EVAL-AD7606BFMCZ [ADI]

8-Channel DAS Bipolar Input, Simultaneous Sampling ADC;
EVAL-AD7606BFMCZ
型号: EVAL-AD7606BFMCZ
厂家: ADI    ADI
描述:

8-Channel DAS Bipolar Input, Simultaneous Sampling ADC

文件: 总69页 (文件大小:1308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Channel DAS with 16-Bit, 800 kSPS  
Bipolar Input, Simultaneous Sampling ADC  
AD7606B  
Data Sheet  
FEATURES  
APPLICATIONS  
16-bit ADC with 800 kSPS on all channels  
Input buffer with 5 MΩ analog input impedance  
Pin to pin compatible with the AD7606  
Power line monitoring  
Protective relays  
Multiphase motor control  
Instrumentation and control systems  
−40°C to +125°C operating temperature range  
Single 5 V analog supply and 1.71 V to 3.6 V VDRIVE supply  
21 V input clamp protection with 8 kV ESD  
Extra modes available in software mode  
Data acquisition systems  
Per channel selectable analog input ranges  
Single-ended, bipolar: 10 V, 5 V, and 2.5 V  
Per channel system phase, offset, and gain calibration  
Analog input open circuit detection feature  
<20 LSB open circuit code error (RPD = 10 kΩ)  
Self diagnostics and monitoring features  
CRC error checking on read/write data and registers  
FUNCTIONAL BLOCK DIAGRAM  
AV  
AV  
CC  
REGCAP  
REGCAP  
V
DRIVE  
CC  
ALDO  
AD7606B  
DLDO  
5MΩ  
5MΩ  
V1  
CLAMP  
CLAMP  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
PGA  
SAR  
SAR  
SAR  
SAR  
SAR  
SAR  
SAR  
SAR  
CLK OSC  
V1GND  
LPF  
LPF  
LPF  
LPF  
LPF  
LPF  
LPF  
CONVST  
RESET  
5MΩ  
5MΩ  
CONTROL  
INPUTS  
V2  
CLAMP  
CLAMP  
RANGE  
V2GND  
OS0 TO OS2  
5MΩ  
5MΩ  
PROGRAMMABLE  
DIGITAL FILTER  
SW/HW MODE  
CONTROL  
V3  
BUSY  
CLAMP  
CLAMP  
FRSTDATA  
V3GND  
SERIAL  
D
A TO D  
D
OUT  
OUT  
5MΩ  
5MΩ  
SDI  
V4  
CLAMP  
CLAMP  
ADC, PGA, AND  
CHANNEL  
SCLK  
CS  
PARALLEL/  
SERIAL  
INTERFACE  
V4GND  
CONTROL  
AND  
PARALLEL  
DB0 TO DB15  
CONFIGURATION  
5MΩ  
5MΩ  
V5  
CLAMP  
CLAMP  
RD  
WR  
V5GND  
SYSTEM GAIN,  
OFFSET AND  
PHASE  
PAR/SER SEL  
REFCAPA  
5MΩ  
5MΩ  
CALIBRATION  
V6  
CLAMP  
CLAMP  
V6GND  
5MΩ  
5MΩ  
DIAGNOSTICS  
AND  
ANALOG INPUT  
OPEN DETECT  
CONFIGURATION  
V7  
CLAMP  
CLAMP  
REFCAPB  
V7GND  
REFIN/REFOUT  
5MΩ  
5MΩ  
V8  
CLAMP  
CLAMP  
2.5V  
REF  
V8GND  
LPF  
REF SELECT  
AGND  
REFGND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD7606B  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
System Phase Calibration.......................................................... 29  
System Gain Calibration............................................................ 29  
System Offset Calibration ......................................................... 29  
Analog Input Open Circuit Detection .................................... 30  
Digital Interface.............................................................................. 32  
Hardware Mode.......................................................................... 32  
Software Mode............................................................................ 32  
Parallel Interface......................................................................... 33  
Serial Interface............................................................................ 35  
Diagnostics ...................................................................................... 39  
Reset Detection........................................................................... 39  
Overvoltage and Undervoltage Events .................................... 39  
Digital Error................................................................................ 39  
Diagnostics Multiplexer ............................................................ 42  
Typical Connection Diagram ....................................................... 44  
Applications Information.............................................................. 46  
Layout Guidelines....................................................................... 46  
Register Summary .......................................................................... 48  
Register Details ............................................................................... 50  
Outline Dimensions....................................................................... 69  
Ordering Guide .......................................................................... 69  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 14  
Terminology .................................................................................... 20  
Theory of Operation ...................................................................... 22  
Analog Front End....................................................................... 22  
SAR ADC..................................................................................... 23  
Reference ..................................................................................... 23  
Operation Modes........................................................................ 24  
Digital Filter .................................................................................... 27  
Padding Oversampling .............................................................. 28  
External Oversampling Clock................................................... 28  
System Calibration Features.......................................................... 29  
REVISION HISTORY  
6/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 69  
 
Data Sheet  
AD7606B  
GENERAL DESCRIPTION  
The AD7606B is a 16-bit, simultaneous sampling, analog-to-  
digital data acquisition system (DAS) with eight channels,  
each channel containing analog input clamp protection, a  
programmable gain amplifier (PGA), a low-pass filter, and a  
16-bit successive approximation register (SAR), analog-to-digital  
converter (ADC). The AD7606B also contains a flexible digital  
filter, low drift, 2.5 V precision reference and reference buffer to  
drive the ADC and flexible parallel and serial interfaces.  
Additional 2.5 V analog input range.  
A n a l o g i npu t r a n g e ( 1 0 V, 5 V, a n d 2 . 5 V ) , s e l e c t a b l e  
per channel.  
Additional oversampling (OS) options, up to OS × 256.  
System gain, system offset, and system phase calibration  
per channel.  
Analog input open circuit detector.  
Diagnostic multiplexer.  
Monitoring functions (serial peripheral interface (SPI)  
invalid read/write, cyclic redundancy check (CRC),  
overvoltage and undervoltage events, busy stuck monitor,  
and reset detection).  
The AD7606B operates from a single 5 V supply and accommo-  
dates 10 V, 5 V, and 2.5 V true bipolar input ranges when  
sampling at throughput rates of 800 kSPS for all channels. The  
input clamp protection tolerates voltages up to 21 V. The  
AD7606B has a 5 MΩ analog input impedance, resulting in less  
than 20 LSB bipolar zero code when the input signal is discon-  
nected and pulled to ground through a 10 kΩ external resistor.  
The single supply operation, on-chip filtering, and high input  
impedance eliminates the need for external driver op amps, which  
require bipolar supplies. For applications with lower throughput  
rates, the AD7606B flexible digital filter can be used to improve  
noise performance.  
Note that throughout this data sheet, multifunction pins, such  
RD  
as the  
/SCLK pin, are referred to either by the entire pin  
name or by a single function of the pin, for example, the SCLK pin,  
when only that function is relevant.  
Table 1. Pin to Pin Compatible Devices  
Resolution  
(Bits)  
Single-Ended  
Bipolar Inputs  
True Differential  
Bipolar Inputs  
In hardware mode, the AD7606B is fully compatible with the  
AD7606. In software mode, the following advanced features are  
available:  
18  
16  
AD7608  
AD7606  
AD7606B  
AD7607  
AD7609  
14  
Rev. 0 | Page 3 of 69  
 
AD7606B  
Data Sheet  
SPECIFICATIONS  
Voltage reference (VREF) = 2.5 V external and internal, analog supply voltage (AVCC) = 4.75 V to 5.25 V, logic supply voltage (VDRIVE) =  
1.71 V to 3.6 V, sample frequency (fSAMPLE) = 800 kSPS, with no oversampling, TA = −40°C to +125°C, single-ended input, and all input  
voltage ranges, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Input frequency (fIN) = 1 kHz sine wave, unless  
otherwise noted  
No oversampling (OS), 10 V range  
No OS, 5 V range  
Signal-to-Noise Ratio (SNR)1  
87.5  
86.5  
83.5  
92  
90.5  
87.5  
89.5  
88.5  
86  
93.5  
92  
dB  
dB  
dB  
dB  
dB  
dB  
No OS, 2.5 V range  
Oversampling ratio (OSR) = 16×, 10 V range  
OSR = 16×, 5 V range  
OSR = 16×, 2.5 V range  
All input ranges  
89  
Total Harmonic Distortion (THD)  
Signal-to-Noise-and-Distortion  
fSAMPLE = 200 kSPS  
fSAMPLE = 800 kSPS  
No OS, 10 V range  
No OS, 5 V range  
−105 −94  
−100 −90  
88.5  
87.7  
85.5  
92  
91.3  
88.7  
−104  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
86.5  
85.5  
83  
89  
89  
No OS, 2.5 V range  
OSR = 16×, 10 V range  
OSR = 16×, 5 V range  
OSR = 16×, 2.5 V range  
86.5  
Spurious-Free Dynamic Range  
(SFDR)  
Channel to Channel Isolation  
Full Scale Step Settling Time  
fIN on unselected channels up to 160 kHz  
0.01% of full scale  
10 V range  
5 V range  
2.5V range  
−110  
dB  
70  
110  
130  
μs  
μs  
μs  
ANALOG INPUT FILTER  
Full Power Bandwidth  
−3 dB, 10 V range  
−3 dB, 5 V range  
−3 dB, 2.5 V range  
−0.1 dB, 10 V range  
−0.1 dB, 5 V range  
−0.1 dB, 2.5 V range  
10 V range  
22.5  
13.5  
11.5  
3
2
2
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
µs  
Phase Delay  
8
5 V range  
9
µs  
2.5 V range  
11  
µs  
Phase Delay Matching  
10 V range  
5 V range  
2.5 V range  
240  
365  
445  
ns  
ns  
ns  
DC ACCURACY  
Resolution  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
No missing codes  
16  
Bits  
0.5  
0.99  
2
2.5  
47  
30  
LSB2  
LSB2  
LSB2  
LSB  
fSAMPLE = 200 kSPS  
fSAMPLE = 800 kSPS  
Internal reference  
External reference  
1.16  
3
2
Total Unadjusted Error (TUE)  
Positive and Negative Full-  
Scale (FS) Error3  
LSB  
Internal reference  
2
45  
LSB  
Rev. 0 | Page 4 of 69  
 
Data Sheet  
AD7606B  
Parameter  
Test Conditions/Comments  
RFILTER4 = 20 kΩ, system gain calibration disabled  
RFILTER4 = 0 kΩ to 65 kΩ, system gain calibration enabled  
Min  
Typ  
126  
4
Max  
Unit  
LSB  
LSB  
Positive and Negative FS Error Drift External reference  
Internal reference  
Positive and Negative FS Error  
Matching  
1
4
5
15  
20  
ppm/°C  
ppm/°C  
LSB  
3
Bipolar Zero Code Error  
TA = −40°C to +85°C  
1
1
20  
14  
2
LSB2  
LSB  
ppm/°C  
LSB2  
LSB  
LSB  
LSB  
LSB  
LSB  
Bipolar Zero Code Error Drift  
Bipolar Zero Code Error Matching  
TA = −40°C to +85°C  
0.2  
1.5  
1.4  
12  
12  
1ꢀ  
1ꢀ  
22  
22  
23  
14  
30  
20  
35  
25  
40  
30  
Open Circuit Code Error  
Pull-down resistor (RPD)5 = 10 kΩ, 10 V range  
RPD = 10 kΩ, 10 V range, TA = −40°C to +85°C  
RPD = 10 kΩ, 5 V range  
RPD = 10 kΩ, 5 V range, TA = −40°C to +85°C  
RPD = 10 kΩ, 2.5 V range  
LSB  
LSB  
RPD = 10 kΩ, 2.5 V range, TA = −40°C to +85°C  
ANALOG INPUT  
Input Voltage Ranges  
Vx − VxGND  
10 V range  
5 V range  
2.5 V range  
−10  
−5  
−2.5  
+10  
+5  
+2.5  
V
V
V
Input Voltage Ranges  
VxGND − AGND  
10 V range  
5 V range  
2.5 V range  
−0.ꢀ  
−0.1  
−0.1  
+1.9  
+2.ꢀ  
+3.1  
V
V
V
Analog Input Current  
Input Capacitance (CIN)6  
Input Impedance (RIN)ꢀ  
Input Impedance Drift  
REFERENCE INPUT/OUTPUT  
Reference Input Voltage  
DC Leakage Current  
See the Typical Performance Characteristics section  
(VIN − 2)/RIN  
μA  
pF  
MΩ  
ppm/°C  
5
5
1
25  
REF SELECT = 0, external reference  
2.495  
2.5  
2.505  
0.12  
V
μA  
pF  
V
ppm/°C  
V
Input Capacitance6  
ꢀ.5  
2.5  
3
Reference Output Voltage  
Reference Temperature Coefficient  
Reference Voltage to the ADC  
LOGIC INPUTS  
REF SELSECT = 1, internal reference, TA = 25°C  
REFCAPA (Pin 44) and REFCAPB (Pin 45)  
2.49ꢀ  
2.503  
15  
4.41  
4.39  
Input High Voltage (VINH  
)
0.ꢀ × VDRIVE  
V
Input Low Voltage (VINL  
Input Current (IIN)  
Input Capacitance6  
LOGIC OUTPUTS  
)
0.3 × VDRIVE  
1
V
μA  
pF  
5
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
Floating State Leakage Current  
Output Capacitance6  
Output Coding  
Current source (ISOURCE) = 100 μA  
Current sink (ISINK) = 100 μA  
VDRIVE − 0.2  
V
V
μA  
pF  
N/A8  
0.2  
20  
1
5
Twos complement  
See Table 3  
CONVERSION RATE  
Conversion Time  
Acquisition Time  
0.ꢀ5  
0.5  
μs  
μs  
Throughput Rate  
Per channel  
800  
kSPS  
Rev. 0 | Page 5 of 69  
AD7606B  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER REQUIREMENTS  
AVCC  
VDRIVE  
REGCAP  
4.75  
1.71  
1.875  
5
5.25  
3.6  
1.93  
V
V
V
AVCC Current (IAVCC  
)
Normal Mode (Static)  
Normal Mode (Operational)  
7.5  
43  
8
3.5  
0.5  
9.5  
47.5  
10  
4.5  
5
mA  
mA  
mA  
mA  
µA  
fSAMPLE = 800 kSPS  
fSAMPLE = 10 kSPS  
Standby  
Shutdown Mode  
VDRIVE Current (IDRIVE  
)
Normal Mode (Static)  
Normal Mode (Operational)  
1.8  
1.1  
30  
1.6  
0.8  
3.5  
1.5  
75  
3
µA  
mA  
µA  
µA  
µA  
fSAMPLE = 800 kSPS  
fSAMPLE = 10 kSPS  
Standby  
Shutdown Mode  
2
Power Dissipation  
Normal Mode (Static)  
Normal Mode (Operational)  
40  
230  
42  
18  
2.5  
50  
255  
50  
24  
25  
mW  
mW  
mW  
mW  
µW  
fSAMPLE = 800 kSPS  
fSAMPLE = 10 kSPS  
Standby  
Shutdown Mode  
1 No OS means no oversampling is applied.  
2 LSB means least significant bit. With a 2.5 V input range, 1 LSB = 76.293 µV. With a 5 V input range, 1 LSB = 152.58 µV. With a 10 V input range, 1 LSB = 305.175 µV.  
3 These specifications include the full temperature range variation and contribution from the internal reference and reference buffer.  
4 RFILTER is a resistor placed in a series to the analog input front-end. See Figure 57.  
5 See Figure 59.  
6 Not production tested. Sample tested during initial release to ensure compliance.  
7 Input impedance variation is factory trimmed and accounted for in the System Gain Calibration section.  
8 N/A means not applicable.  
TIMING SPECIFICATIONS  
Universal Timing Specifications  
AVCC = 4.75 V to 5.25 V, VDRIVE = 1.71 V to 3.6 V, VREF = 2.5 V external reference and internal reference, and TA = −40°C to +125°C, unless  
otherwise noted. Interface timing tested using a load capacitance of 20 pF, dependent on VDRIVE and load capacitance for serial interface.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Description  
tCYCLE  
1.25  
µs  
Minimum time between consecutive CONVST rising edges (excluding  
oversampling modes)1  
tLP_CNV  
10  
10  
ns  
ns  
CONVST low pulse width  
CONVST high pulse width  
CONVST high to BUSY high delay time  
VDRIVE > 2.7 V  
tHP_CNV  
tD_CNV_BSY  
20  
25  
ns  
ns  
ns  
VDRIVE < 2.7 V  
tS_BSY  
tD_BSY  
0
Minimum time from BUSY falling edge to RD falling edge setup time  
(in parallel interface) or to MSB being available on DOUTx line (in serial interface)  
25  
ns  
Maximum time between last RD falling edge (in parallel interface) or  
last LSB being clocked out (serial interface) and the following BUSY falling  
edge; read during conversion  
tCONV  
0.65  
2.2  
0.85  
2.3  
4.8  
9.9  
20  
μs  
μs  
μs  
μs  
μs  
Conversion time; no oversampling  
Oversampling by 2  
4.65  
9.6  
Oversampling by 4  
Oversampling by 8  
19.4  
Oversampling by 16  
Rev. 0 | Page 6 of 69  
 
 
Data Sheet  
AD7606B  
Parameter  
Min  
Typ  
Max  
40.2  
80.8  
161.9  
324  
Unit  
μs  
Description  
39.2  
Oversampling by 32  
Oversampling by 64  
Oversampling by 128  
Oversampling by 256  
78.7  
μs  
157.6  
315.6  
μs  
μs  
tRESET  
Partial Reset  
Full Reset  
tDEVICE_SETUP  
Partial Reset  
Full Reset  
tWAKE-UP  
55  
2000  
ns  
ns  
µs  
ns  
µs  
Partial RESET high pulse width  
3000  
Full RESET high pulse width  
Time between RESET falling edge and first CONVST rising edge  
50  
253  
Wake-up time after standby/shutdown mode  
Standby  
Shutdown  
tPOWER-UP  
1
10  
10  
µs  
ms  
ms  
Time between stable VCC/VDRIVE and assert of RESET  
1 Applies to serial mode when all four DOUTx lines are selected.  
AV  
DRIVE  
CC  
V
t
POWER-UP  
t
RESET  
RESET  
t
t
CYCLE  
DEVICE_SETUP  
t
HP_CNV  
t
LP_CNV  
CONVST  
t
CONV  
t
D_CNV_BSY  
BUSY  
CS  
t
D_BSY  
t
S_BSY  
READ DURING  
CONVERSION  
READ AFTER  
CONVERSION  
Figure 2. Universal Timing Diagram  
Parallel Mode Timing Specifications  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Description  
tS_  
0
ns  
CS falling edge to RD falling edge setup time  
RD rising edge to CS rising edge hold time  
_RD  
CS  
tH_RD_  
0
ns  
CS  
tHP_RD  
tLP_RD  
10  
10  
10  
ns  
ns  
ns  
RD high pulse width  
RD low pulse width  
CS high pulse width  
tHP_  
CS  
tD_  
35  
ns  
ns  
Delay from CS until DBx three-state disabled  
CS to DBx hold time  
_DB  
CS  
CS  
tH_  
0
_DB  
tD_RD_DB  
Data access time after falling edge of RD  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
Data hold time after falling edge of RD  
CS rising edge to DBx high impedance  
27  
37  
ns  
ns  
ns  
ns  
tH_RD_DB  
12  
tDHZ_  
40  
_DB  
CS  
tCYC_RD  
RD falling edge to next RD falling edge  
30  
40  
ns  
ns  
ns  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
tD_  
26  
Delay from CS falling edge until FRSTDATA three-state disabled  
_FD  
CS  
Rev. 0 | Page 7 of 69  
 
