5 mm × 5 mm, 32-lead LFCSP package allow a compact  
power management solution.  
When the enable pins are asserted low, or a TSD or UVLO  
event occurs, the active pull-down resistors enable to quickly  
discharge the output capacitors. The pull-down resistors remain  
engaged until the enable pins are asserted high, the fault event is  
no longer present, or the VREG supply voltage falls to less than  
1 V to guarantee that the pull-down resistor remains enabled.  
Adaptive Headroom Control  
The ADP5003 features a scheme to control the LDO headroom  
voltage to ensure optimal operating efficiency while maintaining  
the power supply rejection ratio (PSRR) performance across the  
full range of the load current.  
Precision Enable/Shutdown  
Soft Start (SS)  
The ADP5003 has individual enable pins (EN1 and EN2) to  
control the regulators.  
Both regulators have an internal soft start function that ramps  
the output voltage in a controlled manner on startup, thereby  
limiting the inrush current. The soft start function reduces the  
risk of noise spikes and voltage drops on the upstream supplies.  
The precision enable function allows a precise turn on point for  
the regulators to allow the possibility of external sequencing. A  
voltage level higher than VTH_H applied to the EN1 or EN2 pin  
activates a regulator, whereas a level below VTH_L turns off a  
regulator. The buck is controlled by EN1, and the LDO is  
controlled by the EN2 pin. When both EN1 and EN2 fall below  
Power-Good  
The ADP5003 has a dedicated power-good, open-drain, output  
(PWRGD). PWRGD indicates whether one or more regulators  
are outside the voltage limits specified by the power-good lower  
limit (PWRGDF) and the power-good upper limit (PWRGDF +  
PWRGDFH). When either one or both of the regulator outputs  
are outside the power-good limits, the PWRGD output pulls low.  
V
TH_S, the ADP5003 enters shutdown mode.  
Undervoltage Lockout (UVLO)  
To protect against the input voltage being too low, UVLO  
circuitry is integrated into the system. If the input voltage on  
PVINSYS drops to less than the UVLOPVINSYSFALL threshold, all  
channels shut down.  
When in adaptive mode, PWRGD only monitors the LDO  
output, and when in standalone mode, PWRGD only monitors  
the regulator/regulators that are enabled.  
The device is enabled again when the voltage on PVINSYS rises  
more than UVLOPVINSYSRISE threshold if the enable pins remain  
active.  
BUCK REGULATOR  
Control Scheme  
The buck regulator operates with a fixed frequency, emulated  
peak current mode, pulse-width modulation (PWM) control  
architecture, where the duty cycle of the integrated switches is  
adjusted and regulates the output voltage. At the start of each  
oscillator cycle, the positive channel field effect transistor (PFET)  
switch is turned on, sending a positive voltage across the inductor.  
Current in the inductor increases until the emulated current  
sense signal crosses the peak inductor current threshold, which  
turns off the PFET switch and turns on the NFET synchronous  
rectifier. Turning on the NFET synchronous rectifier creates a  
negative voltage across the inductor, which causes the inductor  
current to decrease. The synchronous rectifier stays on for the  
remainder of the cycle. By adjusting the peak inductor current  
threshold, the buck regulator can regulate the output voltage.  
The emulated inductor current scheme senses the current in the  
inductor during the off phase of the cycle, when the NFET is  
conducting, and uses this inductor current to generate the  
emulated current sense signal during the on time of the cycle.  
This scheme allows the low duty cycles necessary for high input  
voltage, VIN, to output voltage, VOUT, conversion ratios.  
Thermal Shutdown (TSD)  
In the event that the junction temperature rises above TSD, the  
thermal shutdown circuit turns off all regulators. Extreme  
junction temperatures can be the result of high current operation,  
poor circuit board design, or a high ambient temperature. A  
hysteresis value of TSD-HYS is included so that when thermal  
shutdown occurs, the regulators do not return to operation until  
the on-chip temperature drops below TSD − TSD-HYS. When  
emerging from thermal shutdown, both regulators restart with  
soft start control.  
Rev. 0 | Page 14 of 29  
 
 
 
Data Sheet  
ADP5003  
Oscillator Frequency Control  
External Oscillator Synchronization  
The ADP5003 buck regulator oscillator frequency is controlled  
by using the RT pin or the SYNC pin. To define the buck  
The SYNC pin is dedicated for oscillator synchronization and  
allows the ADP5003 to lock to an external clock.  
regulator internal switching frequency, connect the RT pin via a  
resistor to AGND1. Figure 35 shows the relationship of the buck  
oscillator frequency and the RT resistor.  
When an applied external clock signal is present at the SYNC pin,  
the buck regulator operates in sync with this signal.  
When alternating between external clocks and the internal  
oscillator, the presence of an external frequency causes a  
multiplexer to switch between the internal oscillator and the  
external SYNC frequency. The output of this multiplexer acts as  
the frequency reference to an internal phase-lock loop (PLL),  
which ensures that changing between the two modes of operation  
results in a smooth transition between the different frequencies.  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Buck Startup  
The buck regulator turns on with a controlled soft start ramp to  
limit inrush current. The reference of the buck is ramped by  
tSSBUCK, which is typically 2 ms (see Figure 36).  
0
100  
200  
300  
400  
500  
600  
700  
800  
tSSBUCK  
V
EN1  
RT RESISTOR (kΩ)  
2
Figure 35. Buck Oscillator Frequency vs. RT Resistor (RRT)  
To determine the oscillator frequency (fSW), use the following  
equation:  
V
VOUT1  
4
1
3
f
SW = (1.78 × 1011)/RRT  
(1)  
I
VOUT1  
When there is no resistor present on the RT pin, the internal  
oscillator operates at the lowest frequency. An upper limit  
prevents out of range frequencies when the RT pin is shorted  
to ground or connected with an incorrect resistor value.  
V
SW1  
CH1 1.00A B  
CH3 5.00V  
CH2 5.0V  
CH4 1.0V  
4.00µs  
1.60ms  
A
CH2  
1.20V  
B
B
W
W
W
W
B
T
Figure 36. Buck Startup  
Rev. 0 | Page 15 of 29  
 
 
 
ADP5003  
Data Sheet  
Current-Limit and Short-Circuit Protection  
LDO Startup  
The LDO regulator turns on with a controlled soft start ramp to  
The buck regulator includes current-limit protection circuitry  
to limit the amount of forward current through the metal oxide  
semiconductor field effect transistor (MOSFET) switches.  
When the valley inductor current exceeds the overcurrent limit  
threshold for a number of clock cycles during an overload or  
short-circuit condition, the regulator enters hiccup mode. The  
regulator stops switching and then restarts with a new soft start  
cycle after the hiccup time, tHICCUP, and repeats until the over-  
current condition is removed. If the buck regulator output  
voltage falls below 50% of the nominal output voltage, the  
regulator immediately enters hiccup mode. When the valley  
inductor current falls below the negative current-limit  
threshold, the NFET remains on until the inductor current  
returns to 0 A.  
limit inrush current. This soft start ramp is dictated by tSSLDO  
,
which is typically 400 µs.  
4.0  
0.1A  
3.5  
1A  
3A  
V
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EN2  
2.5  
1.5  
0.5  
–0.5  
–1.5  
–2.5  
–3.5  
–4.5  
–0.4 –0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4 1.6  
TIME (ms)  
2
Figure 38. LDO Startup  
Current Limit  
The LDO reaches the current limit when the output load reaches  
LIMIT2. When the output load exceeds ILIMIT2, the output voltage  
3A  
3
I
reduces to maintain a constant current limit.  
tHICCUP  
Differential Remote Sensing  
1
The LDO can sense at the point of load by using VFB2P and  
VFB2N as shown in Figure 39. Differential remote sensing  
compensates for both the source drop and the return drop to  
provide a more precise supply scheme at the point of load.  
PVOUT2  
LOW NOISE  
PVOUT2  
PVOUT2  
LDO ACTIVE  
FILTER  
3A  
V
VOUT1  
+
2
VFB2P  
VFB2N  
+
3A  
LOAD  
I
L
3
1
AGND1  
AGND2  
+
V
SW1  
Figure 39. Differential Remote Sensing  
CH1 10.0V  
CH3 2.0A  
CH2 2.00V  
20.0ms  
A
CH2  
1.08V  
B
T
79.7600ms  
W
Figure 37. Short-Circuit Response (Current Limit and Hiccup Mode)  
LDO REGULATOR  
The ADP5003 contains a single low noise, low dropout (LDO)  
linear regulator that uses an NFET pass device to provide high  
PSRR with low headroom voltage and an output current up to 3 A.  
The LDO regulator can operate with an input voltage of 0.65 V  
to 5 V while providing excellent line and load transient response  
using 10 µF ceramic input and output capacitors.  
Rev. 0 | Page 16 of 29  
 
 
Data Sheet  
ADP5003  
POWER-GOOD  
OUTPUT VOLTAGE OF THE LDO REGULATOR  
An external pull-up resistor is necessary to drive the PWRGD  
output high (see Figure 40). Through the value of the pull-up  
resistor is not critical, it is recommended to use a 10 kΩ to  
300 kΩ resistor. The resistor must be pulled to a voltage level  
no greater than 5.5 V.  
The output voltage on the LDO regulator is adjustable through  
an external resistor divider. The LDO adjustable output voltage  
configuration is shown in Figure 42.  
PVOUT2  
PVIN2  
REFOUT  
VFB2P  
VFB2N  
V
PULLUP  
LDO  
R
TOP  
R
PULLUP  
VSET2  
PWRGD  
GPIO  
PWRGD  
V
R
BOT  
Figure 42. LDO Adjustable Output Voltage Configuration  
Figure 40. Power-Good Setup  
To calculate the LDO output voltage, use the following  
equation:  
OUTPUT VOLTAGE OF THE BUCK REGULATOR  
The output voltage on the buck regulator is adjustable through  
an external resistor divider. When using adaptive mode, the  
ADP5003 controls the buck output voltage.  
RBOT  
RTOP + RBOT  
VPVOUT2 = VREFOUT ALDO  
(3)  
The adjustable output voltage configuration is shown in Figure 41.  
where ALDO is the LDO gain.  
SW1  
PVOUT1  
PVIN1  
VOLTAGE CONVERSION LIMITATIONS  
REFOUT  
VOUT1  
For a given input voltage and switching frequency, an upper  
and lower limitation on the output voltage exists due to the  
minimum on time and minimum off time. The minimum on  
time limits the minimum output voltage for a given input  
voltage and switching frequency.  
BUCK  
R
TOP  
VSET1  
R
BOT  
If the minimum on time is exceeded, the ADP5003 may not  
switch at a fixed frequency because the device can switch at an  
effective zero on time, resulting in unpredictable switching  
frequencies and unwanted noise. To avoid noise, select the  
switching frequency carefully.  
Figure 41. Buck Regulator Adjustable Output Voltage  
To calculate the buck output voltage, use the following equation:  
RBOT  
RTOP + RBOT  
To calculate the minimum output voltage for a given input  
voltage and fixed switching frequency, use the following  
equation:  
V
PVOUT1 = VREFOUT ABUCK  
(2)  
where:  
V
OUT_MIN = VPVIN1 × tMIN_ON × fSW − (RPFET RNFET) ×  
OUT_MIN × tMIN_ON × fSW − (RNFET + RL) × IOUT_MIN (4)  
V
A
REFOUT is the REFOUT output voltage.  
BUCK is the buck regulator gain.  
I
R
R
BOT is the bottom feedback resistor.  
TOP is the top feedback resistor.  
where:  
VOUT_MIN is the minimum output voltage.  
PVIN1 is the input voltage.  
V
t
MIN_ON is the minimum on time.  
fSW is the switching frequency.  
R
R
PFET is the high-side MOSFET on resistance.  
NFET is the low-side MOSFET on resistance.  
I
OUT_MIN is the minimum output current.  
RL is the resistance of the output inductor.  
Rev. 0 | Page 17 of 29  
 