AD7606B  
Data Sheet  
Parameter  
tD_RD_FDH  
tD_RD_FDL  
tDHZ_FD  
Min  
Typ  
Max  
30  
Unit  
ns  
Description  
Delay from RD falling edge until FRSTDATA high  
Delay from RD falling edge until FRSTDATA low  
Delay from CS rising edge until FRSTDATA three-state enabled  
CS to WR setup time  
30  
ns  
28  
ns  
tS_  
0
ns  
_WR  
CS  
tHP_WR  
tLP_WR  
213  
ns  
WR high pulse width  
WR low pulse width  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
WR hold time  
88  
213  
0
ns  
ns  
ns  
tH_WR_  
CS  
tS_DB_WR  
tH_WR_DB  
tCYC_WR  
5
ns  
ns  
ns  
Configuration data to WR setup time  
5
Configuration data to WR hold time  
230  
Configuration data settle time, WR rising edge to next WR rising edge  
CS  
tS_CS_RD  
tHP_RD  
tH_RD_CS  
tLP_RD  
RD  
tD_RD_DB  
tCYC_RD  
tH_RD_DB  
tH_CS_DB  
tDHZ_CS_DB  
tD_CS_DB  
DB0 TO DB15  
tD_CS_FD  
VIN8  
x
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VIN6  
VIN7  
tD_RD_FDL  
tD_RD_FDH  
tDHZ_FD  
FRSTDATA  
CS  
Figure 3. Parallel Mode Read Timing Diagram, Separate and  
RD  
Pulses  
tCYC_RD  
tHP_CS  
CS AND RD  
tLP_RD  
tH_CS_DB  
tDHZ_CS_DB  
tD_RD_DB  
DB0 TO DB15  
FRSTDATA  
CS  
VIN1  
VIN2  
VIN3  
VIN4  
VIN5  
VIN6  
VIN7  
VIN8  
tD_CS_FD  
tD_RD_FDL  
tDHZ_FD  
CS  
RD  
Figure 4. Parallel Mode Read Timing Diagram, Linked and  
tHP_WR  
tH_WR_CS  
tS_CS_WR  
tCYC_WR  
WR  
tLP_WR  
tS_DB_WR  
tH_WR_DB  
DB0 TO DB15  
Figure 5. Parallel Mode Write Operation Timing Diagram  
Rev. 0 | Page 8 of 69  
 
 
Data Sheet  
AD7606B  
Serial Mode Timing Specifications  
Table 5.  
Parameter  
Min  
Typ  
Max  
Unit  
Description  
fSCLK  
SCLK frequency; fSCLK = 1/tSCLK  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
Minimum SCLK period  
CS to SCLK falling edge setup time  
60  
40  
MHz  
MHz  
μs  
tSCLK  
tS_  
1/fSCLK  
2
ns  
_SCK  
CS  
tH_SCK_  
2
ns  
SCLK to CS rising edge hold time  
CS  
tLP_SCK  
tHP_SCK  
tD_  
0.4 × tSCLK  
0.4 × tSCLK  
ns  
ns  
SCLK low pulse width  
SCLK high pulse width  
Delay from CS until DOUTx three-state disabled  
_DO  
CS  
9
18  
ns  
ns  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
tD_SCK_DO  
Data out access time after SCLK rising edge  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
Data out hold time after SCLK rising edge  
Data in setup time before SCLK falling edge  
Data in hold time after SCLK falling edge  
CS rising edge to DOUTx high impedance  
15  
25  
ns  
ns  
ns  
ns  
ns  
tH_SCK_DO  
tS_SDI_SCK  
tH_SCK_SDI  
tDHZ_  
8
8
0
_DO  
CS  
7
22  
ns  
ns  
ns  
VDRIVE > 2.7 V  
VDRIVE < 2.7 V  
tWR  
tD_  
25  
Time between writing and reading the same register or between two writes;  
if fSCLK >50 MHz  
26  
ns  
Delay from CS until DOUTx three-state disabled/delay from CS until MSB valid  
_FD  
CS  
tD_SCK_FDL  
tDHZ_FD  
18  
28  
ns  
ns  
16th SCLK falling edge to FRSTDATA low  
CS rising edge until FRSTDATA three-state enabled  
CS  
tHP_SCK  
tH_SCK_CS  
tS_CS_SCK  
tSCLK  
SCLK  
1
2
3
14  
15  
16  
t
LP_SCK  
tD_CS_DO  
tDHZ_CS_DO  
tD_SCK_DO  
tH_SCK_DO  
D
x
DB  
DB  
DB  
DB  
DB  
DB  
0
OUT  
15  
14  
13  
2
1
tD_SCK_FDL  
tD_CS_FD  
tDHZ_FD  
FRSTDATA  
CS  
Figure 6. Serial Timing Diagram, ADC Read Mode (Channel 1)  
tSCLK  
tS_CS_SCK  
tHP_SCK  
tH_SCK_CS  
1
2
3
8
9
7
16  
SCLK  
tLP_SCK  
tH_SCK_SDI  
tS_SDI_SCK  
tWR  
ADD5  
ADD0  
DIN  
DIN  
SDI  
WEN  
R/W  
0
tD_CS_DO  
tD_SCK_DO  
D
x
D
7
D
0
OUT  
OUT  
OUT  
Figure 7. Serial Interface Timing Diagram, Register Map Read/Write Operations  
Rev. 0 | Page 9 of 69  
 
AD7606B  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 6.  
Parameter  
Rating  
AVCC to AGND  
VDRIVE to AGND  
−0.3 V to +7 V  
−0.3 V to AVCC + 0.3 V  
21 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to AVCC + 0.3 V  
10 mA  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Analog Input Voltage to AGND1  
Digital Input Voltage to AGND  
Digital Output Voltage to AGND  
REFIN to AGND  
Input Current to Any Pin Except Supplies1  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Pb/Sn Temperature, Soldering  
Reflow (10 sec to 30 sec)  
Pb-Free Temperature, Soldering Reflow  
Electrostatic Discharge (ESD)  
All Pins Except Analog Inputs  
Analog Input Pins Only  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit  
board (PCB) design and operating environment. Close  
attention to PCB thermal design is required.  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
240 (+0)°C  
260 (+0)°C  
Table 7. Thermal Resistance  
Package Type  
1
θJA  
θJC  
Unit  
ST-64-2  
40  
7
°C/W  
3.5 kV  
8 kV  
1 Simulated data based on JEDEC 2s2p thermal test PCB in a JEDEC natural  
convention environment.  
1 Transient currents of up to 100 mA do not cause silicon controlled  
rectifier (SCR) latch-up.  
ESD CAUTION  
Rev. 0 | Page 10 of 69  
 
 
 
Data Sheet  
AD7606B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AV  
AV  
CC  
CC  
2
3
AGND  
OS0  
AGND  
REFGND  
REFCAPB  
REFCAPA  
REFGND  
REFIN/REFOUT  
AGND  
4
OS1  
5
OS2  
6
PAR/SER SEL  
STBY  
AD7606B  
TOP VIEW  
(Not to Scale)  
7
8
RANGE  
CONVST  
WR  
9
AGND  
10  
11  
12  
13  
14  
15  
16  
REGCAP  
RESET  
RD/SCLK  
CS  
AV  
AV  
CC  
CC  
REGCAP  
AGND  
BUSY  
FRSTDATA  
DB0  
REF SELECT  
DB15  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ANALOG INPUT  
DATA OUTPUT  
DECOUPLING CAPACITOR PIN  
POWER SUPPLY  
DIGITAL OUTPUT  
DIGITAL INPUT  
REFERENCE INPUT/OUTPUT  
GROUND PIN  
Figure 8. Pin Configuration  
Table 8. Pin Function Description  
Pin No.  
Type1  
Mnemonic  
Description  
1, 37, 38, 48  
P
AVCC  
Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end  
amplifiers and to the ADC core. Decouple these supply pins to AGND.  
2, 26, 35, 40,  
41, 47  
P
AGND  
Analog Ground. These pins are the ground reference points for all analog circuitry on the  
AD7606B. All analog input signals and external reference signals must be referred to these pins. All  
six of the AGND pins must connect to the AGND plane of a system.  
3 to 5  
DI  
DI  
DI  
OS0 to OS2  
Oversampling Mode Pins. These inputs select the oversampling ratio or enable software mode  
(see Table 12 for oversampling pin decoding). See the Digital Filter section for more details about  
the oversampling mode of operation.  
6
7
PAR/SER SEL Parallel/Serial Interface Selection Input. If this pin is tied to a logic low, the parallel interface is  
selected. If this pin is tied to a logic high, the serial interface is selected. See the Digital Interface  
section for more information on each interface available.  
STBY  
Standby Mode Input. In hardware mode, this pin, in combination with the RANGE pin, places the  
AD7606B in one of two power-down modes: standby mode or shutdown mode. In software mode,  
this pin is ignored. Therefore, it is recommended to connect this pin to logic high. See the Power-  
Down Modes section for more information on both hardware mode and software mode.  
8
DI  
DI  
DI  
RANGE  
CONVST  
WR  
Analog Input Range Selection Input. In hardware mode, this pin determines the input range of the  
analog input channels (see Table 9). If the STBY pin is at logic low, this pin determines the power-  
down mode (see Table 14). In software mode, the RANGE pin is ignored. However, this pin must be  
tied high or low.  
Conversion Start Input. When the CONVST pin transitions from low to high, the analog input is  
sampled on all eight SAR ADCs. In software mode, this pin can be configured as external  
oversampling clock. Providing a low jitter external clock improves the SNR performance for large  
oversampling ratios. See the External Oversampling Clock section for further details.  
9
10  
Digital Input. In hardware mode, this pin has no function. Therefore, it can be tied high, tied low,  
or shorted to CONVST. In software mode, this pin is an active low write pin for writing registers  
using the parallel interface. See the Parallel Interface section for more information.  
Rev. 0 | Page 11 of 69  
 
AD7606B  
Data Sheet  
Pin No.  
Type1  
Mnemonic  
Description  
11  
DI  
RESET  
Reset Input, Active High. Full and partial reset options are available on the AD7606B. The type of  
reset is determined by the length of the reset pulse. It is recommended that the device receives a  
full reset pulse after power-up. See the Reset Functionality section for further details.  
12  
DI  
RD/SCLK  
Parallel Data Read Control Input when the Parallel Interface is Selected (RD).  
Serial Clock Input when the Serial Interface is Selected (SCLK). See the Digital Interface section for  
more details.  
13  
14  
15  
DI  
CS  
Chip Select. This pin is the active low chip select input for ADC data read or register data read and  
write, in both serial and parallel interface. See the Digital Interface section for more details.  
Busy Output. This pin transitions to a logic high along with the CONVST rising edge. The BUSY  
output remains high until the conversion process for all channels is complete.  
First Data Output. The FRSTDATA output signal indicates when the first channel, V1, is being read  
back on the parallel interface (see Figure 3) or the serial interface (see Figure 6). See the Digital  
Interface section for more details.  
DO  
DO  
BUSY  
FRSTDATA  
16 to 22  
23  
DO/DI  
P
DB0 to DB6  
VDRIVE  
Parallel Output/Input Data Bits. When using parallel interface, these pins act as three-state parallel  
digital input and output pins (see the Parallel Interface section). When using serial interface, tie  
these pins to AGND.  
Logic Power Supply Input. The voltage (1.71 V to 3.6 V) supplied at this pin determines the  
operating voltage of the interface. This pin is nominally at the same supply as the supply of the  
host interface, that is, data signal processing (DSP) and field programmable gate array (FPGA).  
24  
DO/DI  
DB7/DOUT  
DB8/DOUT  
DB9/DOUT  
A
B
C
Parallel Output/Input Data Bit 7 (DB7)/Serial Interface Data Output Pin (DOUTA). When using the  
parallel interface, this pin acts as a three-state parallel digital input/output pin. When using the  
serial interface, this pin functions as DOUTA. See Table 21 and Table 22 for more details on each  
data interface and operation mode.  
Parallel Output/Input Data Bit 8 (DB8)/Serial Interface Data Output Pin (DOUTB). When using the  
parallel interface, this pin acts as a three-state parallel digital input and output pin. When using  
the serial interface, this pin functions as DOUTB. See Table 21 and Table 22 for more details on each  
data interface and operation mode.  
Parallel Output/Input Data Bit 9 (DB9)/Serial Interface Data Output Pin (DOUTC). When using the  
parallel interface, this pin acts as a three-state parallel digital input and output pin. When using  
the serial interface, this pin functions as DOUTC if in software mode and using four data output lines  
option. See Table 21 and Table 22 for more details on each data interface and operation mode.  
Parallel Output/Input Data Bit 10 (DB10)/Serial Interface Data Output Pin (DOUTD). When using the  
parallel interface, this pin acts as a three-state parallel digital input/output pin. When using the  
serial interface, this pin functions as DOUTD if in software mode and using the four data output lines  
option. See Table 21 and Table 22 for more details on each data interface and operation mode.  
25  
27  
28  
29  
DO/DI  
DO/DI  
DO/DI  
DO/DI  
DB10/DOUT  
DB11/SDI  
D
Parallel Output/Input Data Bit DB11/Serial Data Input. When using the parallel interface, this pin  
acts as a three-state parallel digital input and output pin. When using the serial interface in  
software mode, this pin functions as serial data input. See Table 21 and Table 22 for more details  
on each data interface and operation mode.  
30 to 33  
34  
DO/DI  
DI  
DB12 to  
DB15  
Parallel Output/Input Data Bits, DB15 to DB12. When using the parallel interface, these pins act as  
three-state parallel digital input and output pins (see the Parallel Interface section). When using  
the serial interface, tie these pins to AGND.  
Internal/External Reference Selection Logic Input. If this pin is set to logic high, the internal  
reference is selected and enabled. If this pin is set to logic low, the internal reference is disabled  
and an external reference voltage must be applied to the REFIN/REFOUT pin.  
Decoupling Capacitor Pins for Voltage Output from 1.9 V Internal Regulator, Analog Low  
Dropout (ALDO) and Digital Low Dropout (DLDO). These output pins must be decoupled  
separately to AGND using a 1 μF capacitor.  
Reference Input (REFIN)/Reference Output (REFOUT). The internal 2.5 V reference is available on  
the REFOUT pin for external use while the REF SELECT pin is set to logic high. Alternatively, by  
setting the REF SELECT pin to logic low, the internal reference is disabled and an external  
reference of 2.5 V must be applied to this input (REFIN). A 100 nF capacitor must be applied from  
the REFIN pin to ground, close to the REFGND pins, for both internal and external reference  
options. See the Reference section for more details.  
REF SELECT  
REGCAP  
36, 39  
42  
P
REF  
REFIN/  
REFOUT  
43, 46  
44, 45  
REF  
REF  
REFGND  
REFCAPA,  
REFCAPB  
Reference Ground Pins. These pins must be connected to AGND.  
Reference Buffer Output Force/Sense Pins. These pins must be connected together and decoupled  
to AGND using a low effective series resistance (ESR), 10 μF ceramic capacitor. The voltage on  
these pins is typically 4.4 V.  
49  
50  
AI  
V1  
Channel 1 Positive Analog Input Pin.  
Channel 1 Negative Analog Input Pin.  
Rev. 0 | Page 12 of 69  
AI GND V1GND  
Data Sheet  
AD7606B  
Pin No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Type1  
AI  
Mnemonic  
Description  
V2  
Channel 2 Positive Analog Input Pin.  
Channel 2 Negative Analog Input Pin.  
Channel 3 Positive Analog Input Pin.  
Channel 3 Negative Analog Input Pin.  
Channel 4 Positive Analog Input Pin.  
Channel 4 Negative Analog Input Pin.  
Channel 5 Positive Analog Input Pin.  
Channel 5 Negative Analog Input Pin.  
Channel 6 Positive Analog Input Pin.  
Channel 6 Negative Analog Input Pin.  
Channel 7 Positive Analog Input Pin.  
Channel 7 Negative Analog Input Pin.  
Channel 8 Positive Analog Input Pin.  
Channel 8 Negative Analog Input Pin.  
AI GND V2GND  
AI V3  
AI GND V3GND  
AI V4  
AI GND V4GND  
AI V5  
AI GND V5GND  
AI V6  
AI GND V6GND  
AI V7  
AI GND V7GND  
AI V8  
AI GND V8GND  
1 P is power supply, DI is digital input, DO is digital output, REF is reference input/output, AI is analog input, and GND is ground.  
Rev. 0 | Page 13 of 69  
AD7606B  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–20  
AV = 5V, V  
= 3.3V  
AV = 5V, V  
INTERNAL REFERENCE  
±5V RANGE  
fSAMPLE = 800kSPS  
fIN = 1kHz  
32768 POINT FFT  
SNR = 88.3dB  
THD = –103dB  
= 3.3V  
CC  
DRIVE  
CC  
DRIVE  
INTERNAL REFERENCE  
–20  
–40  
±10V RANGE  
fSAMPLE = 800kSPS  
fIN = 1kHz  
32768 POINT FFT  
SNR = 89.2dB  
–40  
–60  
–60  
THD = –108.3dB  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0.1  
1
10  
100  
0.1  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 9. Fast Fourier Transform (FFT), 10 V Range  
Figure 12. FFT, 5 V Range  
0
–20  
0
–20  
AV = 5V, V = 3.3V  
DRIVE  
INTERNAL REFERENCE  
±10V RANGE  
fSAMPLE = 800kSPS  
fIN = 146Hz  
8192 POINT FFT  
SNR = 93.6dB  
THD = –110dB  
AV = 5V, V  
INTERNAL REFERENCE  
±2.5V RANGE  
fSAMPLE = 800kSPS  
fIN = 1kHz  
32768 POINT FFT  
SNR = 86dB  
THD = –98.5dB  
= 3.3V  
CC  
CC  
DRIVE  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
0.1  
1
10  
100  
0
5
10  
15  
20  
25  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 10. FFT, 2.5 V Range  
Figure 13. FFT Oversampling by 16, 10 V Range  
2.0  
1.5  
2.0  
1.5  
AV = 5V, V  
= 3.3V  
AV = 5V, V  
= 3.3V  
CC  
DRIVE  
CC  
DRIVE  
INTERNAL REFERENCE  
fSAMPLE = 800kSPS  
T = 25°C  
INTERNAL REFERENCE  
fSAMPLE = 800kSPS  
T = 25°C  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
0
10000  
20000  
30000  
40000  
50000  
60000  
ADC CODE  
ADC CODE  
Figure 11. Typical INL, 10 V Range  
Figure 14. Typical DNL  
Rev. 0 | Page 14 of 69  
 
Data Sheet  
AD7606B  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
100  
98  
96  
94  
92  
90  
88  
86  
NO OS  
OS BY 2  
OS BY 4  
OS BY 8  
OS BY 16  
OS BY 32  
OS BY 64  
OS BY 128  
OS BY 256  
NO OS  
OS BY 2  
OS BY 4  
OS BY 8  
OS BY 16  
OS BY 32  
OS BY 64  
OS BY 128  
OS BY 256  
AV = 5V, V  
= 3.3V  
AV = 5V, V  
= 3.3V  
CC  
DRIVE  
CC  
84  
DRIVE  
fSAMPLE = 800KSPS/OSR  
fSAMPLE = 800kSPS/OSR  
INTERNAL REFERENCE  
T = 25°C  
INTERNAL REFERENCE  
T = 25°C  
82  
80  
±10V RANGE  
±10V RANGE  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 18. SNR vs. Input Frequency for Different OSR Values, 10 V Range,  
External OS Clock  
Figure 15. SNR vs. Input Frequency for Different OSR Values, 10 V Range,  
Internal OS Clock  
100  
98  
96  
94  
92  
90  
100  
NO OS  
OS BY 2  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
OS BY 4  
OS BY 8  
OS BY 16  
OS BY 32  
OS BY 64  
OS BY 128  
OS BY 256  
88  
NO OS  
OS BY 2  
86  
OS BY 4  
OS BY 8  
AV = 5V, V  
= 3.3V  
AV = 5V, V  
= 3.3V  
CC  
DRIVE  
CC  
DRIVE  
84  
82  
80  
OS BY 16  
OS BY 32  
OS BY 64  
OS BY 128  
OS BY 256  
fSAMPLE = 800kSPS/OSR  
fSAMPLE = 800kSPS/OSR  
INTERNAL REFERENCE  
T = 25°C  
INTERNAL REFERENCE  
T = 25°C  
±5V RANGE  
±5V RANGE  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 16. SNR vs. Input Frequency for Different OSR Values, 5 V Range,  
Internal OS Clock  
Figure 19. SNR vs. Input Frequency for Different OSR Values, 5 V Range,  
External OS Clock  
100  
100  
NO OS  
OS BY 2  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
OS BY 4  
OS BY 8  
OS BY 16  
OS BY 32  
OS BY 64  
OS BY 128  
OS BY 256  
95  
90  
NO OS  
OS BY 2  
85  
OS BY 4  
AV = 5V, V  
= 3.3V  
AV = 5V, V  
= 3.3V  
CC  
DRIVE  
OS BY 8  
CC  
DRIVE  
OS BY 16  
OS BY 32  
OS BY 64  
OS BY 128  
OS BY 256  
fSAMPLE = 800kSPS/OSR  
fSAMPLE = 800kSPS/OSR  
INTERNAL REFERENCE  
T = 25°C  
INTERNAL REFERENCE  
T = 25°C  
±2.5V RANGE  
±2.5V RANGE  
80  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
Figure 20. SNR vs. Input Frequency for Different OSR Values, 2.5 V Range,  
External OS Clock  
Figure 17. SNR vs. Input Frequency for Different OSR Values, 2.5 V Range,  
Internal OS Clock  
Rev. 0 | Page 15 of 69  
 