 
 
 
 
 
 
ADP5003  
Data Sheet  
The minimum off time limits the maximum duty cycle which  
in turn limits the maximum output voltage for a given input  
voltage and switching frequency. Calculate the maximum output  
voltage for a given input voltage and switching frequency by  
using the following equation:  
Use the following equation to calculate the worst case capacitance,  
accounting for capacitor variation over temperature, component  
tolerance, and voltage:  
C
EFFECTIVE = CNOMINAL × (1 − TEMPCO) × (1 − DCBIASCO) ×  
(1 − Tolerance) (6)  
V
OUT_MAX = VPVIN1 × (1 − tMIN_OFF × fSW) − (RPFET RNFET) × IOUT_MAX  
(1 − tMIN_OFF × fSW) − (RNFET + RL) × IOUT_MAX  
×
(5)  
where:  
CEFFECTIVE is the effective capacitance at the operating voltage.  
where:  
OUT_MAX is the maximum output voltage.  
OUT_MAX is the maximum output current.  
MIN_OFF is the minimum off time.  
C
NOMINAL is the nominal data sheet capacitance.  
V
I
t
TEMPCO is the worst case capacitor temperature coefficient.  
DCBIASCO is the dc bias derating at the output voltage.  
Tolerance is the worst case component tolerance.  
As shown in Equation 4 and Equation 5, reducing the switching  
frequency eases the minimum on time and minimum off time  
limitations.  
To guarantee the performance of the device, it is imperative to  
evaluate the dc bias effects, temperature, and tolerances on the  
behavior of the capacitors for each application.  
Capacitors with lower effective series resistance (ESR) and  
effective series inductance (ESL) are preferred to minimize  
output voltage ripple.  
COMPONENT SELECTION  
Output Capacitors  
Higher output capacitor values reduce the output voltage ripple  
and improve the load transient response.  
Use the following equation to calculate the minimum  
capacitance needed for a specific output voltage ripple:  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with a different behavior over temperature and applied  
voltage. Capacitors must have a dielectric adequate to ensure  
the minimum capacitance over the necessary temperature range  
and dc bias conditions. X5R or X7R dielectrics with a voltage  
rating of 25 V are recommended for best performance. Y5V  
and Z5U dielectrics are not recommended for use with any dc-  
to-dc converter because of their poor temperature and dc bias  
characteristics.  
ΔIL  
COUT_MIN  
(7)  
8× fSW ×(VRIPPLE  
ΔIL ×RESR )  
where:  
ΔIL is the current ripple.  
SW is the switching frequency.  
f
V
R
RIPPLE is the allowed peak-to-peak voltage ripple.  
ESR is the effective series resistance of the capacitor.  
The minimum capacitance needed for stability considering  
temperature and dc bias effects is 22 µF.  
The minimum capacitance recommended for the LDO is 10 µF.  
Table 8. Recommended Capacitors  
Vendor  
Part No.  
Value (µF)  
Type  
X7R  
X7R  
X5R  
X5R  
X7R  
X7R  
X7R  
Voltage Rating (V)  
Case  
0805  
1210  
1210  
1210  
0805  
1210  
1210  
Wurth  
885 012 207 026  
885 012 209 006  
885 012 109 012  
885 012 109 004  
GRM21BR71A106KE51  
GRM32ER71C226KEA8  
GRM32ER71A476KE15  
10  
22  
47  
100  
10  
22  
47  
10  
10  
25  
6.3  
10  
16  
10  
Murata  
Rev. 0 | Page 18 of 29  
 
Data Sheet  
ADP5003  
Input Capacitor  
To calculate the inductor value, L, use the following equation:  
The input current to the buck converter pulsates from zero to  
approximately equal to the load current. Because these current  
pulses occur at reasonably high frequencies (0.3 MHz to  
2.5 MHz), the input bypass capacitor provides most of the high  
frequency current while the input power source supplies only the  
average current. Higher value input capacitors reduce the input  
voltage ripple and improve transient response.  
L = ((VPVIN1 VVOUT1) × D)/(ΔIL × fSW)  
(8)  
where:  
PVIN1 is the input voltage.  
VOUT1 is the output voltage.  
D is the duty cycle (D = VVOUT1/VPVIN1).  
ΔIL is the inductor ripple current.  
V
V
f
SW is the switching frequency.  
To minimize supply noise, it is recommended to place a low  
ESR capacitor as close as possible to the relevant supply.  
The minimum dc current rating of the inductor must be greater  
than the inductor peak current. Use the following equation to  
calculate the inductor peak current:  
Inductor  
The high switching frequency of the ADP5003 buck allows the  
selection of small chip inductors. A small inductor leads to larger  
inductor current ripple that provides excellent transient response  
but degrades efficiency. The sizing of the inductor is a trade-off  
between efficiency and transient response. As a guideline, the  
inductor peak-to-peak, current ripple is typically set to 1/3 of  
the maximum load current for optimal transient response and  
efficiency.  
I
PEAK = IVOUT1 + (ΔIL/2)  
where:  
VOUT1 is the output current.  
ΔIL is the inductor ripple current.  
(9)  
I
Inductor conduction losses are minimized by using larger sized  
inductors that have smaller dc resistance; this in turn improves  
efficiency at the cost of solution size. Due to the high switching  
frequency of the ADP5003, shielded ferrite core material is  
recommended for its low core losses and low electromagnetic  
interference (EMI).  
Table 9. Recommended Inductors  
Vendor  
Part No.  
Value (µH) Saturation Current, ISAT (A)  
RMS Current, IRMS (A)  
DC Resistance (mΩ)  
Size (mm)  
5 × 5  
5 × 5  
5 × 5  
5 × 5  
5 × 5  
5 × 5  
6 × 6  
6 × 6  
6 × 6  
6 × 6  
6 × 6  
6 × 6  
6 × 6  
6 × 6  
6 × 6  
4 × 4  
4 × 4  
4 × 4  
4 × 4  
4 × 4  
Coilcraft XAL5030-102  
XAL5030-122  
XAL5030-222  
XAL5030-332  
XAL5030-562  
XAL5030-682  
XEL6030-102  
XEL6030-152  
XEL6030-222  
XEL6030-332  
XEL6060-472  
XAL6060-562  
XEL6060-682  
XEL6060-822  
XAL6060-103  
1
14  
8.7  
7.9  
7.2  
5.9  
5.3  
4.7  
12  
10  
7
6
9
7.5  
7.3  
7
8.5  
1.2  
2.2  
3.3  
5.6  
6.8  
1
1.5  
2.2  
3.3  
4.7  
5.6  
6.8  
8.2  
10  
1
12.5  
9.2  
8.7  
6.3  
6
18.5  
14.9  
12.6  
10  
11.4  
9.9  
7.9  
7.6  
7.6  
9.6  
8.8  
8.5  
8
11.4  
13.2  
21.2  
23.45  
26.75  
6.32  
9.57  
12.7  
19.92  
13.65  
14.46  
20.82  
22.71  
27  
5
Wurth  
744 383 570 10  
744 383 570 12  
744 383 570 15  
744 383 570 18  
744 383 570 22  
7.4  
7
6.2  
5.8  
5.2  
11.6  
13.4  
17.1  
18  
1.2  
1.5  
1.8  
2.2  
7
22  
Rev. 0 | Page 19 of 29  
ADP5003  
Data Sheet  
COMPENSATION COMPONENTS DESIGN  
JUNCTION TEMPERATURE  
For the peak current mode control architecture, the power stage  
can be simplified as a voltage controlled current source that  
supplies current to the output capacitor and load resistor. The  
simplified loop is composed of one dominant pole and a zero  
contributed by the output capacitor ESR.  
In cases where the ambient temperature (TA) is known, the  
thermal resistance parameter (θJA) can estimate the junction  
temperature rise (TJ). TJ is calculated with TA and the power  
dissipation (PD) using the following formula:  
TJ = TA + (PD × θJA)  
(13)  
The ADP5003 uses a transconductance amplifier as the error  
amplifier to compensate the system. Figure 43 shows the  
simplified peak current mode control, small signal circuit.  
The typical θJA value for the 32-lead, 5 mm × 5 mm LFCSP is  
46.91°C/W. An important factor to consider is that θJA is based  
on a 4-layer, 4 inches × 3 inches, 2.5 ounces copper PCB, as per  
the JEDEC standard, and applications may use different sizes  
and layers. It is important to maximize the copper used to  
remove the heat from the device. Copper exposed to air  
dissipates heat better than copper used in the inner layers.  
Connect the exposed pad to the ground plane with several vias.  
V
V
V
REFOUT  
VOUT1  
VOUT1  
R
TOP  
C
V
OUT  
ESR  
gm  
COMP  
+
A
VI  
V
A
BUCK  
SET1  
R
+
R
C
C
CP  
R
R
BOT  
C
If the case temperature can be measured, the junction  
temperature is calculated by  
C
TJ = TC + (PD × θJC)  
where:  
TC is the case temperature.  
(14)  
Figure 43. Simplified Peak Current Mode Control, Small Signal Circuit  
The compensation components, RC and CC, contribute a zero,  
and the optional CCP and RC contribute an optional pole.  
θJC is the junction to case thermal resistance provided in Table 6.  
The following procedure shows how to select the compensation  
components (RC, CC, and CCP) for ceramic output capacitor  
applications:  
To achieve reliable operation of the buck converter and LDO  
regulator, the estimated die junction temperature of the  
ADP5003 must be less than 125°C. Reliability and mean time  
between failures (MTBF) is highly affected by increasing the  
junction temperature. Additional information about product  
reliability can be found in the Analog Devices, Inc., Reliability  
Handbook at www.analog.com/reliability_handbook.  
1. Determine the cross frequency (fC). Generally, fC is  
between fSW/12 and fSW/6.  
2. Use the following equation to calculate RC:  
2× π× fC ×COUT × ABUCK  
RC =  
The total power dissipation in the ADP5003 simplifies to  
gm × AVI  
(10)  
PD = PDBUCK + PDLDO  
where:  
(15)  
where:  
COUT is the output capacitance.  
P
P
DBUCK = (VPVIN1 × IPVIN1) − (VVOUT1 × IVOUT1).  
DLDO = ((VPVIN2 VPVOUT2) × IPVOUT2) + (VPVIN2 × IGND).  
AVI = 7 A /V.  
3. Place the compensation zero at the domain pole (fP).  
Determine CC as follows:  
CC = ((R + RESR) × COUT)/RC  
(11)  
(12)  
where:  
RESR is the equivalent series resistance of the output  
capacitor.  
4.  
C
CP is optional. It can cancel the zero caused by the ESR of  
the output capacitor. Determine CCP as follows:  
CCP = (RESR × COUT)/RC  
Rev. 0 | Page 20 of 29  
 
 
 