AD7606B  
Data Sheet  
91  
90  
89  
88  
87  
86  
–60  
–70  
±10V RANGE  
AV = 5V V  
fSAMPLE = 800kSPS  
= 3.3V  
CC  
DRIVE  
fSAMPLE = 800kSPS  
R
MATCHED ON Vx AND VxGND  
SOURCE  
–80  
–90  
–100  
–110  
–120  
0Ω  
1.2kΩ  
5kΩ  
10kΩ  
23.7kΩ  
48.7kΩ  
105kΩ  
85  
84  
±2.5V  
±5V  
±10V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
120  
10  
0.01  
0.1  
1
10  
100  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
Figure 21. SNR vs. Temperature  
Figure 24. THD vs. Input Frequency for Various Source Impedances,  
10 V Range  
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
–60  
AV = 5V, V  
fSAMPLE = 800kSPS  
T = 25°C  
= 3.3V  
±5V RANGE  
0Ω  
CC  
DRIVE  
1.2kΩ  
5kΩ  
fSAMPLE = 800kSPS  
R
MATCHED ON Vx AND VxGND  
SOURCE  
10kΩ  
23.7kΩ  
48.7kΩ  
105kΩ  
–70  
–80  
–90  
–100  
110  
–120  
0.01  
–40  
–20  
0
20  
40  
60  
80  
100  
0.1  
1
10  
100  
TEMPERATURE (°C)  
INPUT FREQUENCY (kHz)  
Figure 22. Reference Drift  
Figure 25. THD vs. Input Frequency for Various Source Impedances,  
5 V Range  
25  
20  
15  
10  
5
–60  
±2.5V RANGE  
0Ω  
1.2kΩ  
5kΩ  
10kΩ  
23.7kΩ  
48.7kΩ  
105kΩ  
fSAMPLE = 800kSPS  
R
MATCHED ON Vx AND VxGND  
SOURCE  
–70  
–80  
–90  
–100  
110  
0
–120  
0.01  
–10  
–5  
0
5
0.1  
1
10  
100  
REFERENCE DRIFT (ppm/°C)  
INPUT FREQUENCY (kHz)  
Figure 23. Reference Drift Histogram  
Figure 26. THD vs. Input Frequency for Various Source Impedances,  
2.5 V Range  
Rev. 0 | Page 16 of 69  
Data Sheet  
AD7606B  
30  
45  
40  
35  
30  
25  
20  
15  
10  
5
NFS CH1  
NFS CH3  
NFS CH5  
NFS CH7  
PFS CH1  
PFS CH3  
PFS CH5  
PFS CH7  
NFS CH2  
NFS CH4  
NFS CH6  
NFS CH8  
PFS CH2  
PFS CH4  
PFS CH6  
PFS CH8  
20  
10  
0
–10  
–20  
–30  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–10  
–5  
0
5
10  
TEMPERATURE (°C)  
NFS DRIFT (ppm/°C)  
Figure 27. Positive Full-Scale(PFS)/Negative Full-Scale (NFS) Error vs.  
Temperature, 10 V Range  
Figure 30. PFS/NFS Drift Histogram, External Reference  
25  
45  
NFS CH1  
NFS CH3  
NFS CH5  
NFS CH7  
PFS CH1  
PFS CH3  
PFS CH5  
PFS CH7  
NFS CH2  
NFS CH4  
NFS CH6  
NFS CH8  
PFS CH2  
PFS CH4  
PFS CH6  
PFS CH8  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
10  
5
0
–5  
–10  
–15  
–20  
–25  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–10  
–5  
0
5
10  
TEMPERATURE (°C)  
NFS DRIFT (ppm/°C)  
Figure 28. PFS/NFS Error vs. Temperature, 5 V Range  
Figure 31. PFS/NFS Drift Histogram, Internal Reference  
20  
15  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
±10V RANGE  
±5V RANGE  
±2.5V RANGE  
10  
5
0
–5  
–10  
–15  
–20  
–25  
NFS CH1  
NFS CH3  
NFS CH5  
NFS CH7  
PFS CH1  
PFS CH3  
PFS CH5  
PFS CH7  
NFS CH2  
NFS CH4  
NFS CH6  
NFS CH8  
PFS CH2  
PFS CH4  
PFS CH6  
PFS CH8  
AV = 5V, V  
= 3.3V  
CC  
DRIVE  
INTERNAL REFERENCE  
RECOMMENDED DECOUPLING USED  
fSAMPLE = 800kSPS  
T = 25°C  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0.1  
1
10  
100  
TEMPERATURE (°C)  
AV NOISE FREQUENCY (kHz)  
CC  
Figure 29. PFS/NFS Error vs. Temperature, 2.5 V Range  
Figure 32. AC PSRR  
Rev. 0 | Page 17 of 69  
AD7606B  
Data Sheet  
1400  
1200  
1000  
800  
600  
400  
200  
0
6.0  
CH1  
Vx AND VxGND  
SHORTED TOGETHER  
T = 25°C  
4096 SAMPLES  
MEAN = 32767.8  
SIGMA = 1.2  
1303  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
4.8  
3.6  
1163  
2.4  
782  
1.2  
0
–1.2  
–2.4  
–3.6  
–4.8  
–6.0  
458  
246  
AV = 5V, V  
INTERNALREFERENCE  
fSAMPLE = 800kSPS  
= 3.3V  
CC  
DRIVE  
91  
32765 32766 32767 32768 32769 32770 32771 32772  
ADC CODE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 36. Histogram of Codes, 10 V Range  
Figure 33. Bipolar Zero Code Error vs. Temperature, 10 V Range  
2000  
12.0  
CH1  
Vx AND VxGND  
SHORTED TOGETHER  
T = 25°C  
4096 SAMPLES  
MEAN = 32767.8  
SIGMA = 0.92  
CH2  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
9.6  
1727  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
7.2  
4.8  
1182  
2.4  
0
878  
–2.4  
–4.8  
–7.2  
–9.6  
–12.0  
AV = 5V, V  
INTERNAL REFERENCE  
fSAMPLE = 800kSPS  
= 3.3V  
CC  
DRIVE  
177  
119  
6
32765  
32766  
32767  
32768  
32769  
32770  
32771  
32772  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
ADC CODE  
TEMPERATURE (°C)  
Figure 37. Histogram of Codes, 5 V Range  
Figure 34. Bipolar Zero Code Error vs. Temperature, 5 V Range  
1800  
24.0  
CH1  
1702  
Vx AND VxGND  
1667  
CH2  
SHORTED TOGETHER  
T = 25°C  
19.2  
CH3  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
CH4  
4096 SAMPLES  
MEAN = 32767.5  
SIGMA = 0.8  
CH5  
CH6  
CH7  
CH8  
14.4  
9.6  
4.8  
0
–4.8  
–9.6  
–14.4  
–19.2  
–24.0  
415  
281  
AV = 5V, V  
= 3.3V  
CC  
DRIVE  
INTERNAL REFERENCE  
f
= 800kSPS  
23  
8
SAMPLE  
32765 32766 32767 32768 32769 32770 32771 32772  
ADC CODE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 38. Histogram of Codes, 2.5 V Range  
Figure 35. Bipolar Zero Code Error vs. Temperature, 2.5 V Range  
Rev. 0 | Page 18 of 69  
Data Sheet  
AD7606B  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
6
AV = 5V, V  
fSAMPLE = 800kSPS  
T = 25°C  
= 3.3V  
CC  
DRIVE  
NORMAL MODE  
AUTOSTANDBY MODE  
4
2
0
–2  
–4  
–6  
AV = 5V, V  
INTERNAL REFERENCE  
T = 25°C  
= 3.3V  
±10V  
±5V  
CC  
DRIVE  
±2.5V  
0
0
200  
400  
600  
800  
1000  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
THROUGHPUT RATE (kSPS)  
INPUT VOLTAGE (V)  
Figure 39. Analog Input Current vs. Input Voltage  
Figure 41. AVCC Supply Current vs. Throughput Rate  
–50  
–60  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
AV = 5V,V = 3.3V  
DRIVE  
INTERNAL REFERENCE  
±10V RANGE  
±5V RANGE  
±2.5V RANGE  
T = –40°C  
T = +25°C  
T = +125°C  
CC  
fSAMPLE = 800kSPS  
T = 25°C  
–70  
INTERFERER IN ALL  
UNSELECTED CHANNELS  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
AV = 5V, V  
INTERNAL REFERENCE  
T = 25°C  
= 3.3V  
CC  
DRIVE  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
100  
200  
300  
400  
500  
600  
700  
800  
NOISE FREQUENCY (kHz)  
THROUGHPUT RATE (kSPS)  
Figure 42. Channel to Channel Isolation vs. Noise Frequency  
Figure 40. AVCC Supply Current vs. Throughput Rate  
Rev. 0 | Page 19 of 69  
 
AD7606B  
Data Sheet  
TERMINOLOGY  
Integral Nonlinearity (INL)  
The ratio depends on the number of quantization levels in  
INL is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function. The  
endpoints of the transfer function are zero scale at ½ LSB below  
the first code transition and full scale at ½ LSB above the last code  
transition.  
the digitization process: the more levels, the smaller the  
quantization noise.  
The theoretical SINAD for an ideal N-bit converter with a sine  
wave input is given by  
SINAD = (6.02 N + 1.76) (dB)  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Thus, for a 16-bit converter, the SINAD is 98 dB.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the harmonics to the  
fundamental. For the AD7606B, THD is defined as  
Bipolar Zero Code Error  
Bipolar zero code error is the deviation of the midscale  
transition (all 1s to all 0s) from the ideal, which is 0 V − ½ LSB.  
THD (dB) =  
Bipolar Zero Code Error Match  
Bipolar zero code error match is the absolute difference in  
bipolar zero code error between any two input channels.  
2
2
V22 + V32 + V4 + V52 + V62 + V7 + V82 + V92  
20log  
where:  
V
1
Open Circuit Code Error  
V1 is the rms amplitude of the fundamental.  
V2 to V9 are the rms amplitudes of the second through ninth  
harmonics.  
Open circuit code error is the ADC output code when there is an  
open circuit on the analog input, and a pull-down resistor (RPD)  
connected between the analog input pair of pins. See Figure 59  
for more details.  
Peak Harmonic or Spurious Noise  
Peak harmonic or spurious noise is the ratio of the rms value of the  
next largest component in the ADC output spectrum (up to fS/2,  
excluding dc) to the rms value of the fundamental. Normally, the  
value of this specification is determined by the largest harmonic  
in the spectrum, but for ADCs where the harmonics are buried  
in the noise floor, the value is determined by a noise peak.  
Positive Full-Scale (PFS) Error  
PFS error is the deviation of the actual last code transition from  
the ideal last code transition (10 V − 1½ LSB (9.99954), 5 V −  
1½ LSB (4.99977), and 2.5 V − 1½ LSB (2.49988)) after the  
bipolar zero code error is adjusted out. The positive full-scale  
error includes the contribution from the internal reference and  
reference buffer.  
Power Supply Rejection Ratio (PSRR)  
Variations in power supply affect the full-scale transition but  
not the linearity of the converter. The power supply rejection (PSR)  
is the maximum change in full-scale transition point due to a  
change in power supply voltage from the nominal value. The  
PSRR is defined as the ratio of the 100 mV p-p sinewave applied  
to the AVCC supplies of the ADC frequency, fS, to the power of  
the ADC output at that frequency, fS.  
Positive Full-Scale Error Match  
PFS error match is the absolute difference in positive full-scale  
error between any two input channels.  
Negative Full-Scale (NFS) Error  
NFS error is the deviation of the first code transition from the  
ideal first code transition (−10 V + ½ LSB (−9.99984), −5 V + ½  
LSB (−4.99992), and −2.5 V + ½ LSB (−2.49996)) after the  
bipolar zero code error is adjusted out. The negative full-scale  
error includes the contribution from the internal reference and  
reference buffer.  
PSRR (dB) = 20 log (0.1/PfS)  
where:  
PfS is equal to the power at frequency, fS, coupled on the AVCC  
supply.  
Negative Full-Scale Error Match  
NFS error match is the absolute difference in negative full-scale  
Channel to Channel Isolation  
error between any two input channels.  
Channel to channel isolation is a measure of the level of  
crosstalk between all input channels. It is measured by applying  
a full-scale sine wave signal, up to 160 kHz, to all unselected  
input channels and then determining the degree to which the  
signal attenuates in the selected channel with a 1 kHz sine wave  
signal applied (see Figure 42).  
Total Unadjusted Error (TUE)  
TUE is the maximum deviation of the output code from the  
ideal. TUE includes INL errors, bipolar zero code and positive  
and negative full-scale errors, and reference errors.  
Signal-to-Noise-and-Distortion Ratio (SINAD)  
SINAD ratio is the measured ratio of signal-to-noise-and-  
distortion at the output of the ADC. The signal is the rms  
amplitude of the fundamental. Noise is the sum of all  
nonfundamental signals up to half the sampling frequency (fS/2,  
excluding dc).  
Rev. 0 | Page 20 of 69  
 
Data Sheet  
AD7606B  
Phase Delay  
Phase Delay Drift  
Phase delay drift is the change in phase delay per unit temperature  
across the entire operating temperature of the device.  
Phase delay is a measure of the absolute time delay between  
when an input is sampled by the converter and when the result  
associated with that sample is available to be read back from the  
ADC, including delay induced by the analog front end of the  
device.  
Phase Delay Matching  
Phase delay matching is the maximum phase delay seen between  
any simultaneously sampled pair.  
Rev. 0 | Page 21 of 69  
AD7606B  
Data Sheet  
THEORY OF OPERATION  
ANALOG FRONT END  
The AD7606B is a 16-bit, simultaneous sampling, analog-to-  
digital DAS with eight channels. Each channel contains analog  
input clamp protection, a PGA, a low-pass filter, and a 16-bit  
SAR ADC.  
21 V, no current flows in the clamp circuit. For input voltages  
that are above 21 V, the AD7606B clamp circuitry turns on.  
15  
T
T
T
= –40°C  
= +25°C  
= +125°C  
A
A
A
10  
5
Analog Input Ranges  
The AD7606B can handle true bipolar, single-ended input  
voltages. In hardware mode, the logic level on the RANGE pin  
determines either 10 V or 5 V as the analog input range of all  
analog input channels, as shown in Table 9.  
0
A logic change on the RANGE pin has an immediate effect on  
the analog input range. However, there is typically a settling  
time of approximately 80 µs in addition to the normal acquisition  
time requirement. Changing the RANGE pin during a conversion  
is not recommended for fast throughput rate applications.  
–5  
–10  
–15  
–30  
–20  
–10  
0
10  
20  
30  
SOURCE VOLTAGE (V)  
In software mode, it is possible to configure an individual  
analog input range per channel using Address 0x03 through  
Address 0x06. The logic level on the RANGE pin is ignored in  
software mode.  
Figure 44. Input Protection Clamp Profile  
It is recommended to place a series resistor on the analog input  
channels to limit the current to 10 mA for input voltages  
greater than 21 V. In an application where there is a series  
resistance (R) on an analog input channel, Vx, it is recommended  
to match the resistance (R) with the resistance on VxGND to  
eliminate any offset introduced to the system, as shown in  
Figure 45. However, in software mode, there is a per channel  
system offset calibration that removes the offset of the full  
system (see the System Offset Calibration section).  
Table 9. Analog Input Range Selection  
Range (V) Hardware Mode1 Software Mode2  
10  
RANGE pin high  
RANGE pin low  
Not applicable  
Address 0x03 through  
Address 0x06  
Address 0x03 through  
Address 0x06  
Address 0x03 through  
Address 0x06  
5
2.5  
During normal operation, it is not recommended to leave the  
AD7606B in a condition where the analog input is greater than  
the input range for extended periods of time because this can  
degrade the bipolar zero code error performance. In shutdown  
or standby mode, there is no such concern.  
1 The same analog input range, 10 V or 5 V, applies to all eight channels.  
2 The analog input range ( 10 V, 5 V, or 2.5 V) is selected on a per channel  
basis using the memory map.  
Analog Input Impedance  
The analog input impedance of the AD7606B is typically 5 MΩ.  
This is a fixed input impedance that does not vary with the  
AD7606B sampling frequency. This high analog input  
impedance eliminates the need for a driver amplifier in front of  
the AD7606B, allowing direct connection to the source or  
sensor. Therefore, bipolar supplies can be removed from the  
signal chain.  
AD7606B  
5MΩ  
5MΩ  
R
R
Vx  
CLAMP  
C
VxGND  
CLAMP  
Figure 45. Input Resistance Matching on the Analog Input of the AD7606B  
PGA  
Analog Input Clamp Protection  
A PGA is provided at each input channel. The gain is configured  
depending on the analog input range selected (see Table 9) to  
scale the single-ended analog input signal to the ADC fully  
differential input range.  
Figure 43 shows the analog input circuitry of the AD7606B.  
Each analog input of the AD7606B contains clamp protection  
circuitry. Despite single, 5 V supply operation, this analog input  
clamp protection allows an input overvoltage of up to 21 V.  
Input impedance on each input of the PGA is accurately trimmed  
to maintain the overall gain error. This trimmed value is then  
used when the gain calibration is enabled to compensate for the  
gain error introduced by an external series resistor. See the  
System Gain Calibration section for more information on the  
PGA feature.  
5MΩ  
Vx  
CLAMP  
CLAMP  
16-BIT  
SAR ADC  
5MΩ  
VxGND  
LPF  
Figure 43. Analog Input Circuitry for Each Channel  
Figure 44 shows the input clamp current vs. the source voltage  
characteristic of the clamp circuit. For input voltages of up to  
Rev. 0 | Page 22 of 69  
 
 
 
 
 
 
Data Sheet  
AD7606B  
The AD7606B contains an on-chip oscillator that performs the  
conversions. The conversion time for all ADC channels is tCONꢀ  
(see Table 3). In software mode, there is an option to apply an  
external clock through the CONꢀST pin. Providing a low jitter  
external clock improves SNR performance for large oversampling  
ratios. See the Digital Filter section and Figure ±5 to Figure 20  
for further information.  
Analog Input Antialiasing Filter  
An analog antialiasing filter is provided on the AD7606B.  
Figure 46 and Figure 47 show the frequency response and phase  
response, respectively, of the analog antialiasing filter. In the  
±±0 ꢀ range, the −3 dB frequency is typically 22.5 kHz.  
Connect all unused analog input channels to AGND. The  
results for any unused channels are still included in the data  
read because all channels are always converted.  
ADC Transfer Function  
The output coding of the AD7606B is twos complement. The  
designed code transitions occur midway between successive  
integer LSB values, that is, ±/2 LSB and 3/2 LSB. The LSB size is  
FSR/65,536 for the AD7606B. The ideal transfer characteristics for  
the AD7606B are shown in Figure 48. The LSB size is dependent on  
the analog input range selected, as shown in Table ±0.  
Vx  
±10V RANGE  
±5V RANGE  
±2.5V RANGE  
100  
1k  
10k  
100k  
INPUT FREQUENCY (Hz)  
±10V CODE =  
±5V CODE =  
±2.5V CODE =  
× 32,768  
× 32,768  
× 32,768  
10V  
Figure 46. Analog Antialiasing Filter Frequency Response  
Vx  
5V  
16  
±10V  
±5V  
±2.5V  
Vx  
2.5V  
14  
12  
10  
8
011...111  
011...110  
000...001  
000...000  
111...111  
PFS – (NFS)  
LSB =  
N*  
2
6
100...010  
100...001  
100...000  
4
NFS + 1/2LSB 0v – 1/2LSB PFS – 3/2LSB  
AV = 5V, V  
fSAMPLE = 800kSPS  
T = 25°C  
= 3.3V  
ANALOG INPUT  
CC  
DRIVE  
2
Figure 48. Ideal Transfer Characteristics  
0
100  
1k  
10k  
100k  
Table 10. Input Voltage Ranges  
Range (V) PFS (V) Midscale (V) NFS (V)  
INPUT FREQUENCY (Hz)  
LSB (μV)  
305  
±52  
Figure 47. Analog Antialiasing Filter Phase Response  
±±0  
±5  
±2.5  
ꢀ±0  
ꢀ5  
ꢀ2.5  
0
0
0
−±0  
−5  
−2.5  
SAR ADC  
The AD7606B allows the ADC to accurately acquire an input  
signal of full-scale amplitude to ±6-bit resolution. All eight SAR  
ADCs sample the respective inputs simultaneously on the rising  
edge of the CONꢀST signal.  
76  
REFERENCE  
The AD7606B contains an on-chip, 2.5 , band gap reference.  
The REFIN/REFOUT pin allows either  
The BUSY signal indicates when conversions are in progress.  
Therefore, when the rising edge of the CONꢀST signal is applied,  
the BUSY pin goes logic high and transitions low at the end of  
the entire conversion process. The end of the conversion process  
across all eight channels is indicated by the falling edge of the  
BUSY signal. When the BUSY signal edge falls, the acquisition  
time for the next set of conversions begins. The rising edge of the  
CONꢀST signal has no effect while the BUSY signal is high.  
Access to the internal 2.5 ꢀ reference, if the  
REF SELECT pin is tied to logic high.  
Application of an external reference of 2.5 , if the REF  
SELECT pin is tied to logic low.  
Table 11. Reference Configuration  
REF SELECT Pin Reference Selected  
New data can be read from the output register via the parallel or  
serial interface after the BUSY output goes low. Alternatively,  
data from the previous conversion can be read while the BUSY pin  
is high, as explained in the Reading During Conversion section.  
Logic High  
Logic Low  
Internal reference enabled  
Internal reference disabled; an external 2.5 V  
reference voltage must be applied to the  
REFIN/REFOUT pin  
Rev. 0 | Page 23 of 69  
 
 
 
 
 
 
AD7606B  
Data Sheet  
V
DRIVE  
The AD7606B contains a reference buffer configured to gain the  
reference voltage up to approximately 4.4 V, as shown in Figure 49.  
The 4.4 V buffered reference is the reference used by the SAR  
ADC, as shown in Figure 49. After a reset, the AD7606B operates  
in the reference mode selected by the REF SELECT pin. The  
REFCAPA and REFCAPB pins must be shorted together  
externally, and a ceramic capacitor of 10 μF must be applied to  
the REFGND pin to ensure that the reference buffer is in closed-  
loop operation. A 10 µF ceramic capacitor is required on the  
REFIN/REFOUT pin.  
AD7606B  
AD7606B  
REF SELECT  
AD7606B  
REF SELECT  
REF SELECT  
REFIN/REFOUT  
REFIN/REFOUT  
REFIN/REFOUT  
+
10µF  
100nF  
100nF  
Figure 51. Internal Reference Driving Multiple AD7606B REFIN/REFOUT Pins  
OPERATION MODES  
The AD7606B can be operated in hardware or software mode  
by controlling the OSx pins (Pin 3, Pin 4, and Pin 5), described  
in Table 12.  
When the AD7606B is configured in external reference mode,  
the REFIN/REFOUT pin is a high input impedance pin.  
REFIN/REFOUT  
In hardware mode, the AD7606B is configured depending on  
SAR  
the logic level on the RANGE, OSx, or  
pins.  
STBY  
REFCAPA  
BUF  
In software mode, that is, when all three OSx pins are connected  
to logic high level, the AD7606B is configured by the  
10µF  
REFCAPB  
corresponding registers accessed via the serial or parallel interface.  
Additional features are available, as described in Table 13.  
2.5V  
REF  
The reference and the data interface is selected using the  
Figure 49. Reference Circuitry  
REF SELECT and  
/SER SEL pins, in both hardware and  
PAR  
software modes.  
Using Multiple AD7606B Devices  
For applications using multiple AD7606B devices, the following  
configurations are recommended, depending on the application  
requirements.  
Table 12. Oversampling Pin Decoding  
OSx Pins  
AD7606B  
000  
No OS  
External Reference Mode  
001  
2
010  
011  
100  
101  
110  
111  
4
8
16  
32  
One external reference can drive the REFIN/REFOUT pins of  
all AD7606B devices (see Figure 50). In this configuration,  
decouple each REFIN/REFOUT pin of the AD7606B with at  
least a 100 nF decoupling capacitor.  
64  
AD7606B  
AD7606B  
AD7606B  
Enters software mode  
REF SELECT  
REF SELECT  
REF SELECT  
REFIN/REFOUT  
REFIN/REFOUT  
REFIN/REFOUT  
100nF  
100nF  
100nF  
REF  
1µF  
Figure 50. Single External Reference Driving Multiple AD7606B  
REFIN/REFOUT Pins  
Internal Reference Mode  
One AD7606B device, configured to operate in internal  
reference mode, can drive the remaining AD7606B devices,  
which are configured to operate in external reference mode (see  
Figure 51). Decouple the REFIN/REFOUT pin of the AD7606B,  
configured in internal reference mode, using a 10 µF ceramic  
decoupling capacitor. The other AD7606B devices, configured in  
external reference mode, must use at least a 100 nF decoupling  
capacitor on their REFIN/REFOUT pins.  
Rev. 0 | Page 24 of 69  
 
 
 
 
 
Data Sheet  
AD7606B  
Table 13. Functionality Matrix  
Parameter  
Analog Input Range1  
System Gain, Phase, and Offset Calibration  
OSR  
Analog Input Open Circuit Detection  
Serial Data Output Lines  
Diagnostics  
Hardware Mode  
10 V or 5 V2  
Not accessible  
From no OS to OSR = 64  
Not accessible  
2
Software Mode  
10 V, 5 V, or 2.5 V3  
Available3  
From no OS to OSR = 256  
Available3  
Selectable: 1, 2, or 4  
Available  
Standby, shutdown, and autostandby  
Not accessible  
Standby and shutdown  
Power-Down Modes  
1 See Table 9 for the analog input range selection.  
2 Same input range configured in all input channels.  
3 On a per channel basis.  
Rev. 0 | Page 25 of 69  
 
AD7606B  
Data Sheet  
Table 14. Power-Down Mode Selection, Hardware Mode  
Reset Functionality  
STBY Pin  
Power Mode  
Normal Mode  
Standby  
RANGE Pin  
The AD7606B has two reset modes: full or partial. The reset  
mode selected is dependent on the length of the reset high  
pulse. A partial reset requires the RESET pin to be held high  
between 55 ns and 2 μs. After 50 ns from the release of the  
RESET pin (tDEVICE_SETUP, partial reset), the device is fully functional  
and a conversion can be initiated. A full reset requires the  
RESET pin to be held high for a minimum of 3 µs. After 253 μs  
(tDEVICE_SETUP, full reset) from the release of the RESET pin, the  
device is completely reconfigured and a conversion can be  
initiated.  
1
0
0
X1  
1
0
Shutdown  
1 X = don’t care.  
In software mode, the power-down mode is selected through  
the OPERATION_MODE bits on the CONFIG register  
(Address 0x02, Bits[1:0]) within the memory map. There is an  
extra power-down mode available in software mode called  
autostandby mode.  
A partial reset reinitializes the following modules:  
Table 15. Power-Down Mode Selection, Software Mode,  
Through CONFIG Register (Address 0x02)  
Operation Mode Address 0x02, Bit 1 Address 0x02, Bit 0  
Digital filter.  
SPI and parallel, resetting to ADC mode.  
SAR ADCs.  
CRC logic.  
Normal  
Standby  
Autostandby  
Shutdown  
0
0
1
1
0
1
0
1
After the partial reset, the RESET_DETECT bit of the status  
register asserts (Address 0x01, Bit 7).The current conversion  
result is discarded after the completion of a partial reset. The  
partial reset does not affect the register values programmed in  
software mode or the latches that store the user configuration in  
both hardware and software modes.  
When the AD7606B is placed in shutdown mode, all circuitry is  
powered down and the current consumption reduces to 5 µA,  
maximum. The power-up time is approximately 10 ms. When  
the AD7606B is powered up from shutdown mode, a full reset  
must be applied to the AD7606B after the required power-up  
time elapses.  
A full reset returns the device to the default power-on state, the  
RESET_DETECT bit of the status register asserts (Address 0x01,  
Bit 7), and the current conversion result is discarded. The  
following features, in addition to those listed previously, are  
configured when the AD7606B is released from full reset:  
When the AD7606B is placed in standby mode, all the PGAs  
and all the SAR ADCs enter a low power mode, such that the  
overall current consumption reduces to 4.5 mA, maximum. No  
reset is required after exiting standby mode.  
Hardware mode or software mode.  
Interface type (serial or parallel).  
When the AD7606B is placed in autostandby mode, available  
only in software mode the device automatically enters standby  
mode on the BUSY signal falling edge. The AD7606B exits  
standby mode automatically on the CONVST signal rising edge.  
Therefore, the CONVST signal low pulse time is longer than  
Power-Down Modes  
In hardware mode, two power-down modes are available on the  
STBY  
AD7606B: standby mode and shutdown mode. The  
controls whether the AD7606B is in normal mode or in one of the  
STBY  
pin  
t
WAKE_UP (standby mode) = 1 μs.  
two power-down modes, as shown in Table 14. If the  
pin  
CONVST  
is low, the power-down mode is selected by the state of the  
RANGE pin.  
BUSY  
STANDBY  
NORMAL  
tWAKE_UP  
STANDBY  
POWER MODE  
Figure 52. Autostandby Mode Operation  
Rev. 0 | Page 26 of 69  
 
 
 
Data Sheet  
AD7606B  
DIGITAL FILTER  
The AD7606B contains an optional digital averaging filter that  
can be enabled in slower throughput rate applications that require  
higher SNR or dynamic range.  
averaging of multiple samples leads to an improvement in SNR  
performance, at the expense of reducing the maximum throughput  
rate. When the oversampling function is turned on, the BUSY  
signal high time (tCONV) extends, as shown in Table 3. Table 16  
shows the trade-off in SNR vs. bandwidth and throughput for  
the 10 V, 5 V, and 2.5 V ranges.  
In hardware mode, the oversampling ratio of the digital filter is  
controlled using the oversampling pins, OSx, as shown in Table 12.  
The OSx pins are latched on the falling edge of the BUSY signal.  
tCYCLE  
In software mode, that is, if all OSx pins are tied to logic high,  
the oversampling ratio is selected through the oversampling  
register (Address 0x08). Two additional oversampling ratios  
(OS × 128 and OS × 256) are available in software mode.  
CONVST  
OS CLOCK  
BUSY  
tCONV  
CS  
RD  
In oversampling mode, the ADC takes the first sample for each  
channel on the rising edge of the CONVST signal. After  
converting the first sample, the subsequent samples are taken by  
the internally generated sampling signal, as shown in Figure 53.  
Alternatively, this sampling signal can be applied externally as  
described in the External Oversampling Clock section.  
DATA:  
DB0 TO DB15  
Figure 53. Oversampling by 8 Example, Read After Conversion, Parallel  
Interface, OS Clock Internally Generated Sampling Signal  
Figure 53 shows that the conversion time (tCONV) extends when  
oversampling is turned on. The throughput rate (1/tCYCLE) must be  
reduced to accommodate the longer conversion time and to allow  
the read operation to occur. To achieve the fastest throughput rate  
possible when oversampling is turned on, the read can be  
performed during the BUSY signal high time as explained in the  
Reading During Conversion section.  
For example, if oversampling by eight is configured, eight  
samples are taken, averaged, and the result is provided on the  
output. A CONVST signal rising edge triggers the first sample,  
and the remaining seven samples are taken with an internally  
generated sampling signal. Consequently, turning on the  
Table 16. Oversampling Performance  
10 V Range  
5 V Range  
2.5 V Range  
3 dB  
OS  
Ratio  
Input  
Frequency (Hz)  
3 dB  
3 dB  
Maximum Throughput  
(kSPS)  
SNR (dB) BW (kHz)  
SNR (dB) BW (kHz)  
SNR (dB)  
BW (kHz)  
No OS  
2
4
8
16  
32  
64  
1281  
2561  
1000  
1000  
1000  
1000  
1000  
130  
130  
50  
50  
89.5  
91  
92.2  
93  
93.5  
95.4  
96.3  
97.1  
97.6  
23.0  
22.7  
22.0  
20.0  
15.4  
9.7  
5.3  
2.7  
1.4  
88.5  
89.9  
90.8  
91.5  
92  
93.7  
95  
95.9  
96.8  
13.9  
13.8  
13.6  
13.0  
11.4  
8.4  
5.0  
2.7  
1.4  
86  
87.2  
88  
88.4  
89  
90.4  
91.8  
93.3  
94.7  
11.6  
11.5  
11.4  
11.1  
10.0  
7.7  
4.9  
2.7  
1.4  
800  
400  
200  
100  
50  
25  
12.5  
6.25  
3.125  
1 Only available in software mode.  
Rev. 0 | Page 27 of 69  
 
 
 
AD7606B  
Data Sheet  
PADDING OVERSAMPLING  
EXTERNAL OVERSAMPLING CLOCK  
As shown in Figure 53, an internally generated clock triggers  
the samples to be averaged, and then the ADC remains idle  
until the following CONVST signal rising edge. In software  
mode, through the oversampling register (Address 0x08), the  
internal clock (OS clock) frequency can be changed such that idle  
time is minimized, that is sampling instants are equally spaced, as  
shown in Figure 54.  
In software mode, there is an option to apply an external clock  
through the CONVST pin when oversampling mode is enabled.  
Providing a low jitter external clock improves SNR performance  
for large oversampling ratios. By applying an external clock, the  
input is sampled at regular time intervals, which is optimum for  
antialiasing performance.  
To enable the external oversampling clock, Bit 5 in the CONFIG  
register (Address 0x02, Bit 5) must be set. Then, the throughput  
rate is  
tCYCLE  
CONVST  
OS CLOCK  
1
BUSY  
Throughput =  
tCONV  
tCNVST ×OSR  
Figure 54. Oversampling by 8 Example, Oversampling Padding Enabled  
That is, the sampling signal is provided externally through the  
CONVST pin, and every OSR number of clocks, an output is  
averaged and provided, as shown in Figure 55. This feature is  
available using either the parallel interface or the serial interface.  
Table 17. OS_PAD Bit Decoding  
OS_PAD (Address 0x08, Bits[7:5]) OS Clock Frequency (kHz)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
800  
753  
711  
673.5  
640  
609.5  
582  
556.5  
533  
512  
492.5  
474  
457  
441.5  
426.5  
413  
t
CNVST  
CONVST  
BUSY  
CS  
RD  
DB0 TO DB15  
Figure 55. External Oversampling Clock Applied on the CONVST Pin (OSR = 4); Parallel Interface  
Rev. 0 | Page 28 of 69  
 
 
 
 
Data Sheet  
AD7606B  
SYSTEM CALIBRATION FEATURES  
The following system calibration features are available in  
software mode by writing to corresponding registers in the  
memory map:  
AD7606B  
5MΩ  
ANALOG  
INPUT  
SIGNAL  
R
FILTER  
Vx  
C
5MΩ  
VxGND  
R
FILTER  
Phase calibration.  
Gain calibration.  
Offset calibration.  
Analog Input open circuit detection.  
Figure 57. System Gain Error  
For example, if a 27 kΩ resistor is placed in series to the analog  
input of Channel 5, the resistor generates −170 LSB positive  
full-scale error on the system (at 10 V range), as shown in  
Figure 58. In software mode, this error is eliminated by writing  
27d to the CH5_GAIN register (Address 0x0D).  
0
SYSTEM PHASE CALIBRATION  
When using an external filter, as shown in Figure 57, any  
mismatch on the discrete components, or in the sensor used,  
can cause phase mismatch between channels. This phase mismatch  
can be compensated for in software mode, on a per channel  
basis, by delaying the sampling instant on individual channels.  
–100  
–200  
–300  
–400  
The sampling instant on any particular channel can be delayed  
with regard to the CONVST signal rising edge, with a resolution of  
1.25 μs, and up to 318.75 μs, by writing to the corresponding  
CHx_PHASE register (Address 0x19 through Address 0x20).  
For example, if the CH4_PHASE register (Address 0x1C) is  
written with 10d, Channel 4 is effectively sampled 12.5 μs  
(tPHASE_REG) after the CONVST signal rising edge, as shown in  
Figure 56.  
SYSTEM GAIN CALIBRATION OFF  
SYSTEM GAIN CALIBRATION ON  
–500  
0
10  
20  
30  
40  
(kΩ)  
50  
60  
R
FILTER  
INPUT V1  
INPUT V4  
Figure 58. System Gain Calibration with and Without Calibration  
SYSTEM OFFSET CALIBRATION  
CONVST  
INTERNAL  
CONVST CH1  
A potential offset on the sensor, or any offset caused by a  
mismatch between the RFILTER pair placed on a particular  
channel (as described in the Analog Front End section), can be  
compensated in software mode, on a per channel basis. The  
CHx_OFFSET registers (Address 0x11 through Address 0x18)  
allow the ability to add or subtract up to 128 LSB from the ADC  
code automatically, with a resolution of 1 LSB, as shown in  
Table 18.  
tPHASE_REG  
tCONV  
INTERNAL  
CONVST CH4  
BUSY  
V1 CODE  
V4 CODE  
Figure 56. System Phase Calibration Functionality  
The BUSY signal high time equals tCONV plus tPHASE_REG, as shown in  
Figure 56. In the previously explained example and Figure 56, if  
only CH4_PHASE_REGISTER is programmed, tCONV increases  
by 12.5 μs. Therefore, this scenario must be taken into account  
when running at higher throughput rates.  
For example, if the signal connected to Channel 3 has a 9 mV  
offset, and the analog input range is set to the 10 V range  
(where LSB size = 305 μV) to compensate for this offset,  
program −30 LSB to the corresponding register. Writing 128d −  
30d = 0x80 − 0x1E = 0x62 to the CH3_OFFSET register  
(Address 0x13) removes such offset.  
SYSTEM GAIN CALIBRATION  
Using an external RFILTER, as shown in Figure 57, generates a  
system gain error. This gain error can be compensated for in  
software mode, on a per channel basis, by writing the series  
resistor value used on the corresponding register, Address 0x09  
through Address 0x10. These registers can compensate up to  
65 kΩ series resistors, with a resolution of 1024 Ω.  
Table 18. CHx_OFFSET Register Bit Decoding  
CHx_OFFSET Register  
Offset Calibration (LSB)  
0x00  
0x45  
0x80 (Default)  
0x83  
−128  
−59  
0
+3  
0xFF  
+127  
Rev. 0 | Page 29 of 69  
 
 
 
 
 
 
 