Data Sheet  
ADP5003  
BUCK REGULATOR DESIGN EXAMPLE  
This section provides an example of the step by step design  
procedures and the external components required for the buck  
regulator. Table 10 lists the design requirements for this  
example.  
SELECTING THE INDUCTOR FOR THE BUCK  
REGULATOR  
The peak-to-peak inductor ripple current, ΔIL, is set to 35% of  
the maximum output current. Use Equation 8 to estimate the  
value of the inductor:  
Table 10. Example Design Requirements for the Buck Regulator  
Parameter  
Specification  
L = ((VPVIN1 VVOUT1) × D)/(ΔIL × fSW)  
Input Voltage  
Output Voltage  
Output Current  
Output Ripple  
Load Transient  
VPVIN1 = 12 V  
VVOUT1 = 2.5 V  
IVOUT1 = 3 A  
ΔVOUT1_RIPPLE = 25 mV  
5% at 20% to 80% load transient  
where:  
V
V
PVIN1 = 12 V.  
VOUT1 = 2.5 V.  
D is the duty cycle (D = VVOUT1/VPVIN1).  
ΔIL = 35% × 3 A = 1.05 A.  
f
SW = 600 kHz.  
SETTING THE SWITCHING FREQUENCY FOR THE  
BUCK REGULATOR  
The resulting value for L is 3.14 µH. The selected standard  
inductor value is 3.3 µH; therefore, ΔIL is 1 A.  
The first step is to determine the switching frequency for the  
ADP5003 design. In general, higher switching frequencies  
produce a smaller solution size due to the lower component  
values required, whereas lower switching frequencies result in  
higher conversion efficiency due to lower switching losses.  
To calculate the peak inductor current (IPEAK), use Equation 9:  
IPEAK = IVOUT1 + (ΔIL/2)  
The calculated peak current for the inductor is 3.5 A.  
SELECTING THE OUTPUT CAPACITOR FOR THE  
BUCK REGULATOR  
The switching frequency of the ADP5003 can be set from  
0.3 MHz to 2.5 MHz by connecting a resistor from the RT pin  
to ground. The selected resistor allows the user to make decisions  
based on the trade-off between efficiency and solution size. (For  
more information, see the Oscillator Frequency Control section.)  
However, the highest supported switching frequency must be  
assessed by checking the voltage conversion limitations enforced  
by the minimum on time and the minimum off time (see the  
Voltage Conversion Limitations section).  
The output capacitor must meet the output voltage ripple and  
load transient requirements. To meet the output voltage ripple  
requirement, use Equation 7 to calculate the capacitance:  
ΔIL  
COUT_MIN  
8× fSW ×(VRIPPLE  
ΔIL ×RESR )  
The calculated capacitance, COUT_MIN, is 8.7 µF.  
To meet the 5% overshoot and undershoot requirements, use  
the following equations to calculate the capacitance:  
In this design example, a switching frequency of 600 kHz is  
used to achieve an ideal combination of small solution size and  
high conversion efficiency. To set the switching frequency to  
600 kHz, use Equation 1 to calculate the resistor value, RRT:  
K
UV × ΔISTEP 2 ×L  
COUT_UV  
=
=
(17)  
(18)  
(
)
2× VPVIN1 VVOUT1 × ΔVOUT_UV  
R
RT (kΩ) = 1.78 × 1011/fSW (kHz)  
K
OV × ΔISTEP 2 ×L  
COUT_OV  
2
2
Therefore, select standard resistor RT = 294 kΩ.  
(
V
VOUT1 + ΔVOUT_OV  
)
VVOUT1  
SETTING THE OUTPUT VOLTAGE FOR THE BUCK  
REGULATOR  
where:  
UV and KOV are factors (typically set to 2).  
ΔISTEP is the load step.  
K
Select a value for the top resistor (RTOP) and then calculate the  
bottom feedback (RBOT) resistor by using the following equation:  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
RBOT = (RTOP × VVOUT1)/((VREFOUT × ABUCK) − VVOUT1  
)
(16)  
For estimation purposes, use KOV = KUV = 2; therefore,  
where:  
C
OUT_OV = 33.4 µF and COUT_UV = 9 µF.  
V
V
A
VOUT1 is the buck output voltage.  
REFOUT is 2 V.  
BUCK is the buck regulator gain.  
It is recommended to use two 22 µF ceramic capacitors.  
To set the output voltage to 2.5 V, RTOP is set to 100 kΩ, giving  
an RBOT value of 100 kΩ.  
Rev. 0 | Page 21 of 29  
 
 
 
 
 
 
ADP5003  
Data Sheet  
Figure 45 shows the load transient waveform.  
DESIGNING THE COMPENSATION NETWORK FOR  
THE BUCK REGULATOR  
For better load transient and stability performance, set the cross  
frequency, fC, to fSW/10. In this example, fSW is set to 600 kHz;  
therefore, fC is set to 60 kHz.  
V
VOUT1  
4
2 × π × 44 μF × 60 kHz ×2.5  
RC =  
CC =  
= 9.87 kΩ  
= 3.72 nF  
600 μS × 7 A/V  
I
VOUT1  
(
)
0.833 Ω + 0.001 Ω × 44 μF  
1
7.18 kΩ  
0.001 Ω × 44 μF  
= = 4.46 pF  
CCP  
7.18 kΩ  
CH1 1.00AB CH4 100mV  
200µs  
T
A CH3  
1.38A  
B
W
W
508µs  
Choose standard components: RC = 9.76 kΩ, CC = 4.7 nF,  
CP = 4.7 pF.  
Figure 45. 0.6 A to 2.4 A Load Transient for 2.5 V Output  
C
Figure 44 shows the Bode plot for the 2.5 V output rail. The  
cross frequency is 66.1 kHz, and the phase margin is 51.1°.  
SELECTING THE INPUT CAPACITOR FOR THE BUCK  
REGULATOR  
200  
150  
100  
50  
100  
For the input capacitor, select a ceramic capacitor with a  
minimum capacitance of 10 µF. Place the input capacitor close  
to the PVIN1 pin. In this example, one 10 µF, X5R, 25 V  
ceramic capacitor is recommended.  
80  
60  
40  
51.1°  
20  
0
0
66.1kHz  
–20  
–40  
–60  
–80  
–100  
–50  
–100  
–150  
–200  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 44. Bode Plot for 2.5 V Output Rail  
Rev. 0 | Page 22 of 29  
 
 
 