 
AD7606B  
Data Sheet  
changes the PGA common-mode voltage, checks the ADC  
ANALOG INPUT OPEN CIRCUIT DETECTION  
output, and returns to the initial common-mode voltage, as  
shown in Figure 61. If the ADC code changes in any channel  
with the PGA common-mode change, this implies that there is  
no input signal connected to that analog input, and the  
corresponding flag asserts within the OPEN_DETECTED  
register (Address 0x24). Each channel can be individually  
enabled or disabled through the OPEN_DETECT_  
The AD7606B has an analog input open circuit detection  
feature available in software mode. To use this feature, RPD must  
be placed as shown in Figure 59. If the analog input is  
disconnected, for example, if a switch opens in Figure 59, the  
source impedance changes from RS to RPD, as long as RS < RPD. It  
is recommended to use RPD = 50 kΩ so that the AD7606B can  
detect changes in the source impedance by internally switching  
the PGA common-mode voltage. Analog input open circuit  
detection operates in manual mode or in automatic mode.  
ENABLE register (Address 0x23).  
START  
CONVERSION  
AD7606B  
R
FILTER  
5MΩ  
Vx+  
NO  
0 < ADC CODE < 350 LSB  
i = 0  
C
SAR  
ADC  
FILTER  
Vx–  
R
R
S
PD  
R
FILTER  
5MΩ  
YES  
N = NUMBER OF  
NO  
Figure 59. Analog Front End with RPD  
CONSECUTIVE REPEATED  
i = N?  
(WITHIN 10 LSB)  
i = i + 1  
ADC OUTPUT CODE  
Manual Mode  
YES; SET  
COMMON MODE HIGH  
In manual mode, enabled by writing 0x01 to OPEN_DETECT_  
QUEUE (Address 0x2C), each PGA common-mode voltage is  
controlled by the corresponding CHx_OPEN_DETECT_EN bit  
on the OPEN_DETECT_ENABLE register (Address 0x23).  
Setting this bit high shifts up the PGA common-mode voltage.  
If there is an open circuit on the analog input, the ADC output  
changes proportionally to the RPD resistor, as shown in Figure 60. If  
there is not an open circuit, any change on the PGA common-  
mode voltage has no effect on the ADC output.  
NO  
ΔADC CODE > 20 LSB  
i = 0  
YES; SET  
COMMON MODE LOW  
NO  
ADC CODE BACK  
TO ORIGINAL?  
i = 0  
120  
10V  
5V  
2.5V  
100  
YES  
ERROR FLAG  
80  
60  
40  
20  
0
Figure 61. Automatic Analog Input Open Circuit Detect Flowchart  
If no oversampling is used, the recommended minimum  
number of conversions to be programmed for the AD7606B to  
automatically detect an open circuit on the analog input is  
OPEN _ DETECT _QUEUE =  
10 × fSAMPLE  
R
+ 2 × RFILTER ×C  
(
)
PD FILTER  
However, when oversampling mode is enabled, the  
recommended minimum number of conversions to use is  
0
20  
40  
60  
80  
100  
R
(kΩ)  
PD  
OPEN _ DETECT _QUEUE =  
Figure 60. Open Circuit Code Error Increment, Dependent of RPD  
1 + f  
× 2 R + 2 × RFILTER ×C  
×OSR  
FILTER  
(
)
(
)
SAMPLE  
PD  
Automatic Mode  
Automatic mode is enabled by writing any value greater than  
0x01 to the OPEN_DETECT_QUEUE register (Address 0x2C), as  
shown in Table 19. If the AD7606B detects that the ADC reported a  
number (specified in the OPEN_DETECT_QUEUE register) of  
consecutive unchanged conversions, the analog input open circuit  
detection algorithm is performed internally and automatically.  
The analog input open circuit detection algorithm automatically  
Rev. 0 | Page 30 of 69  
 
 
 
 
Data Sheet  
AD7606B  
Table 19. Analog Input Open Circuit Detect Mode Selection and Register Functionality  
OPEN_DETECT_QUEUE  
(Address 0x2C)  
0x00 (Default)  
0x01  
Open Detect Mode  
Disabled  
Manual mode  
OPEN_DETECT_ENABLE (Address 0x23)  
Not applicable  
Sets common-mode voltage high or low, on a  
per channel basis  
0x02 to 0xFF  
Automatic; OPEN_DETECT_QUEUE is the number of  
consecutive conversions before asserting any CHx_OPENED flag  
Enables or disables automatic analog input  
open circuit detection on a per channel basis  
Rev. 0 | Page 31 of 69  
 
AD7606B  
Data Sheet  
DIGITAL INTERFACE  
The AD7606B provides two interface options: a parallel interface  
and a high speed serial interface. The required interface mode is  
SOFTWARE MODE  
In software mode, which is active only when all three  
oversampling pins are tied high, both ADC read mode and  
register mode are available. ADC data can be read from the  
AD7606B, and registers can also be read from and written to  
PAR  
selected via the  
/SER SEL pin.  
Table 20. Interface Mode Selection  
PAR/SER SEL  
Interface Mode  
CS RD  
the AD7606B via the parallel data bus with standard  
WR  
,
,
0
1
Parallel interface mode  
Serial interface mode  
CS  
,
and  
signals or via the serial interface with standard  
SCLK, SDI, and DOUTA lines.  
Operation of the interface modes is discussed in the following  
sections.  
See the Parallel Register Mode (Writing Register Data) section  
and the Parallel Register Mode (Reading Register Data) section  
for more details on how register mode operates.  
HARDWARE MODE  
In hardware mode, only ADC mode is available. ADC data can  
be read from the AD7606B via the parallel data bus with standard  
Pin functions differ depending on the interface selected  
(parallel or serial) and the operation mode (hardware or  
software), as shown in Table 21 and Table 22.  
CS  
RD  
CS  
and  
SCLK, and two DOUTx signals.  
signals or via the serial interface with standard ,  
See the Reading Conversion Results (Parallel ADC Mode) section  
and the Reading Conversion Results (Serial ADC Mode) section  
for more details on how ADC read mode operates.  
Table 21. Data Interface Pin Function per Mode of Operation (Parallel Interface)  
Software Mode  
Register Mode  
Pin Name  
Pin No.  
16 to 22  
24  
Hardware Mode  
DB0 to DB6  
ADC Mode  
DB0 to DB6  
Register data  
Register data (MSB)  
ADD0  
DB7/DOUT  
DB8/DOUT  
DB9/DOUT  
A
B
C
DB7  
DB8  
25  
27  
DB9  
ADD1  
DB10/DOUT  
DB11/SDI  
D
28  
DB10  
ADD2  
29  
DB11  
ADD3  
DB12 to DB14  
DB15  
30 to 32  
33  
DB12 to DB14  
DB15  
ADD4 to ADD6  
R/W  
Table 22. Data Interface Pin Function per Mode of Operation (Serial Interface)  
Software Mode  
Register Mode  
Pin Name  
Pin No.  
16 to 22  
24  
Hardware Mode  
N/A1  
ADC Mode  
DB0 to DB6  
N/A  
DB7/DOUT  
DB8/DOUT  
DB9/DOUT  
A
B
C
DOUT  
DOUT  
N/A  
A
B
DOUT  
A
DOUTA  
25  
DOUTB2  
DOUTC3  
DOUTD3  
Unused  
Unused  
Unused  
Unused  
SDI  
27  
DB10/DOUT  
DB11/SDI  
D
28  
29  
DB12 to DB14  
DB15  
30 to 32  
33  
N/A  
1 N/A means not applicable. Tie all N/A pins to AGND.  
2 Only used if 2SDO or 4SDO mode is selected on the CONFIG register, otherwise leave unconnected.  
3 Only used if 4SDO mode is selected on the CONFIG register, otherwise leave unconnected.  
Rev. 0 | Page 32 of 69  
 
 
 
 
 
Data Sheet  
AD7606B  
available on the output data bus. The FRSTDATA pin returns to a  
RD  
PARALLEL INTERFACE  
To read ADC data or to read/write the register content over the  
logic low following the next falling edge of  
.
PAR  
parallel interface, tie the  
/SER SEL pin low.  
Reading During Conversion  
Data can be read from the AD7606B while the BUSY pin is high  
and the conversions are in progress. This operation has little  
effect on the performance of the converter, and it allows a faster  
throughput rate to be achieved. Data can be read from the  
AD7606B at any time other than on the falling edge of the  
BUSY signal because this is when the output data registers are  
updated with the new conversion data. Any data read while the  
BUSY signal is high must be completed before the falling edge  
of the BUSY signal.  
AD7606B  
INTERRUPT  
BUSY 14  
13  
12  
CS  
RD/SCLK  
DIGITAL  
HOST  
WR 10  
DB[33:24]  
DB[22:16]  
DB[15:0]  
Figure 62. AD7606B Interface Diagram—One AD7606B Using the Parallel  
CS RD  
Bus, with and  
Shorted Together  
Parallel ADC Mode with CRC Enabled  
In software mode, the parallel interface supports reading the  
ADC data with the CRC appended, when enabled through the  
INT_CRC_ERR_EN bit (Address 0x21, Bit 2). The CRC is  
16 bits, and it is clocked out after reading all eight channel  
conversions, as shown in Figure 65. The CRC calculation includes  
all data on the DBx pins: data, status (when appended), and zeros.  
See the Diagnostics section for more details on the CRC.  
CS  
CS  
CS  
The rising edge of the  
the falling edge of the  
high impedance state.  
input signal three-states the bus, and  
input signal takes the bus out of the  
is the control signal that enables the  
data lines and it is the function that allows multiple AD7606B  
devices to share the same parallel data bus.  
Reading Conversion Results (Parallel ADC Mode)  
RD  
The falling edge of the  
conversion results register. Applying a sequence of  
RD  
pin reads data from the output  
Parallel ADC Mode with Status Enabled  
RD  
pulses to  
pin clocks the conversion results out from each channel  
In software mode, the 8-bit status header is enabled (see Table 24)  
by setting Bit 6 in the CONFIG register (Address 0x02, Bit 6),  
and each channel then takes two frames of data:  
the  
to the parallel bus, [DB15:DB0], in ascending order, from V1 to  
V8, as shown in Figure 63.  
The first frame clocks the ADC data out normally through  
DBx.  
CS  
RD  
signal  
The  
signal can be permanently tied low, and the  
can access the conversion results, as shown in Figure 3. A read  
operation of new data can take place after the BUSY signal goes  
low (see Figure 2). Alternatively, a read operation of data from  
the previous conversion process can take place while the  
BUSY pin is high.  
The second frame clocks out the status header of the  
channel on DB15 to DB8, DB15 being the MSB and DB8  
the LSB, while the DB7 to DB0 pins clock out zeros.  
This sequence is shown in Figure 64. Table 24 explains the  
status header content and describes each bit.  
When there is only one AD7606B in a system and it does not  
share the parallel bus, data can be read using one control signal  
from the digital host. The  
together, as shown in Figure 4. In this case, the falling edge of  
CS RD  
signals bring the data bus out of three-state and  
Table 23. CH.ID Bits Decoding in Status Header  
CS  
RD  
and  
signals can be tied  
CH.ID2  
CH.ID1  
CH.ID0  
Channel Number  
Channel 1 (V1)  
Channel 2 (V2)  
Channel 3 (V3)  
Channel 4 (V4)  
Channel 5 (V5)  
Channel 6 (V6)  
Channel 7 (V7)  
Channel 8 (V8)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
the  
and  
clocks out the data.  
The FRSTDATA output signal indicates when the first channel,  
CS  
V1, is being read back, as shown in Figure 4. When the  
is high, the FRSTDATA output pin is in three-state. The falling  
CS  
input  
edge of  
falling edge of the  
takes the FRSTDATA pin out of three-state. The  
RD  
signal corresponding to the result of V1 sets  
the FRSTDATA pin high, indicating that the result from V1 is  
Table 24. Status Header, Parallel Interface  
Bit Details  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Bit Name  
RESET_DETECT DIGITAL_ERROR  
OPEN_DETECTED  
AIN_OV_DIAG_ERR  
AIN_UV_DIAG_ERR  
CH.ID 2 CH.ID 1 CH.ID 0  
Channel ID (see Table 23)  
Bit Description1 Reset detected Error flag on  
Address 0x22  
The analog input  
of this channel is  
open  
Overvoltage  
detected on this  
channel  
Undervoltage  
detected on this  
channel  
1 See the Diagnostics section for more information.  
Rev. 0 | Page 33 of 69  
 
 
 
 
 
AD7606B  
Data Sheet  
CONVST  
BUSY  
CS  
RD  
DB0 TO DB15  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
FRSTDATA  
Figure 63. Parallel Interface, ADC Read Mode  
CONVST  
BUSY  
CS  
RD  
DB0 TO  
DB15  
DB0 TO  
DB7  
V1[15:8]  
V1[7:0]  
STATUS_CH1  
V2[15:8]  
V2[7:0]  
STATUS_CH2  
V7[15:8]  
V7[7:0]  
STATUS_CH7  
V8[15:8]  
V8[7:0]  
STATUS_CH8  
Figure 64. Parallel Interface, ADC Read Mode with Status Header Enabled  
CONVST  
BUSY  
CS  
RD  
DB0 TO  
DB15  
CRC  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
Figure 65. Parallel Interface, ADC Read Mode with CRC Enabled  
Parallel Register Mode (Reading Register Data)  
In software mode, all the registers in Table 31 can be read over  
the parallel interface. [DB15:DB0] leave a high impedance state  
To revert to ADC read mode, write to Address 0x00, as shown  
in the Parallel Register Mode (Writing Register Data) section.  
No ADC data can be read while the device is in register mode.  
CS  
RD  
when both the  
signal and  
signal are logic low for reading  
CS WR  
Parallel Register Mode (Writing Register Data)  
register content, or when both the  
signal and  
signal are  
In software mode, all the R/W registers in Table 31 can be written  
to over the parallel interface. To write a sequence of registers,  
exit ADC read mode (default mode) by reading any register on the  
memory map. A register write command is performed by a single  
logic low for writing register address and/or register content.  
A register read is performed through two frames: first, a read  
command is sent to the AD7606B and second, the AD7606B  
clocks out the register content. The format for a register read  
command is shown in Figure 66. On the first frame,  
CS  
WR  
frame, via the parallel bus (DB[15:0]), signal, and  
signal.  
The format for a write command is shown in Figure 66. The  
format of a write command, as shown in Figure 66, is structured as  
follows:  
Bit DB15 must be set to 1 to select a read command. The  
read command places the AD7606B in register mode.  
Bits DB[14:8] must contain the register address.  
The subsequent eight bits, DB[7:0], are ignored.  
Bit DB15 must be set to 0 to select a write command.  
Bits DB[14:8] contain the register address.  
The subsequent eight bits, DB[7:0], contain the data to be  
written to the selected register.  
The register address is latched on the AD7606B on the rising  
WR  
edge of the  
signal. The register content can then be read  
RD  
WR  
pin. To  
from the latched register by bringing the  
following frame, as follows:  
line low on the  
Data is latched onto the device on the rising edge of the  
revert to ADC read mode, write to Address 0x00. No ADC data  
can be read while the device is in register mode.  
Bit DB15 is pulled to 0 by the AD7606B.  
Bits DB[14:8] provide the register address being read.  
The subsequent eight bits, DB[7:0], provide the register  
content.  
Rev. 0 | Page 34 of 69  
 
 
 
 
Data Sheet  
AD7606B  
CS  
RD  
WR  
R/W = 1  
R/W = 0  
R/W = 0  
R/W = 0  
DB15  
DB8 TO  
DB14  
REG. ADDRESS  
REG. ADDRESS  
REG. ADDRESS  
ADDRESS = 0x00  
DB0 TO  
DB7  
DON’T CARE  
REGISTER DATA  
REGISTER DATA  
DON’T CARE  
MODE  
ADC READ MODE  
REGISTER MODE  
ADC READ MODE  
Figure 66. Parallel Interface Register Read Operation, Followed by a Write Operation  
CS  
FRSTDATA  
SCLK  
D
D
D
D
A
B
C
D
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
OUT  
OUT  
OUT  
OUT  
Figure 67. Serial Interface ADC Reading, One DOUTx Line  
SERIAL INTERFACE  
In hardware mode, only the 2 DOUTx lines option is available.  
However, all channels can be read from DOUTA by providing  
eight 16-bit SPI frames between two CONVST pulses.  
To read ADC data or to read/write the registers content over the  
PAR  
serial interface, tie the  
/SER SEL pin high.  
CNVST  
AD7606B  
INTERRUPT  
BUSY 14  
CS 13  
CS  
SCLK  
12  
29  
24  
25  
27  
28  
RD/SCLK  
DB11/SDI  
D
D
D
D
A
B
C
D
V1  
V5  
V2  
V6  
V3  
V7  
V4  
V8  
OUT  
OUT  
OUT  
OUT  
DIGITAL  
HOST  
DB7/D  
DB8/D  
DB9/D  
DB10/D  
A
B
C
D
OUT  
OUT  
OUT  
OUT  
Figure 69. Serial Interface ADC Reading, Two DOUTx Lines  
CS  
Figure 68. AD7606B Interface Diagram—One AD7606B Using the Serial  
Interface with Four DOUTx Lines  
SCLK  
Reading Conversion Results (Serial ADC Mode)  
D
A
B
V1  
V3  
V2  
V4  
OUT  
The AD7606B has four serial data output pins: DOUTA, DOUTB,  
D
OUT  
D
OUTC, and DOUTD. In software mode, data can be read back  
D
D
C
D
V5  
V7  
V6  
V8  
from the AD7606B using either one (see Figure 68), two (see  
Figure 69), or four DOUTx lines (see Figure 70), depending on the  
configuration set in the CONFIG register.  
OUT  
OUT  
Figure 70. Serial Interface ADC Reading, Four DOUTx Lines  
Table 25. DOUTx Format Selection, Using the CONFIG  
Register (Address 0x02)  
CS  
The  
falling edge takes the data output lines, DOUTA to DOUTD,  
out of three-state and clocks out the MSB of the conversion result.  
DOUTx Format  
Address 0x02, Bit 4  
Address 0x02, Bit 3  
CS  
CS  
In 3-wire mode ( tied low), instead of clocking out the MSB,  
the falling edge of the BUSY signal clocks out the MSB. The rising  
edge of the SCLK signal clocks all the subsequent data bits on the  
serial data outputs, DOUTA to DOUTD, as shown in Figure 6. The  
input can be held low for the entire serial read operation, or it can  
be pulsed to frame each channel read of 16 SCLK cycles (see  
1 DOUT  
2 DOUT  
4 DOUT  
1 DOUT  
x
x
x
x
0
0
1
1
0
1
0
1
CS  
Rev. 0 | Page 35 of 69  
 
 
 
 
 
 
 
AD7606B  
Data Sheet  
CS  
line sets the FRSTDATA pin high when the result from V1 is  
available on DOUTA.  
Figure 69). However, if  
is pulsed during a channel  
conversion result transmission, the channel that was interrupted  
retransmits on the next frame, completely starting from the  
MSB.  
If SDI is tied low or high, nothing is clocked to the AD7606B.  
Therefore, the device remains clocking out conversion results.  
When using the AD7606B in 3-wire mode, keep the SDI at a  
high level. While in ADC read mode, single-write operations  
can be performed, as shown in Figure 71. For writing a  
sequence of registers, switch to register mode, as described in  
the Serial Register Mode (Writing Register Data) section.  
Data can also be clocked out using only the DOUTA pin, as  
shown in Figure 67. For the AD7606B to access all eight  
conversion results on one DOUTx line, a total of 128 SCLK cycles  
is required. In hardware mode, these 128 SCLK cycles must be  
CS  
framed on groups of 16 SCLK cycles by the  
signal. The  
disadvantage of using just one DOUTx line is that the throughput  
rate is reduced if reading occurs after conversion. Leave the  
unused DOUTx lines unconnected in serial mode.  
Reading During Conversion  
Data can be read from the AD7606B while the BUSY signal is  
high and the conversions are in progress. This operation has  
little effect on the performance of the converter, and it allows a  
faster throughput rate to be achieved. Data can be read from the  
AD7606B at any time other than on the falling edge of the  
BUSY signal because this is when the output data registers are  
updated with the new conversion data. Any data read while the  
BUSY signal is high must be completed before falling edge of  
the BUSY signal.  
Figure 70 shows a read of eight simultaneous conversion results  
using four DOUTx lines on the AD7606B, available in software  
mode. In this case, a 32 SCLK transfer accesses data from the  
CS  
AD7606B, and  
is either held low to frame the entire 32 SCLK  
cycles or is pulsed between two 16-bit frames. This mode is only  
available in software mode, and it is configured using the  
CONFIG register (Address 0x02).  
Figure 6 shows the timing diagram for reading one channel of  
Serial ADC Mode, with CRC Enabled  
CS  
data, framed by the  
signal, from the AD7606B in serial  
In software mode, the CRC can be enabled by writing to the  
register map. In this case, the CRC is appended on each DOUTx  
line after the last channel is clocked out as shown in Figure 78.  
See the Interface CRC Checksum section for more information  
on how the CRC is calculated.  
mode. The SCLK input signal provides the clock source for the  
serial read operation. The  
from the AD7606B.  
CS  
signal goes low to access the data  
The FRSTDATA output signal indicates when the first channel,  
CS  
V1, is being read back. When the input is high, the FRSTDATA  
Serial ADC Mode, with Status Enabled  
output pin is in three-state. In serial mode, the falling edge of the  
In software mode, the 8-bit status header can be turned on  
when using the serial interface, so that it is appended after each  
16-bit data conversion, extending the frame size to 24 bits per  
channel, as shown in Figure 71.  
CS  
signal takes the FRSTDATA pin out of three-state and sets  
the FRSTDATA pin high if the BUSY line is already deasserted,  
indicating that the result from V1 is available on the DOUTA  
output data line. The FRSTDATA output returns to a logic low  
th  
CS  
following the 16 SCLK falling edge. If the  
pin is tied  
permanently low (3-wire mode), the falling edge of the BUSY  
CS  
1
2
3
4
5
6
7
8
9
16  
24  
SCLK  
D
x
ADC DATA  
STATUS HEADER  
OUT  
CS  
Figure 71. Serial Interface, ADC Mode, Status On  
SCLK  
SDI  
READ COMMAND  
R/W COMMAND  
R/W COMMAND  
WRITE COMMAND  
ADDRESS  
0x00  
REGISTER  
N
REGISTER  
N + 1  
REGISTER  
N + 2  
REGISTER  
N
REGISTER  
REGISTER  
N + 2  
D
A
ADC DATA  
ADC DATA  
ADC DATA  
ADC DATA  
ADC DATA  
ADC DATA  
ADC MODE  
OUT  
N + 1  
D
B TO  
D
OUT  
D
OUT  
MODE  
ADC MODE  
REGISTER MODE  
Figure 72. AD7606B Register Mode  
Rev. 0 | Page 36 of 69  
 
 
Data Sheet  
AD7606B  
Table 26. Status Header, Serial Interface  
Bit Details  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Bit Name  
Bit Description1  
RESET_DETECT DIGITAL_ERROR  
OPEN_DETECTED  
AIN_OV_DIAG_ERR  
AIN_UV_DIAG_ERR  
CH.ID 2 CH.ID 1 CH.ID 0  
Channel ID (see Table 23)  
Reset detected Error flag on  
Address 0x22  
At least one analog  
input is open  
on a channel  
Overvoltage  
detected on a  
channel  
Undervoltage  
detected on a  
channel  
1 See the Diagnostics section for more information.  
Serial Register Mode (Reading Register Data)  
The format for a write command, as shown in Figure 74, is  
structured as follows:  
All the registers in Table 31 can be read over the serial interface.  
The format for a read command is shown in Figure 73. It consists  
of two 16-bit frames. On the first frame,  
The first bit in SDI must be set to 0 to enable a write  
command.  
W
The second bit, the R/ bit, must be cleared to 0.  
The first bit in SDI must be set to 0 to enable writing the  
address.  
The second bit must be set to 1 to select a read command.  
Bits[3:8] in SDI contain the register address to be clocked out  
on DOUTA on the following frame.  
Bits[ADD5:ADD0] contain the register address to be  
written.  
The subsequent eight bits (Bits[DIN7:DIN0]) contain the  
data to be written to the selected register. Data is clocked in  
from SDI on the falling edge of SCLK, while data is clocked  
out on DOUTA on the rising edge of SCLK.  
The subsequent eight bits, Bits[9:16], in SDI are ignored.  
If the AD7606B is in ADC mode, the SDO keeps clocking ADC  
data on Bits[9:16], and then the AD7606B switches to register  
mode.  
When writing continuously to the device, the data that appears  
on DOUTA is from the register address that was written to on the  
previous frame, as shown in Figure 74. The DOUTB, DOUTC, and  
OUTD pins are kept low during the transmission.  
While in register mode, no ADC data is clocked out because the  
OUTx lines are used to clock out register content. When finished  
writing all needed registers, a write to Address 0x00 returns the  
AD7606B to ADC read mode, where the ADC data is again  
clocked out on the DOUTx lines, as shown in Figure 72.  
If the AD7606B is in register mode, the SDO reads back the  
content from the previous addressed register, no matter if the  
previous frame was a read or a write command. To exit register  
mode, a write to Address 0x00 is required, as shown in Figure 72.  
D
D
Serial Register Mode (Writing Register Data)  
In software mode, all the read/write registers in Table 31 can be  
written to over the serial interface. To write a sequence of  
registers, exit ADC read mode (default mode) by reading any  
register on the memory map. A register write command is  
performed by a single 16-bit SPI access. The format for a write  
command is shown in Figure 74.  
In software mode, when the CRC is turned on, eight additional  
bits are clocked in and out on each frame. Therefore, 24-bit  
frames are needed.  
Rev. 0 | Page 37 of 69  
 
AD7606B  
Data Sheet  
CS  
SCLK  
1
8
16  
SDI  
ADD5 ADD4 ADD3 ADD2 ADD1 ADD0  
WEN R/W  
READ OR WRITE COMMAND  
D
A
OUT  
ADC DATA (8LSB) OR PREVIOUS  
REGISTER READ/WRITTEN  
ADC DATA (8LSB) OR XX  
REGISTER [ADD5:ADD0] CONTENT  
Figure 73. Serial Interface Read Command; First Frame Points the Address; Second Frame Provides the Register Content  
CS  
SCLK  
1
8
9
16  
1
1
1
1
1
1
1
1
SDI  
WEN R/W ADD5 ADD4 ADD3 ADD2 ADD1 ADD0 DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0  
D
A
2
OUT  
DATA OUT  
1
2
DATA IN DINx IS WRITTEN INTO REGISTER ADDRESS [ADD5:ADD0]  
DATA OUT IS THE REGISTER CONTENT OF PREVIOUS REGISTER WRITTEN  
Figure 74. Serial Interface, Single-Write Command; SDI Clocks in the Address [ADD5:ADD0] and the Register Content [DINx] During the Same Frame, DOUTA Provides  
Register Content Requested on the Previous Frame  
CS  
1
8
9
16  
24  
SCLK  
SDI  
ADD5 ADD4 ADD3 ADD2 ADD1 ADD0  
WEN  
R/W  
MSB  
LSB  
8-BIT CRC  
D
A
OUT  
Figure 75. Reading Registers Through the SPI Interface with CRC Enabled  
CS  
1
8
9
16  
24  
SCLK  
SDI  
ADD5 ADD4 ADD3 ADD2 ADD1 ADD0 MSB  
LSB  
8-BIT CRC  
WEN  
R/W  
Figure 76. Writing Registers Through the SPI Interface with CRC Enabled  
Serial Register Mode with CRC  
With the CRC enabled, the SPI frames extend to 24 bits in  
length, as shown in Figure 75.  
Registers can be written to and read from the AD7606B with  
CRC enabled, in software mode, by asserting the INT_CRC_  
ERR_EN bit (Address 0x21, Bit 2).  
When writing a register, the controller must clock the data  
(register address plus register content) in the AD7606B followed by  
an 8-bit CRC word, calculated from the previous 16 bits using  
the previously described polynomial. The AD7606B reads the  
register address and the register content, calculates the  
corresponding 8-bit CRC word, and asserts the INT_CRC_ERR bit  
(Address 0x22, Bit 2) if the calculated CRC word does not match  
the CRC word received between the 17th and 24th bit through  
SDI, as shown in Figure 76.  
When reading a register, the AD7606B provides eight additional  
bits on the DOUTA pin with the CRC resultant of the data shifted  
out previously on the same frame. The controller can then  
check whether the data received is correct by applying the  
following polynomial:  
x8 + x2 + x + 1  
Rev. 0 | Page 38 of 69  
 
 
 
 
Data Sheet  
AD7606B  
DIAGNOSTICS  
Diagnostic features are available in software mode to verify  
correct operation of the AD7606B. The list of diagnostic  
monitors includes reset detection, overvoltage detection,  
undervoltage detection, analog input open circuit detection,  
and digital error detection.  
When the voltage on any analog input pin goes below the  
undervoltage threshold shown in Table 27, the AIN_UV_  
DIAG_ERROR register (Address 0x27) shows which channel or  
channels have an undervoltage event. When a bit within the  
AIN_UV_DIAG_ERROR register asserts, it stays at high state  
after the undervoltage event disappears. To clear the error bit, the  
error bit must be overwritten to 1 or the error checker must be  
disabled.  
If an error is detected, a flag asserts on the status header, if  
enabled, as described in the Digital Interface section. This flag  
points to the registers on which the error is located, as explained  
in the following sections.  
Table 27. Overvoltage and Undervoltage Thresholds  
In addition, a diagnostic multiplexer can dedicate any channel  
to verify a series of internal nodes, as explained in the  
Diagnostics Multiplexer section.  
Analog Input  
Range (V)  
Overvoltage  
Threshold (V)  
Undervoltage  
Threshold (V)  
2.5  
5
10  
+6.5  
+8  
+12  
−3  
−5.5  
−11  
RESET DETECTION  
The RESET_DETECT bit on the status register (Address 0x01,  
Bit 7) asserts if either a partial reset or full reset pulse is applied  
to the AD7606B. On power-up, a full reset is required. This  
reset asserts the RESET_DETECT bit, indicating that the  
power-on reset (POR) initialized correctly on the device.  
DIGITAL ERROR  
Both the status register and status header contain a  
DIGITAL_ERROR bit. This bit asserts when any of the  
following monitors trigger:  
Memory map CRC, read only memory (ROM) CRC, and  
digital interface CRC.  
The POR monitors the REGCAP voltage and issues a full reset  
if the voltage drops under a certain threshold.  
SPI invalid read or write.  
BUSY stuck high.  
The RESET_DETECT bit can be used to detect an unexpected  
device reset or a large glitch on the RESET pin, or a voltage  
drop on the supplies.  
To find out which monitor triggered the DIGITAL_ERROR bit,  
the DIGITAL_DIAG_ERR address (Address 0x22) has a bit  
dedicated for each monitor, as explained in the following sections.  
The RESET_DETECT bit is only cleared by reading the status  
register.  
ROM CRC  
OVERVOLTAGE AND UNDERVOLTAGE EVENTS  
The ROM stores the factory trimming settings for the  
AD7606B. After power-up, the ROM content is loaded to  
registers during device initialization. After the load, a CRC is  
calculated on the loaded data and verified if the result matches  
the CRC stored in the ROM. If an error is found, the ROM_  
CRC_ERR (Address 0x22, Bit 0) asserts. When ROM_CRC_  
ERR asserts after power-up, it is recommended to issue a full  
reset to reload all factory settings.  
The AD7606B includes on-chip overvoltage and undervoltage  
circuitry on each analog input pin. These comparators can be  
enabled or disabled using the AIN_OV_UV_DIAG_  
ENABLE register (Address 0x25).  
After this register is enabled, when the voltage on any analog  
input pin goes above the overvoltage threshold shown in Table 27,  
the AIN_OV_DIAG_ERROR register (Address 0x26) shows  
which channel or channels have an overvoltage event. When a  
bit within the AIN_OV_DIAG_ERROR register asserts, it stays  
at a high state even after the overvoltage event disappears. To  
clear the error bit, the error bit must be overwritten to 1 or the  
error checker must be disabled.  
This ROM CRC monitoring feature is enabled by default, but  
can be disabled by clearing the ROM_CRC_ERR_EN bit  
(Address 0x21, Bit 0).  
Memory Map CRC  
The memory map CRC is disabled by default. After the  
AD7606B is configured in software mode through writing the  
required registers, the memory map CRC can be enabled  
through the MM_CRC_ERR_EN bit (Address 0x21, Bit 1).  
When enabled, the CRC calculation is performed on the entire  
memory map and stored. Every 4 μs, the CRC on the memory  
map is recalculated and compared to the stored CRC value. If  
the calculated and the stored CRC values do not match, the  
memory map is corrupted and the MM_CRC_ERR bit asserts.  
Every time the memory map is written, the CRC is recalculated  
and the new value stored.  
AD7606B  
OVERVOLTAGE  
THRESHOLD  
CHx_OV_ERR  
SETS IF Vx > OV  
V
x
CHx_UV_ERR  
SETS IF Vx < UV  
UNDERVOLTAGE  
THRESHOLD  
Figure 77. Overvoltage and Undervoltage Circuitry on Each Analog Input  
Rev. 0 | Page 39 of 69  
 
 
 
 
 
AD7606B  
Data Sheet  
If the MM_CRC_ERR bit asserts, it is recommended to write to  
the memory map to recalculate the CRC. If the error persists, it  
is recommended to issue a full reset to restore the default  
contents of the memory map.  
The serial interface supports the CRC when enabled via the  
INT_CRC_ERR_EN bit (Address 0x21, Bit 2). The CRC is a 16-  
bit word that is appended to the end of each DOUTx in use, after  
reading all the channels. An example using four DOUTx lines is  
shown in Figure 78.  
Interface CRC Checksum  
CNVST  
The AD7606B has a CRC checksum mode to improve interface  
robustness by detecting errors in data transmission. The CRC  
feature is available in both ADC modes (serial and parallel) and  
register mode (serial only).  
CS  
SCLK  
D
D
D
D
A
B
C
D
V1  
V3  
V5  
V7  
V2  
V4  
V6  
V8  
CRC(V1,V2)  
CRC(V3,V4)  
CRC(V5,V6)  
CRC(V7,V8)  
OUT  
OUT  
OUT  
OUT  
The AD7606B uses the following 8-bit CRC polynomial to  
calculate the CRC checksum value:  
x
16 + x14 + x13 + x12 + x10 + x8 +x6 + x4 + x3 + x + 1  
To replicate the polynomial division in hardware, the data shifts  
left by 16 bits to create a number ending in 16 Logic 0s. The  
polynomial is aligned so that the MSB is adjacent to the  
leftmost Logic 1 of the data. An exclusive OR (XOR) function is  
applied to the data to produce a new, shorter number. The  
polynomial is again aligned so that the MSB is adjacent to the  
leftmost Logic 1 of the new result, and the procedure repeats.  
This process repeats until the original data is reduced to a value  
less than the polynomial, the 16-bit checksum.  
Figure 78. Serial Interface ADC Reading with CRC On, Four DOUTx Lines  
If using two DOUTx lines (DOUTA and DOUTB), each 16-bit CRC  
word is calculated using data from four channels, that is 64 bits,  
as shown in Figure 79. If using only one DOUTx line, all eight  
channels are clocked out through DOUTA, followed by the 16-bit  
CRC word calculated using data from the eight channels, that is,  
128 bits.  
An example of the CRC calculation for the 16-bit data is shown  
in Table 28. The CRC corresponding to the data 0x064E, using  
the previously described polynomial, is 0x2137.  
CNVST  
CS  
SCLK  
D
D
D
D
A
B
C
D
V1  
V5  
V2  
V6  
V3  
V7  
V4  
V8  
CRC(V1,V4)  
CRC(V5,V8)  
OUT  
OUT  
OUT  
OUT  
Figure 79. Serial Interface ADC Reading with CRC On, Two DOUTx Lines  
Rev. 0 | Page 40 of 69  
 
 
 
Data Sheet  
AD7606B  
When the AD7606B is in register mode, that is, when registers  
are being read or written, the CRC polynomial used is x8 + x2 +  
x + 1. When reading a register, and CRC is enabled, each SPI  
frame is 24 bits long and the CRC 8-bit word is clocked out  
from the 17th to 24th SCLK cycle. Similarly, when writing a  
register, a CRC word can be appended on the SDI line, as shown  
in Figure 80 and the AD7606B checks and triggers an error,  
INT_CRC_ERR (Address 0x22, Bit 2), if the CRC given and the  
internally calculated do not match.  
The parallel interface also supports CRC in ADC mode only,  
and it is clocked out through DB15 to DB0 after Channel 8, as  
shown in Figure 65. The 16-bit CRC word calculated using data  
from the eight channels, that is, 128 bits.  
CS  
1
2
3
4
15  
16  
17  
24  
SCLK  
A TO D  
D
D
OUT  
DB15 DB14 DB13 DB12  
WEN R/W ADD5 ADD4  
DB1 DB0 CRC7  
DIN1 DIN0 CRC7  
CRC0  
OUT  
SDI  
CRC0  
Figure 80. Register Write with CRC On  
Rev. 0 | Page 41 of 69  
 
AD7606B  
Data Sheet  
Table 28. Example CRC Calculation for 16-Bit Data1  
Data2  
0
0
0
0
0
1
1
0
0
1
0
0
0
1
1
1
1
1
1
0
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
Process  
Data  
0
0
0
0
0
1
1
0
0
1
0
Polynomial  
1
0
0
1
1
0
1
1
0
1
1
0
1
1
1
0
0
0
1
0
1
1
1
0
0
0
1
1
1
0
1
1
0
1
1
0
0
1
1
0
0
0
1
0
0
0
1
1
1
0
0
1
1
0
0
0
0
0
1
1
0
1
1
0
1
1
1
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
1
1
1
0
1
1
1
0
0
0
0
0
1
1
0
0
1
1
1
0
1
1
1
0
1
1
0
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
1
1
0
0
0
0
0
0
1
1
1
0
0
1
1
0
1
0
0
0
1
1
0
1
1
1
0
0
1
1
0
1
0
1
1
0
1
1
CRC  
1 This table represents the division of the data. Blank cells are for formatting purposes.  
2 X = don’t care.  
Interface Check  
BUSY Stuck High  
BUSY stuck high monitoring is enabled by setting the  
BUSY_STUCK_HIGH_ERR_EN bit (Address 0x21, Bit 5).  
After this bit is enabled, the conversion time (tCONV in Table 3) is  
monitored internally with an independent clock. If tCONV exceeds  
4 μs, the AD7606B automatically issues a partial reset and asserts  
the BUSY_STUCK_HIGH_ERR bit (Address 0x22, Bit 5). To  
clear this error flag, the BUSY_STUCK_HIGH_ERR bit must be  
overwritten with a 1.  
The integrity of the digital interface can be checked by setting  
the INTERFACE_CHECK_EN bit (Address 0x21, Bit 7).  
Selecting the interface check forces the conversion result  
registers to a known value, as shown in Table 29.  
Verifying that the controller receives the data shown in Table 29  
ensures that the interface between the AD7606B and the  
controller operates properly. If the interface CRC is enabled  
because the data transmitted is known, this mode verifies that  
the controller performs the CRC calculation properly.  
When oversampling mode is enabled, the individual conversion  
time for each internal conversion is monitored.  
Table 29. Interface Check Conversion Results  
Channel Number  
DIAGNOSTICS MULTIPLEXER  
Conversion Result Forced (Hex.)  
All eight input channels contain a diagnostics multiplexer in  
front of the PGA that allows monitoring of the internal nodes  
described in Table 30 to ensure the correct operation of the  
AD7606B. Table 30 shows the bit decoding for the diagnostic mux  
register on Channel 1, as an example. When an internal node is  
selected, the input voltage at input pins are deselected from the  
PGA, as shown in Figure 81.  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
0xACCA  
0x5CC5  
0xA33A  
0x5335  
0xCAAC  
0xC55C  
0x3AA3  
0x3553  
Each diagnostic multiplexer configuration is accessed, in  
software mode through the corresponding register (Address 0x28  
to Address 0x2B). To use the multiplexer on one channel, the  
10 V range must be selected on that channel.  
SPI Invalid Read/Write  
When attempting to read back an invalid register address, the  
SPI_READ_ERR bit (Address 0x22, Bit 4) is set. The invalid  
readback address detection can be enabled by setting the  
SPI_READ_ERR_EN bit (Address 0x21, Bit 4). If an SPI read  
error is triggered, it is cleared by overwriting that bit or disabling  
the checker.  
Table 30. Diagnostic Mux Register Bit Decoding of Channel 1  
Address 0x18  
Bit 2  
Bit 1  
Bit 0  
Signal on Channel 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
V1  
Temperature sensor  
VREF  
4 × ALDO  
4 × DLDO  
VDRIVE  
When attempting to write to an invalid register address or a  
read only register, the SPI_WRITE_ERR bit (Address 0x22, Bit 3) is  
set. The invalid write address detection can be enabled by  
setting the SPI_WRITE _ERR bit (Address 0x21, Bit 3). If an SPI  
write error is triggered, it is cleared by overwriting that bit or  
disabling the checker.  
AGND  
AVCC  
Rev. 0 | Page 42 of 69  
 