 
Data Sheet  
ADP5003  
ADAPTIVE HEADROOM CONTROL DESIGN EXAMPLE  
This section provides an example of the step by step design  
procedures and the external components required for the buck  
regulator using adaptive headroom control. Table 11 lists the  
design requirements for this example.  
SELECTING THE INDUCTOR FOR THE BUCK  
REGULATOR USING ADAPTIVE HEADROOM  
CONTROL  
The peak-to-peak inductor ripple current, ΔIL, is set to 35% of  
the maximum output current. Use the Equation 8 to estimate  
the value of the inductor:  
Table 11. Example Design Requirements for the Buck  
Regulator Using Adaptive Headroom Control  
Parameter  
Specification  
L = ((VPVIN1 VVOUT1) × D)/(ΔIL × fSW)  
Input Voltage  
VPVIN1 = 12 V  
VPVOUT2 = 1.3 V  
IVOUT1 = IPVOUT2 = 3 A  
100 mV at 20% to 80% load transient  
where:  
Output Voltage  
Output Current  
Buck Load Transient  
V
V
V
V
PVIN1 = 12 V.  
VOUT1 = VPVOUT2 + VHR = 1.7 V.  
PVOUT2 = 1.3 V.  
HR is the adaptive headroom voltage at steady state current. See  
SETTING THE SWITCHING FREQUENCY FOR THE  
BUCK REGULATOR USING ADAPTIVE HEADROOM  
CONTROL  
Table 4 and Figure 24 for the approximate values of VHR vs. load  
current. For this example, use VHR equal to 0.4 V for steady state  
load current of 3 A.  
D is the duty cycle (D = VVOUT1/VPVIN1).  
ΔIL = 35% × 3 A = 1.05 A.  
Similar to the buck design example, a switching frequency of  
600 kHz is used to achieve a good combination of small solution  
size and high conversion efficiency. To set the switching frequency  
to 600 kHz, use Equation 1 to calculate the resistor value, RRT:  
fSW = 600 kHz.  
The resulting value for L is 2.32 µH. The selected standard  
inductor value is 2.2 µH; therefore, ΔIL is 1.1 A.  
R
RT (kΩ) = 1.78 × 1011/fSW (kHz)  
Therefore, select standard resistor RT = 294 kΩ.  
To calculate the peak inductor current (IPEAK), use Equation 9:  
SETTING THE OUTPUT VOLTAGE FOR THE BUCK  
REGULATOR USING ADAPTIVE HEADROOM  
CONTROL  
I
PEAK = IVOUT1 + (ΔIL/2)  
The calculated peak current for the inductor is 3.55 A.  
SELECTING THE OUTPUT CAPACITORS FOR THE  
BUCK REGULATOR USING ADAPTIVE HEADROOM  
CONTROL  
Select a value for the top feedback resistor (RTOP) and then calculate  
the bottom resistor (RBOT) by using the following equation:  
RBOT = (RTOP × VPVOUT2)/((VREFOUT × ALDO) – VPVOUT2  
)
(19)  
To ensure that the LDO regulator does not track the buck  
output, the undershoot voltage must be set to a value less than  
the minimum adaptive headroom voltage. Use Equation 17 and  
Equation 18 to calculate the capacitance.  
where:  
V
V
A
PVOUT2 is the LDO output voltage.  
REFOUT is 2 V.  
LDO is the LDO regulator gain.  
For estimation purposes, use KOV = KUV = 2; therefore,  
OUT_OV = 40.7 µF and COUT_UV = 6.92 µF.  
To set the output voltage to 1.3 V, RTOP is set to 100 kΩ giving an  
BOT value of 65 kΩ.  
C
R
It is recommended to use a single 47 µF ceramic capacitor for the  
output of the buck and a single 10 µF for the output of the LDO.  
Rev. 0 | Page 23 of 29  
 
 
 
 
 
 
ADP5003  
Data Sheet  
DESIGNING THE COMPENSATION NETWORK FOR  
THE BUCK REGULATOR USING ADAPTIVE  
HEADROOM CONTROL  
I
PVOUT2  
Due to the addition of the adaptive headroom scheme in the  
feedback loop, a lower bandwidth is required. Set the crossover  
frequency, fC, to fSW/60. In this example, fSW is set to 600 kHz;  
therefore, fC is set to 10 kHz.  
2
3
4
V
VOUT1  
2 × π × 47 μF ×10 kHz ×2.5  
V
PVOUT2  
RC =  
= 1.76 kΩ  
= 15.2 nF  
600 μS × 7 A/V  
(
)
0.433 Ω + 0.001 Ω × 47 μF  
CC =  
B
CH2 1.00A  
CH4 20.0mV  
CH3 200mV  
M200µs  
A CH2  
1.08A  
1.76 kΩ  
W
B
T
432.000µs  
W
0.001 Ω × 47 μF  
Figure 46. 0.6 A to 2.4 A Load Transient for 2.5 V Output  
CCP  
= = 26.7 pF  
1.76 kΩ  
SELECTING THE INPUT CAPACITOR FOR THE BUCK  
REGULATOR USING ADAPTIVE HEADROOM  
CONTROL  
Choose standard components: RC = 1.74 kΩ, CC = 22 nF,  
CP = 22 pF.  
Figure 46 shows the load transient waveform.  
C
For the input capacitor, select a ceramic capacitor with a  
minimum value of 10 µF. Place the input capacitor close to the  
PVIN1 pin. In this example, one 10 µF, X5R, 25 V ceramic  
capacitor is recommended.  
Rev. 0 | Page 24 of 29  
 
 
 