 
 
 
Data Sheet  
AD7606B  
Therefore, if the ADC output goes beyond the expected 2.5 V,  
either the reference buffer or the PGA is malfunctioning.  
TEMPERATURE  
SENSOR  
AD7606B  
V
REF  
4×ALDO  
4×DLDO  
MUX  
AD7606B  
V
DRIVE  
AGND  
5MΩ  
AV  
R
R
CC  
FB  
FB  
INT REF  
4.4V  
V1  
V1GND  
EXT REF  
5MΩ  
2.5V  
MUX  
R
FB  
5MΩ  
5MΩ  
Vx  
R
FB  
ADC  
VxGND  
Figure 81. Diagnostic Multiplexer (Channel 1 Shown as an Example)  
R
FB  
Temperature Sensor  
Figure 82. Reference Voltage Signal Path Through the Diagnostic Multiplexer  
The temperature sensor can be selected through the diagnostic  
multiplexer and converted with the ADC, as shown in Figure 81.  
The temperature sensor voltage is measured and is proportional to  
the die temperature, as per the following equation:  
Internal LDOs  
The analog and digital LDO (REGCAP pins) can be selected  
through the diagnostic multiplexer and converted with the  
ADC, as shown in Figure 81. The ADC output is four times the  
voltage on the REGCAPA and REGCAPD pins, respectively.  
This measurement verifies that each LDO is at the correct  
operating voltage so that the internal circuitry is biased correctly.  
ADCOUT V 0.69068 V  
(
)
( )  
Temperature °C =  
+ 25 °C  
(
)
(
)
0.019328 V / °C  
(
)
with an accuracy of 2°C.  
Reference Voltage  
Supply Voltages  
The reference voltage can be selected through the diagnostic  
AVCC, VDRIVE, and AGND can be selected through the diagnostic  
multiplexer and converted with the ADC, as shown in Figure 81.  
This setup ensures the voltage and grounds are correctly applied to  
the device to ensure correct operation.  
multiplexer and converted with the ADC, as shown in Figure 82.  
The internal or external reference is selected as input to the  
diagnostic multiplexer based on REF SELECT pin. Ideally, the  
ADC output follows the voltage reference level ratio metrically.  
Rev. 0 | Page 43 of 69  
 
 
AD7606B  
Data Sheet  
TYPICAL CONNECTION DIAGRAM  
There are four AVCC supply pins on the device. It is recommended  
that each of the four pins are decoupled using a 100 nF capacitor at  
each supply pin and a 10 µF capacitor at the supply source. The  
AD7606B can operate with the internal reference or an externally  
applied reference. When using a single AD7606B device on the  
board, decouple the REFIN/REFOUT pin with a 100 nF capacitor.  
Refer to the Reference section when using an application with  
multiple AD7606B devices. The REFCAPA and REFCAPB pins  
are shorted together and decoupled with a 10 µF ceramic capacitor.  
PAR  
/SER pin is tied to AGND.  
parallel interface because the  
The analog input range for all eight channels is 10 V, provided  
the RANGE pin is tied to a high level and the oversampling  
ratio is controlled through the OS pins by the controller.  
In Figure 84, the AD7606B is configured in software mode,  
because all three OS2, OS1, and OS0 pins are at logic level high.  
The oversampling ratio, as well as each channel range, are  
configured through accessing the memory map. In this example,  
PAR  
the  
/SER pin is at logic level high. Therefore, the serial  
The VDRIVE supply is connected to the same supply as the  
processor. The VDRIVE voltage controls the voltage value of the  
output logic signals. For more information on layout, decoupling,  
and grounding, see the Layout Guidelines section.  
interface is used for both reading the ADC data and reading  
and writing the memory map. The REF SELECT pin is tied to  
AGND. Therefore, the internal reference is disabled and an  
external reference is connected externally to the REFIN/REFOUT  
pin and decoupled through a 100 nF capacitor.  
After supplies are applied to the AD7606B, apply a reset to the  
AD7606B to ensure that it is configured for the correct mode of  
operation.  
Figure 83 and Figure 84 are examples of typical connection  
diagrams. Other combinations of reference, data interface, and  
operation mode are also possible, depending on the logic levels  
applied to each configuration pin.  
In Figure 83, the AD7606B is configured in hardware mode and is  
operating with the internal reference because the REF SELECT pin  
is set to logic high. In this example, the device also uses the  
ANALOG SUPPLY  
DIGITAL SUPPLY  
VOLTAGE +1.71V TO +3.6V  
1
VOLTAGE 5V  
+
100nF  
100nF  
1µF  
100nF  
2
REFIN/REFOUT  
REGCAP  
AV  
V
CC  
DRIVE  
REFCAPA  
PARALLEL  
INTERFACE  
DB0 TO DB15  
+
REFCAPB  
REFGND  
10µF  
CONVST  
CS  
V1  
V1GND  
V2  
RD  
BUSY  
V2GND  
V3  
RESET  
OS2  
AD7606B  
V3GND  
V4  
OS1  
OVERSAMPLING  
EIGHT ANALOG  
INPUTS V1 TO V8  
V4GND  
V5  
OS0  
V5GND  
V6  
REF SELECT  
PAR/SER SEL  
RANGE  
STBY  
V
DRIVE  
V6GND  
V7  
V
DRIVE  
V7GND  
V8  
V8GND  
AGND  
1
2
DECOUPLING SHOWN ON THE AV PIN APPLIES TO EACH AV PIN (PIN 1, PIN 37, PIN 38, PIN 48).  
CC  
CC  
DECOUPLING CAPACITOR CAN BE SHARED BETWEEN AV  
PIN 37 AND PIN 38.  
CC  
DECOUPLING SHOWN ON THE REGCAP PIN APPLIES TO EACH REGCAP PIN (PIN 36, PIN 39).  
Figure 83. AD7606B Typical Connection Diagram, Hardware Mode  
Rev. 0 | Page 44 of 69  
 
 
Data Sheet  
AD7606B  
ANALOG SUPPLY  
DIGITAL SUPPLY  
VOLTAGE +1.71V TO +3.6V  
1
VOLTAGE 5V  
REF  
+
100nF  
1µF  
100nF  
100nF  
2
REFIN/REFOUT  
REFCAPA  
REGCAP  
AV  
V
DRIVE  
CC  
DB0 TO DB15  
+
REFCAPB  
REFGND  
10µF  
CONVST  
CS  
V1  
V1GND  
V2  
SDI  
D
x
OUT  
V2GND  
V3  
SCLK  
RESET  
AD7606B  
V3GND  
V4  
OS2  
OS1  
OVERSAMPLING =  
111b  
EIGHT ANALOG  
INPUTS V1 TO V8  
V4GND  
V5  
OS0  
V5GND  
V6  
REF SELECT  
V6GND  
V7  
PAR/SER SEL  
RANGE  
V
DRIVE  
V7GND  
V8  
STBY  
V8GND  
AGND  
1
2
DECOUPLING SHOWN ON THE AV PIN APPLIES TO EACH AV PIN (PIN 1, PIN 37, PIN 38, PIN 48).  
CC  
CC  
DECOUPLING CAPACITOR CAN BE SHARED BETWEEN AV PIN 37 AND PIN 38.  
CC  
DECOUPLING SHOWN ON THE REGCAP PIN APPLIES TO EACH REGCAP PIN (PIN 36, PIN 39).  
Figure 84. Typical Connection Diagram, Software Mode  
Rev. 0 | Page 45 of 69  
 
AD7606B  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 85 shows the recommended decoupling on the top layer  
of the AD7606B board. Figure 86 shows bottom layer decoupling,  
which is used for the four AVCC pins and the VDRIVE pin decoupling.  
Where the ceramic 100 nF caps for the AVCC pins are placed  
close to their respective device pins, a single 100 nF capacitor  
can be shared between Pin 37 and Pin 38.  
LAYOUT GUIDELINES  
The following layout guidelines are recommended to be  
followed when designing the PCB that houses the AD7606B:  
The analog and digital sections are separated and confined  
to different areas of the board.  
Use at least one ground plane. This plane can be common  
or split between the digital and analog sections. In the case  
of a split plane, join the digital and analog ground planes in  
only one place, preferably as close as possible to the  
AD7606B.  
If the AD7606B is in a system where multiple devices  
require analog-to-digital ground connections, make the  
connection at only one point: a star ground point that is  
established as close as possible to the AD7606B.  
Make stable connections to the ground plane. Avoid  
sharing one connection for multiple ground pins. Use  
individual vias or multiple vias to the ground plane for  
each ground pin.  
Avoid running digital lines under the device because doing  
so couples noise on the die. Allow the analog ground plane  
to run under the AD7606B to avoid noise coupling.  
Shield fast switching signals like CONVST, or clocks with  
digital ground to avoid radiating noise to other sections of  
the board and ensure that they never run near analog  
signal paths.  
Figure 85. Top Layer Decoupling REFIN/REFOUT,  
REFCAPA, REFCAPB, and REGCAP Pins  
Avoid crossover of digital and analog signals.  
Traces on layers in close proximity on the board run at  
right angles to each other to reduce the effect of  
feedthrough through the board.  
Power supply lines to the AVCC and VDRIVE pins on the  
AD7606B use as large a trace as possible to provide low  
impedance paths and reduce the effect of glitches on the  
power supply lines. Where possible, use supply planes and  
make stable connections between the AD7606B supply  
pins and the power tracks on the board. Use a single via or  
multiple vias for each supply pin.  
Place the decoupling capacitors close to (ideally, directly  
against) the supply pins and their corresponding ground  
pins. Place the decoupling capacitors for the REFIN/  
REFOUT pin and the REFCAPA pin and REFCAPB pin as  
close as possible to their respective AD7606B pins. Where  
possible, place the pins on the same side of the board as the  
AD7606B device.  
Figure 86. Bottom Layer Decoupling  
Rev. 0 | Page 46 of 69  
 
 
 
 
Data Sheet  
AD7606B  
To ensure stable device to device performance matching in a  
system that contains multiple AD7606B devices, a symmetrical  
layout between the AD7606B devices is important.  
AVCC  
Figure 87 shows a layout with two AD7606B devices. The AVCC  
supply plane runs to the right of both devices, and the VDRIVE  
supply track runs to the left of the two devices. The reference  
chip is positioned between the two devices, and the reference  
voltage track runs north to Pin 42 of U1 and south to Pin 42 of  
U2. A solid ground plane is used.  
U2  
These symmetrical layout principles can also be applied to a  
system that contains more than two AD7606B devices. The  
AD7606B devices can be placed in a north/south direction, with  
the reference voltage located midway between the devices and  
the reference track running in the north/south direction,  
similar to Figure 87.  
U1  
Figure 87. Layout for Multiple AD7606B Devices—Top Layer and  
Supply Plane Layer  
Rev. 0 | Page 47 of 69  
 
AD7606B  
Data Sheet  
REGISTER SUMMARY  
Table 31. Register Summary  
Addr Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x01 STATUS  
RESET_  
DETECT  
DIGITAL_  
ERROR  
RESERVED  
0x00  
0x08  
0x33  
0x33  
0x33  
0x33  
R
0x02 CONFIG  
RESERVED  
STATUS_  
HEADER  
EXT_OS_CLOCK  
DOUT_FORMAT  
RESERVED  
OPERATION_MODE  
R/W  
R/W  
R/W  
R/W  
R/W  
0x03 RANGE_CH1_  
CH2  
CH2_RANGE  
CH1_RANGE  
0x04 RANGE_CH3_  
CH4  
CH4_RANGE  
CH6_RANGE  
CH8_RANGE  
OS_PAD  
CH3_RANGE  
CH5_RANGE  
CH7_RANGE  
OS_RATIO  
0x05 RANGE_CH5_  
CH6  
0x06 RANGE_CH7_  
CH8  
0x08 OVERSAMPLING  
0x09 CH1_GAIN  
0x0A CH2_GAIN  
0x0B CH3_GAIN  
0x0C CH4_GAIN  
0x0D CH5_GAIN  
0x0E CH6_GAIN  
0x0F CH7_GAIN  
0x10 CH8_GAIN  
0x11 CH1_OFFSET  
0x12 CH2_OFFSET  
0x13 CH3_OFFSET  
0x14 CH4_OFFSET  
0x15 CH5_OFFSET  
0x16 CH6_OFFSET  
0x17 CH7_OFFSET  
0x18 CH8_OFFSET  
0x19 CH1_PHASE  
0x1A CH2_PHASE  
0x1B CH3_PHASE  
0x1C CH4_PHASE  
0x1D CH5_PHASE  
0x1E CH6_PHASE  
0x1F CH7_PHASE  
0x20 CH8_PHASE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESERVED  
CH1_GAIN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CH2_GAIN  
CH3_GAIN  
CH4_GAIN  
CH5_GAIN  
CH6_GAIN  
CH7_GAIN  
CH8_GAIN  
CH1_OFFSET  
CH2_OFFSET  
CH3_OFFSET  
CH4_OFFSET  
CH5_OFFSET  
CH6_OFFSET  
CH7_OFFSET  
CH8_OFFSET  
CH1_PHASE_OFFSET  
CH2_PHASE_OFFSET  
CH3_PHASE_OFFSET  
CH4_PHASE_OFFSET  
CH5_PHASE_OFFSET  
CH6_PHASE_OFFSET  
CH7_PHASE_OFFSET  
CH8_PHASE_OFFSET  
0x21 DIGITAL_  
DIAG_ENABLE  
INTERFACE_  
CHECK_EN  
CLK_FS_OS_  
COUNTER_EN  
BUSY_STUCK_  
HIGH_ERR_EN  
SPI_READ_  
ERR_EN  
SPI_WRITE_  
ERR_EN  
INT_CRC_  
ERR_EN  
MM_CRC_  
ERR_EN  
ROM_  
CRC_  
ERR_EN  
0x22 DIGITAL_  
DIAG_ERR  
RESERVED  
BUSY_STUCK_  
HIGH_ERR  
SPI_READ_  
ERR  
SPI_WRITE_  
ERR  
INT_CRC_ERR MM_CRC_  
ERR  
ROM_  
CRC_  
ERR  
0x00  
0x00  
R/W  
R/W  
0x23 OPEN_  
DETECT_  
CH8_OPEN_  
DETECT_EN  
CH7_OPEN_  
DETECT_EN  
CH6_OPEN_  
DETECT_EN  
CH5_OPEN_ CH4_OPEN_ CH3_OPEN_ CH2_OPEN_ CH1_  
DETECT_EN  
DETECT_EN  
DETECT_EN  
DETECT_EN  
OPEN_  
DETECT_  
EN  
ENABLE  
0x24 OPEN_  
DETECTED  
CH8_OPEN  
CH8_OV_  
CH7_OPEN  
CH6_OPEN  
CH5_OPEN  
CH4_OPEN  
CH3_OPEN  
CH2_OPEN  
CH1_  
OPEN  
0x00  
0x00  
R/W  
R/W  
0x25 AIN_OV_UV_  
CH7_OV_UV_EN CH6_OV_UV_EN CH5_OV_  
UV_EN  
CH4_OV_  
UV_EN  
CH3_OV_  
UV_EN  
CH2_OV_  
UV_EN  
CH1_  
OV_UV_  
EN  
DIAG_ENABLE UV_EN  
0x26 AIN_OV_DIAG_ CH8_OV_ERR CH7_OV_ERR  
ERROR  
CH6_OV_ERR  
CH6_UV_ERR  
CH5_OV_ERR CH4_OV_ERR CH3_OV_ERR CH2_OV_ERR CH1_  
OV_ERR  
CH5_UV_ERR CH4_UV_ERR CH3_UV_ERR CH2_UV_ERR CH1_  
UV_ERR  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
0x27 AIN_UV_DIAG_ CH8_UV_ERR CH7_UV_ERR  
ERROR  
0x28 DIAGNOSTIC_  
MUX_CH1_2  
RESERVED  
CH2_DIAG_MUX_CTRL  
CH4_DIAG_MUX_CTRL  
CH1_DIAG_MUX_CTRL  
0x29 DIAGNOSTIC_  
MUX_CH3_4  
RESERVED  
CH3_DIAG_MUX_CTRL  
Rev. 0 | Page 48 of 69  
 
 
Data Sheet  
AD7606B  
Addr Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x2A DIAGNOSTIC_  
MUX_CH5_6  
RESERVED  
CH6_DIAG_MUX_CTRL  
CH8_DIAG_MUX_CTRL  
OPEN_DETECT_QUEUE  
CH5_DIAG_MUX_CTRL  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
0x2B DIAGNOSTIC_  
MUX_CH7_8  
RESERVED  
CH7_DIAG_MUX_CTRL  
0x2C OPEN_  
DETECT_  
QUEUE  
0x2D FS_CLK_  
COUNTER  
CLK_FS_COUNTER  
CLK_OS_COUNTER  
0x00  
0x00  
0x14  
R
R
R
0x2E OS_CLK_  
COUNTER  
0x2F ID  
DEVICE_ID  
SILICON_REVISION  
Rev. 0 | Page 49 of 69  
AD7606B  
Data Sheet  
REGISTER DETAILS  
Address: 0x01, Reset: 0x00, Name: STATUS  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] RESET_DETECT (R)  
[5:0] RESERVED  
A reset has been detected, either  
full or partial reset  
[6] DIGITAL_ERROR (R)  
Error present in DIGITAL_DIAG_ERROR  
register  
Table 32. Bit Descriptions for STATUS  
Bits  
7
Bit Name  
Description  
Reset  
0x0  
Access  
RESET_DETECT  
DIGITAL_ERROR  
RESERVED  
A reset has been detected, either full or partial reset.  
Error present in DIGITAL_DIAG_ERROR register.  
Reserved.  
R
R
R
6
[5:0]  
0x0  
0x0  
Address: 0x02, Reset: 0x08, Name: CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
[7] RESERVED  
[1:0] OPERATION_MODE (R/W)  
Operation mode  
00: normal mode.  
01: standby mode.  
10: autostandby mode.  
11: shutdown mode.  
[6] STATUS_HEADER (R/W)  
Enable STATUS header to be appended  
to ADC data in both serial and parallel  
interface  
[5] EXT_OS_CLOCK (R/W)  
[2] RESERVED  
In oversampling mode, enable external  
oversampling clock. Oversampling  
conversions are triggered through  
a clock signal applied to CONVST  
pin, instead of managed by the internal  
oversampling clock  
[4:3] DOUT_FORMAT (R/W)  
Number of DOUT lines used in serial  
mode when reading conversions  
00: 1 DOUTx.  
01: 2 DOUTx.  
10: 4 DOUTx.  
11: 1 DOUTx.  
Table 33. Bit Descriptions for CONFIG  
Bits Bit Name  
Description  
Reset Access  
7
6
5
RESERVED  
STATUS_HEADER  
EXT_OS_CLOCK  
Reserved.  
0x0  
0x0  
R
R/W  
R/W  
Enable STATUS header to be appended to ADC data in both serial and parallel interface.  
In oversampling mode, enable external oversampling clock. Oversampling conversions are 0x0  
triggered through a clock signal applied to CONVST pin, instead of managed by the  
internal oversampling clock.  
[4:3] DOUT_FORMAT  
Number of DOUTx lines used in serial mode when reading conversions.  
0x1  
R/W  
00: 1 DOUTx.  
01: 2 DOUTx.  
10: 4 DOUTx.  
11: 1 DOUTx.  
Reserved.  
2
RESERVED  
0x0  
0x0  
R
R/W  
[1:0] OPERATION_MODE Operation mode.  
00: normal mode.  
01: standby mode.  
10: autostandby mode.  
11: shutdown mode.  
Rev. 0 | Page 50 of 69  
 