Data Sheet  
ADP5003  
RECOMMENDED BUCK EXTERNAL COMPONENTS FOR THE BUCK REGULATOR  
Table 12 lists the recommended buck external components for buck applications up to 3 A operation ( 5% tolerance at an ~60% step  
transient), and Table 13 lists the recommended buck external components for adaptive headroom applications up to 3 A operation  
(VPVOUT2 100 mV at an ~60% step transient).  
Table 12. Recommended Buck External Components for Buck Applications up to 3 A Operation ( 5% Tolerance at an ~60% Step Transient)  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
5
5
5
5
VOUT (V)  
L (µH)  
3.3  
4.7  
4.7  
5.6  
6.8  
8.2  
10  
COUT (µF)  
210  
204.7  
147  
110  
69  
RTOP1 (kΩ)  
200  
150  
174  
150  
100  
49.9  
0
200  
150  
174  
150  
100  
49.9  
150  
150  
100  
49.9  
0
200  
150  
174  
150  
100  
49.9  
100  
49.9  
0
200  
150  
174  
150  
100  
49.9  
RBOT1 (kΩ)  
49.9  
47.5  
75  
84.5  
100  
97.6  
open  
49.9  
47.5  
75  
84.5  
100  
97.6  
84.5  
84.5  
100  
97.6  
Open  
49.9  
47.5  
75  
84.5  
100  
97.6  
100  
97.6  
Open  
49.9  
47.5  
75  
RC (kΩ)  
23.7  
23.2  
16.5  
12.4  
7.68  
5.23  
3.01  
23.7  
16.5  
14.7  
10.5  
5.23  
5.76  
15.4  
15.4  
7.15  
6.04  
4.99  
21  
CC (nF)  
3.3  
3.3  
4.7  
4.7  
6.8  
10  
CCP (pF)  
300  
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
5
47  
26.7  
210  
147  
132  
94  
47  
51.7  
69  
69  
32  
26.7  
22  
94  
147  
49.2  
47  
23  
24.2  
22  
22  
22  
69  
47  
15  
1
3.3  
3.3  
4.7  
4.7  
4.7  
4.7  
2.2  
3.3  
3.3  
4.7  
5.6  
1.5  
1.8  
1.8  
2.2  
2.2  
2.2  
2.2  
3.3  
3.3  
1
3.3  
3.3  
4.7  
4.7  
6.8  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
5
5
10  
600  
12  
12  
12  
12  
12  
5
5
5
5
5
2.2  
2.2  
3.3  
4.7  
6.8  
1.5  
1.5  
2.2  
2.2  
3.3  
4.7  
2.2  
3.3  
4.7  
1
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
1
1.2  
1.5  
1.8  
2.5  
3.3  
2.5  
3.3  
5
33.2  
11  
10.5  
5.11  
5.49  
8.25  
8.25  
8.25  
25.5  
17.4  
12.1  
8.66  
8.25  
8.25  
5
1000  
12  
12  
12  
5
5
5
5
5
5
1
1.2  
1.5  
1.8  
2.5  
3.3  
1
1
1.2  
1.2  
1.5  
1.2  
32  
23  
22  
22  
1.5  
1.5  
2.2  
3.3  
84.5  
100  
97.6  
Table 13. Recommended Buck External Components for Adaptive Headroom Applications up to 3 A Operation (VPVOUT2 100 mV  
at an ~60% Step Transient)  
fSW (kHz)  
VIN (V)  
VOUT2 (V)  
L (µH)  
COUT1 (µF)  
RC (kΩ)  
1.74  
1.65  
2.15  
1.74  
1.74  
1.65  
1.21  
1.21  
1.65  
1.65  
CC (nF)  
CCP (pF)  
RTOP2 (kΩ)  
Short  
37.4  
100  
100  
100  
Short  
37.4  
100  
100  
RBOT2 (kΩ)  
Open  
118  
121  
64.9  
49.9  
Open  
118  
121  
64.9  
COUT2 (µF)  
600  
12  
12  
12  
12  
12  
5
5
5
5
5
3.3  
2.5  
1.8  
1.3  
1.1  
3.3  
2.5  
1.8  
4.7  
3.3  
3.3  
2.2  
1.8  
1.5  
1.8  
1.8  
47  
44  
57  
47  
47  
44  
32  
32  
44  
44  
33  
22  
22  
22  
10  
33  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
1.3  
1.1  
1.8  
1.5  
22  
10  
22  
22  
100  
49.9  
Rev. 0 | Page 25 of 29  
 
 
 
ADP5003  
Data Sheet  
BUCK CONFIGURATIONS  
INDEPENDENT  
80  
70  
The buck and LDO regulators can operate independently of  
each other (see Figure 48) to provide two voltage rails from a  
single supply. In this way, the buck regulator can provide an  
intermediate supply rail for the LDO regulator with a fixed  
headroom voltage between the buck output voltage and the  
LDO output voltage. The LDO regulator acts to filter the  
voltage ripple and switching noise generated by the buck  
regulator for noise sensitive supplies. Where additional filtering  
is required, a second stage LC filter can be added between the  
buck output and the LDO input. Because the regulators are  
independently operated to provide a single voltage rail, the PSRR  
and efficiency can be configured as required by the application  
by either setting a lower headroom voltage for greater efficiency  
or a higher headroom voltage for greater PSRR.  
60  
50  
40  
30  
20  
10  
0
ADAPTIVE HEADROOM CONTROL  
INDEPENDENT, 150mV HEADROOM  
INDEPENDENT, 500mV HEADROOM  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (A)  
Figure 47. Independent Efficiency vs. Load Current for  
Adaptive Headroom Control  
VPVIN1: 12V  
PVIN1  
EN1  
10µF  
VOUT1  
SW1  
4.7nF  
9.76kΩ COMP1  
BUCK  
V
= 2.5V  
33µH  
44µF  
PVOUT1  
REGULATOR  
3A  
100kΩ  
PGND1  
VSET1  
1µF  
VREG  
RT  
294kΩ  
1µF  
VPVINSYS: 12V  
PVINSYS  
PWRGD  
SYNC  
SYSTEM  
10µF  
ANALOG DEVICES  
RF TRANSCEIVER,  
HIGH SPEED  
ADC/DAC, CLOCK,  
ASIC/PROCESSOR  
REFOUT  
100kΩ  
PVIN2  
VSET2  
10µF  
64.9kΩ  
VBUF  
LOW NOISE  
LDO ACTIVE  
FILTER  
V
= 1.3V  
PVOUT2  
10µF  
PVOUT2  
0.1µF  
3A  
VREG_LDO  
1µF  
EN2  
VFB2P  
VFB2N  
AGND1  
AGND2  
Figure 48. Independent Configuration (Dual Output)  
Rev. 0 | Page 26 of 29  
 
 
 
Data Sheet  
ADP5003  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
ADAPTIVE HEADROOM  
0.2V, 1A  
LDO PSRR  
= 12V, V  
0.28V, 1.5A  
0.35V, 2A  
0.4V, 2.5A  
0.4V, 3A  
V
= 0.9V  
PVOUT2  
PVIN1  
The ADP5003 features a scheme to control the buck regulator  
output voltage and thus the LDO headroom voltage to provide  
better efficiency with the same noise performance of a standalone  
LDO regulator. When the buck regulator uses the adaptive  
headroom control configuration, the ADP5003 manages the  
buck regulator output voltage vs. the LDO load current (see  
Figure 24). The adaptive headroom control also optimizes the  
LDO headroom when the remote sense feedback corrects the  
significant output voltage drop due to additional filtering or  
the high trace impedance under the high load conditions. The  
headroom profile of the adaptive headroom control is set to  
deliver a consistent PSRR across the load range while optimizing  
efficiency of the overall system (see Figure 49). To enable adaptive  
headroom control, connect VSET1 to VREG (see Figure 50).  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 49. LDO PSRR vs. Frequency  
V
PVIN1: 12V  
PVIN1  
PVIN1  
10µF  
EN1  
VOUT1  
L1  
2.2µH  
V
SW1  
SW1  
SW1  
2.2nF  
PVOUT1  
(ADAPTIVE)  
1.74kΩ  
COMP1  
VSET1  
BUCK  
REGULATOR  
3A  
47µF  
PGND1  
PGND1  
PGND1  
1µF  
VREG  
294kΩ  
RT  
VPVINSYS: 12V  
PVINSYS  
10µF  
PWRGD  
SYNC  
SYSTEM  
REFOUT  
100kΩ  
64.9kΩ  
PVIN2  
PVIN2  
PVIN2  
VSET2  
VBUF  
10µF  
10µF  
PVOUT2  
PVOUT2  
PVOUT2  
LOW NOISE  
LDO ACTIVE  
FILTER  
V
= 1.3V  
VPOUT2  
0.1µF  
ANALOG DEVICES  
RF TRANSCEIVER,  
HIGH SPEED ADC/DAC,  
CLOCK, ASIC/  
3A  
VREG_LDO  
PROCESSOR  
1µF  
EN2  
VFB2P  
VFB2N  
AGND1  
AGND2  
Figure 50. Adaptive Headroom Configuration  
Rev. 0 | Page 27 of 29  
 
 
 
ADP5003  
Data Sheet  
LAYOUT CONSIDERATIONS  
Layout is important for all switching regulators but is  
particularly important for regulators with high switching  
frequencies. To achieve high efficiency, proper regulation,  
stability, and low noise, a well designed PCB layout is required.  
Follow these guidelines when designing PCBs:  
Route the VFB2P and VFB2N LDO sense traces together  
connecting them at the point of load. Keep them as short  
as possible and away from noise sources.  
Place the frequency setting resistor close to the RT pin.  
Keep AGND1 and PGND1 separate on the top layer of the  
board. This separation avoids pollution of AGND1 with  
switching noise. Do not connect PGND1 to the EPAD on  
the top layer of the layout. Connect both AGND1 and  
PGND1 to the board ground plane with vias. Ideally,  
connect PGND1 to the plane at a point between the input  
and output capacitors.  
Keep high current loops as short and wide as possible.  
Keep the input bypass capacitors close to the PVIN1,  
PVIN2, and PVINSYS pins.  
Keep the inductor and output capacitor close to SW1  
and PGND1.  
Connect the negative terminal of CVBUF to the VFB2N pin.  
13.2mm  
L1  
PVIN  
C
PVINSYS  
10µF  
C
PVIN1  
10µF  
50V/X5R  
1206  
35V/X5R  
0805  
C
VREG  
1µF  
10V/X5R  
0406  
C
VOUT1  
22µF  
25V/X5R  
1206  
0201  
24  
1
2
3
23  
22  
21  
0402  
0402  
4
5
ADP5003  
20  
19  
18  
17  
6
7
0201  
C
REFOUT  
0.22µF  
10V/X5R  
0402  
8
C
PVIN2  
0201  
10µF  
50V/X5R  
1206  
C
1µF  
PVOUT2  
VREG_LDO  
10V/X5R  
0402  
C
PVOUT2  
10µF  
25V/X5R  
0805  
C
0.1µF  
VBUF  
10V/X5R  
0402  
Figure 51. Example Outline Layout  
Rev. 0 | Page 28 of 29  
 
Data Sheet  
ADP5003  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
25  
24  
32  
1
INDICATOR  
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 52. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
Package Description  
Package Option  
CP-32-7  
ADP5003ACPZ-R7  
ADP5003CP-EVALZ  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15021-0-11/17(0)  
Rev. 0 | Page 29 of 29  
 
 

相关型号:

ADP5003CP-EVALZ

Low Noise Micro PMU, 3 A Buck Regulator with 3 A LDO
ADI

ADP5014

Integrated Power Solution with Quad Low Noise Buck Regulators
ADI

ADP5014-EVALZ

Integrated Power Solution with Quad Low Noise Buck Regulators
ADI

ADP5014ACPZ-R7

Integrated Power Solution with Quad Low Noise Buck Regulators
ADI

ADP5020

Power Management Unit for Imaging Modules
ADI

ADP5020ACPZ-R7

Power Management Unit for Imaging Modules
ADI

ADP5020CP-EVALZ

Power Management Unit for Imaging Modules
ADI

ADP5022

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
ADI

ADP5022ACBZ-1-R7

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
ADI

ADP5022ACBZ-2-R7

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
ADI

ADP5022ACBZ-4-R7

Dual 3 MHz, 600 mA Buck Regulator with 150 mA LDO
ADI

ADP5023

Dual 3 MHz, 800 mA Buck
ADI