Data Sheet  
AD7606B  
Address: 0x03, Reset: 0x33, Name: RANGE_CH1_CH2  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH2_RANGE (R/W)  
Range options for Channel 2  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
[3:0] CH1_RANGE (R/W)  
Range options for Channel 1  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
1101: reserved.  
1101: reserved.  
1110: reserved.  
1110: reserved.  
1111: reserved.  
1111: reserved.  
Table 34. Bit Descriptions for RANGE_CH1_CH2  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH2_RANGE  
Range options for Channel 2.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
1101: reserved.  
1110: reserved.  
1111: reserved.  
[3:0]  
CH1_RANGE  
Range options for Channel 1.  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
0x3  
R/W  
1101: reserved.  
1110: reserved.  
1111: reserved.  
Rev. 0 | Page 51 of 69  
AD7606B  
Data Sheet  
Address: 0x04, Reset: 0x33, Name: RANGE_CH3_CH4  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH4_RANGE (R/W)  
Range options for Channel 4  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
[3:0] CH3_RANGE (R/W)  
Range options for Channel 3  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
1101: reserved.  
1101: reserved.  
1110: reserved.  
1110: reserved.  
1111: reserved.  
1111: reserved.  
Table 35. Bit Descriptions for RANGE_CH3_CH4  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH4_RANGE  
Range options for Channel 4.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
1101: reserved.  
1110: reserved.  
1111: reserved.  
[3:0]  
CH3_RANGE  
Range options for Channel 3.  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
0x3  
R/W  
1101: reserved.  
1110: reserved.  
1111: reserved.  
Rev. 0 | Page 52 of 69  
Data Sheet  
AD7606B  
Address: 0x05, Reset: 0x33, Name: RANGE_CH5_CH6  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH6_RANGE (R/W)  
Range options for Channel 6  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
[3:0] CH5_RANGE (R/W)  
Range options for Channel 5  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
1101: reserved.  
1101: reserved.  
1110: reserved.  
1110: reserved.  
1111: reserved.  
1111: reserved.  
Table 36. Bit Descriptions for RANGE_CH5_CH6  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH6_RANGE  
Range options for Channel 6.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
1101: reserved.  
1110: reserved.  
1111: reserved.  
[3:0]  
CH5_RANGE  
Range options for Channel 5.  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
0x3  
R/W  
1101: reserved.  
1110: reserved.  
1111: reserved.  
Rev. 0 | Page 53 of 69  
AD7606B  
Data Sheet  
Address: 0x06, Reset: 0x33, Name: RANGE_CH7_CH8  
7
6
5
4
3
2
1
0
0
0
1
1
0
0
1
1
[7:4] CH8_RANGE (R/W)  
Range options for Channel 8  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
[3:0] CH7_RANGE (R/W)  
Range options for Channel 7  
0000: ±2.5V single-ended range.  
0001: ±5V single-ended range.  
0010: ±10V single-ended range.  
...  
1101: reserved.  
1101: reserved.  
1110: reserved.  
1110: reserved.  
1111: reserved.  
1111: reserved.  
Table 37. Bit Descriptions for RANGE_CH7_CH8  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
CH8_RANGE  
Range options for Channel 8.  
0x3  
R/W  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
1101: reserved.  
1110: reserved.  
1111: reserved.  
[3:0]  
CH7_RANGE  
Range options for Channel 7.  
0000: 2.5 V single-ended range.  
0001: 5 V single-ended range.  
0010: 10 V single-ended range.  
0011: 10 V single-ended range.  
0100: 10 V single-ended range.  
0101: 10 V single-ended range.  
0110: 10 V single-ended range.  
0111: 10 V single-ended range.  
1000: 10 V single-ended range.  
1001: 10 V single-ended range.  
1010: 10 V single-ended range.  
1011: 10 V single-ended range.  
1100: reserved.  
0x3  
R/W  
1101: reserved.  
1110: reserved.  
1111: reserved.  
Rev. 0 | Page 54 of 69  
Data Sheet  
AD7606B  
Address: 0x08, Reset: 0x00, Name: OVERSAMPLING  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] OS_PAD (R/W)  
Oversampling padding, extend the  
internal oversampling period allowing  
evenly spaced sampling between  
CONVST rising edges.  
[3:0] OS_RATIO (R/W)  
Oversampling ratio  
0: no oversampling.  
1: oversampling by 2.  
10: oversampling by 4.  
...  
1101: oversampling off.  
1110: oversampling off.  
1111: oversampling off.  
Table 38. Bit Descriptions for OVERSAMPLING  
Bits Bit Name  
Description  
Reset Access  
[7:4] OS_PAD  
Oversampling padding, extend the internal oversampling period allowing evenly spaced sampling  
between CONVST rising edges.  
0x0  
R/W  
[3:0] OS_RATIO Oversampling ratio.  
0: no oversampling.  
0x0  
R/W  
1: oversampling by 2.  
10: oversampling by 4.  
11: oversampling by 8.  
100: oversampling by 16.  
101: oversampling by 32.  
110: oversampling by 64.  
111: oversampling by 128.  
1000: oversampling by 256.  
1001: oversampling off.  
1010: oversampling off.  
1011: oversampling off.  
1100: oversampling off.  
1101: oversampling off.  
1110: oversampling off.  
1111: oversampling off.  
Address: 0x09, Reset: 0x00, Name: CH1_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH1_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 39. Bit Descriptions for CH1_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH1_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Address: 0x0A, Reset: 0x00, Name: CH2_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH2_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 40. Bit Descriptions for CH2_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH2_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Rev. 0 | Page 55 of 69  
AD7606B  
Data Sheet  
Address: 0x0B, Reset: 0x00, Name: CH3_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH3_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 41. Bit Descriptions for CH3_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH3_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Address: 0x0C, Reset: 0x00, Name: CH4_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH4_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 42. Bit Descriptions for CH4_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH4_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Address: 0x0D, Reset: 0x00, Name: CH5_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH5_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 43. Bit Descriptions for CH5_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH5_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Address: 0x0E, Reset: 0x00, Name: CH6_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH5_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 44. Bit Descriptions for CH6_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH6_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Rev. 0 | Page 56 of 69  
Data Sheet  
AD7606B  
Address: 0x0F, Reset: 0x00, Name: CH7_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH7_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 45. Bit Descriptions for CH7_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH7_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Address: 0x10, Reset: 0x00, Name: CH8_GAIN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[5:0] CH8_GAIN (R/W)  
RFILTER calibration register. Resolution:  
1024 Ω. Range: 0 Ω to 65,536 Ω  
Table 46. Bit Descriptions for CH8_GAIN  
Bits  
[7:6]  
[5:0]  
Bit Name  
RESERVED  
CH8_GAIN  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
R/W  
RFILTER calibration register. Resolution: 1024 Ω. Range: 0 Ω to 65,536 Ω.  
Address: 0x11, Reset: 0x80, Name: CH1_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH1_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 47. Bit Descriptions for CH1_OFFSET  
Bits Bit Name Description  
[7:0] CH1_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
Reset Access  
0x80 R/W  
Address: 0x12, Reset: 0x80, Name: CH2_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH2_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 48. Bit Descriptions for CH2_OFFSET  
Bits Bit Name Description  
[7:0] CH2_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
Reset Access  
0x80 R/W  
Rev. 0 | Page 57 of 69  
AD7606B  
Data Sheet  
Address: 0x13, Reset: 0x80, Name: CH3_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH3_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 49. Bit Descriptions for CH3_OFFSET  
Bits Bit Name Description  
Reset Access  
[7:0] CH3_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
0x80  
R/W  
Address: 0x14, Reset: 0x80, Name: CH4_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH4_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 50. Bit Descriptions for CH4_OFFSET  
Bits Bit Name Description  
[7:0] CH4_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
Reset Access  
0x80 R/W  
Address: 0x15, Reset: 0x80, Name: CH5_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH5_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 51. Bit Descriptions for CH5_OFFSET  
Bits Bit Name Description  
[7:0] CH5_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
Reset Access  
0x80 R/W  
Address: 0x16, Reset: 0x80, Name: CH6_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH6_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 52. Bit Descriptions for CH6_OFFSET  
Bits Bit Name Description  
[7:0] CH6_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
Reset Access  
0x80 R/W  
Rev. 0 | Page 58 of 69  
Data Sheet  
AD7606B  
Address: 0x17, Reset: 0x80, Name: CH7_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH7_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 53. Bit Descriptions for CH7_OFFSET  
Bits Bit Name Description  
Reset Access  
[7:0] CH7_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
0x80  
R/W  
Address: 0x18, Reset: 0x80, Name: CH8_OFFSET  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
[7:0] CH8_OFFSET (R/W)  
Offset register. Range from –128  
LSB to +127 LSB.  
Table 54. Bit Descriptions for CH8_OFFSET  
Bits Bit Name Description  
Reset Access  
[7:0] CH8_OFFSET Offset register. Range from −128 LSB to +127 LSB. 0x00 = −128 LSB offset; 0x80 = no offset;  
0xFF = +127 LSB offset.  
0x80  
R/W  
Address: 0x19, Reset: 0x00, Name: CH1_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH1_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 55. Bit Descriptions for CH1_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH1_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Address: 0x1A, Reset: 0x00, Name: CH2_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH2_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 56. Bit Descriptions for CH2_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH2_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Address: 0x1B, Reset: 0x00, Name: CH3_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH3_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 57. Bit Descriptions for CH3_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH3_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Rev. 0 | Page 59 of 69  
AD7606B  
Data Sheet  
Address: 0x1C, Reset: 0x00, Name: CH4_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH4_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 58. Bit Descriptions for CH4_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH4_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Address: 0x1D, Reset: 0x00, Name: CH5_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH5_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 59. Bit Descriptions for CH5_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH5_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Address: 0x1E, Reset: 0x00, Name: CH6_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH6_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 60. Bit Descriptions for CH6_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH6_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Address: 0x1F, Reset: 0x00, Name: CH7_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH7_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 61. Bit Descriptions for CH7_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH7_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Address: 0x20, Reset: 0x00, Name: CH8_PHASE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CH8_PHASE_OFFSET (R/W)  
Phase delay from 0 µs to 318.75  
µs in steps of 1.25 µs  
Table 62. Bit Descriptions for CH8_PHASE  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CH8_PHASE_OFFSET  
Phase delay from 0 to 318.75 μs in steps of 1.25 μs.  
0x0  
R/W  
Rev. 0 | Page 60 of 69  
Data Sheet  
AD7606B  
Address: 0x21, Reset: 0x01, Name: DIGITAL_DIAG_ENABLE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7] INTERFACE_CHECK_EN (R/W)  
Enable interface check. Provides  
a fixed data on each channel when  
reading ADC data  
[0] ROM_CRC_ERR_EN (R/W)  
Enable ROM CRC check  
[1] MM_CRC_ERR_EN (R/W)  
Enable memory map CRC check  
[6] CLK_FS_OS_COUNTER_EN (R/W)  
Enable FS and OS clock counter  
[2] INT_CRC_ERR_EN (R/W)  
Enable interface CRC check  
[5] BUSY_STUCK_HIGH_ERR_EN (R/W)  
Enable busy stuck high check  
[3] SPI_WRITE_ERR_EN (R/W)  
Enable checking if attempting to write  
to an invalid address  
[4] SPI_READ_ERR_EN (R/W)  
Enable checking if attempting to read  
from an invalid address  
Table 63. Bit Descriptions for DIGITAL_DIAG_ENABLE  
Bits Bit Name  
Description  
Reset Access  
7
INTERFACE_CHECK_EN  
Enable interface check. Provides a fixed data on each channel when reading ADC  
data.  
0x0  
R/W  
6
5
4
3
2
1
0
CLK_FS_OS_COUNTER_EN  
BUSY_STUCK_HIGH_ERR_EN Enable busy stuck high check.  
Enable FS and OS clock counter.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SPI_READ_ERR_EN  
SPI_WRITE_ERR_EN  
INT_CRC_ERR_EN  
MM_CRC_ERR_EN  
ROM_CRC_ERR_EN  
Enable checking if attempting to read from an invalid address.  
Enable checking if attempting to write to an invalid address.  
Enable interface CRC check.  
Enable memory map CRC check.  
Enable ROM CRC check.  
Address: 0x22, Reset: 0x00, Name: DIGITAL_DIAG_ERR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[0] ROM_CRC_ERR (R/W1C)  
ROM CRC error  
[5] BUSY_STUCK_HIGH_ERR (R/W1C)  
Busy stuck high error. Busy line has  
been at high logic level for longer  
than 4us  
[1] MM_CRC_ERR (R/W1C)  
Memory map CRC error  
[2] INT_CRC_ERR (R/W1C)  
[4] SPI_READ_ERR (R/W1C)  
Interface CRC error  
SPI invalid read address  
[3] SPI_WRITE_ERR (R/W1C)  
SPI invalid write address  
Table 64. Bit Descriptions for DIGITAL_DIAG_ERR  
Bits  
Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
5
4
3
2
1
0
BUSY_STUCK_HIGH_ERR  
Busy stuck high error. Busy line has been at high logic level for longer than 4 μs.  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
SPI_READ_ERR  
SPI_WRITE_ERR  
INT_CRC_ERR  
MM_CRC_ERR  
ROM_CRC_ERR  
SPI invalid read address.  
SPI invalid write address.  
Interface CRC error.  
Memory map CRC error.  
ROM CRC error.  
Rev. 0 | Page 61 of 69  
AD7606B  
Data Sheet  
Address: 0x23, Reset: 0x00, Name: OPEN_DETECT_ENABLE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
8. In manual mode, sets the PGA  
common mode to high  
[0] CH1_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
1. In manual mode, sets the PGA  
common mode to high  
[6] CH7_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
7. In manual mode, sets the PGA  
common mode to high  
[1] CH2_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
2. In manual mode, sets the PGA  
common mode to high  
[5] CH6_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
6. In manual mode, sets the PGA  
common mode to high  
[2] CH3_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
3. In manual mode, sets the PGA  
common mode to high  
[4] CH5_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
5. In manual mode, sets the PGA  
common mode to high  
[3] CH4_OPEN_DETECT_EN (R/W)  
In automatic mode, enable analog  
input open detection for Channel  
4. In manual mode, sets the PGA  
common mode to high  
Table 65. Bit Descriptions for OPEN_DETECT_ENABLE  
Bits Bit Name Description  
Reset Access  
7
6
5
4
3
2
1
0
CH8_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 8. In manual  
mode, sets the PGA common mode to high.  
CH7_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 7. In manual  
mode, sets the PGA common mode to high.  
CH6_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 6. In manual  
mode, sets the PGA common mode to high.  
CH5_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 5. In manual  
mode, sets the PGA common mode to high.  
CH4_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 4. In manual  
mode, sets the PGA common mode to high.  
CH3_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 3. In manual  
mode, sets the PGA common mode to high.  
CH2_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 2. In manual  
mode, sets the PGA common mode to high.  
CH1_OPEN_DETECT_EN In automatic mode, enables analog input open detection for Channel 1. In manual  
mode, sets the PGA common mode to high.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x24, Reset: 0x00, Name: OPEN_DETECTED  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_OPEN (R/W1C)  
[0] CH1_OPEN (R/W1C)  
Analog Input 8 open detected  
Analog Input 1 open detected  
[6] CH7_OPEN (R/W1C)  
[1] CH2_OPEN (R/W1C)  
Analog Input 7 open detected  
Analog Input 2 open detected  
[5] CH6_OPEN (R/W1C)  
[2] CH3_OPEN (R/W1C)  
Analog Input 6 open detected  
Analog Input 3 open detected  
[4] CH5_OPEN (R/W1C)  
[3] CH4_OPEN (R/W1C)  
Analog Input 5 open detected  
Analog Input 4 open detected  
Table 66. Bit Descriptions for OPEN_DETECTED  
Bits  
7
6
5
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
CH8_OPEN  
CH7_OPEN  
CH6_OPEN  
CH5_OPEN  
CH4_OPEN  
Analog Input 8 open detected.  
Analog Input 7 open detected.  
Analog Input 6 open detected.  
Analog Input 5 open detected.  
Analog Input 4 open detected.  
4
3
0x0  
Rev. 0 | Page 62 of 69  
Data Sheet  
AD7606B  
Bits  
2
1
Bit Name  
Description  
Reset  
0x0  
0x0  
Access  
CH3_OPEN  
CH2_OPEN  
CH1_OPEN  
Analog Input 3 open detected.  
Analog Input 2 open detected.  
Analog Input 1 open detected.  
R/W1C  
R/W1C  
R/W1C  
0
0x0  
Address: 0x25, Reset: 0x00, Name: AIN_OV_UV_DIAG_ENABLE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 8  
[0] CH1_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 1  
[6] CH7_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 7  
[1] CH2_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 2  
[5] CH6_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 6  
[2] CH3_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 3  
[4] CH5_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 5  
[3] CH4_OV_UV_EN (R/W)  
Enable overvoltage/undervoltage  
error check on Channel 4  
Table 67. Bit Descriptions for AIN_OV_UV_DIAG_ENABLE  
Bits  
7
6
5
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
CH8_OV_UV_EN  
CH7_OV_UV_EN  
CH6_OV_UV_EN  
CH5_OV_UV_EN  
CH4_OV_UV_EN  
CH3_OV_UV_EN  
CH2_OV_UV_EN  
CH1_OV_UV_EN  
Enable overvoltage/undervoltage error check on Channel 8.  
Enable overvoltage/undervoltage error check on Channel 7.  
Enable overvoltage/undervoltage error check on Channel 6.  
Enable overvoltage/undervoltage error check on Channel 5.  
Enable overvoltage/undervoltage error check on Channel 4.  
Enable overvoltage/undervoltage error check on Channel 3.  
Enable overvoltage/undervoltage error check on Channel 2.  
Enable overvoltage/undervoltage error check on Channel 1.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
4
3
2
1
0
Address: 0x26, Reset: 0x00, Name: AIN_OV_DIAG_ERROR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_OV_ERR (R/W1C)  
[0] CH1_OV_ERR (R/W1C)  
Overvoltage error on Channel 8  
Overvoltage error on Channel 1  
[6] CH7_OV_ERR (R/W1C)  
[1] CH2_OV_ERR (R/W1C)  
Overvoltage error on Channel 7  
Overvoltage error on Channel 2  
[5] CH6_OV_ERR (R/W1C)  
[2] CH3_OV_ERR (R/W1C)  
Overvoltage error on Channel 6  
Overvoltage error on Channel 3  
[4] CH5_OV_ERR (R/W1C)  
[3] CH4_OV_ERR (R/W1C)  
Overvoltage error on Channel 5  
Overvoltage error on Channel 4  
Table 68. Bit Descriptions for AIN_OV_DIAG_ERROR  
Bits  
Bit Name  
Description  
Reset  
Access  
7
6
5
4
CH8_OV_ERR  
CH7_OV_ERR  
CH6_OV_ERR  
CH5_OV_ERR  
CH4_OV_ERR  
CH3_OV_ERR  
CH2_OV_ERR  
CH1_OV_ERR  
Overvoltage error on Channel 8.  
Overvoltage error on Channel 7.  
Overvoltage error on Channel 6.  
Overvoltage error on Channel 5.  
Overvoltage error on Channel 4.  
Overvoltage error on Channel 3.  
Overvoltage error on Channel 2.  
Overvoltage error on Channel 1.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
3
2
1
0
Rev. 0 | Page 63 of 69  
AD7606B  
Data Sheet  
Address: 0x27, Reset: 0x00, Name: AIN_UV_DIAG_ERROR  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] CH8_UV_ERR (R/W1C)  
[0] CH1_UV_ERR (R/W1C)  
Undervoltage error on Channel 8  
Undervoltage error on Channel 1  
[6] CH7_UV_ERR (R/W1C)  
[1] CH2_UV_ERR (R/W1C)  
Undervoltage error on Channel 7  
Undervoltage error on Channel 2  
[5] CH6_UV_ERR (R/W1C)  
[2] CH3_UV_ERR (R/W1C)  
Undervoltage error on Channel 6  
Undervoltage error on Channel 3  
[4] CH5_UV_ERR (R/W1C)  
[3] CH4_UV_ERR (R/W1C)  
Undervoltage error on Channel 5  
Undervoltage error on Channel 4  
Table 69. Bit Descriptions for AIN_UV_DIAG_ERROR  
Bits  
7
6
5
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
CH8_UV_ERR  
CH7_UV_ERR  
CH6_UV_ERR  
CH5_UV_ERR  
CH4_UV_ERR  
CH3_UV_ERR  
CH2_UV_ERR  
CH1_UV_ERR  
Undervoltage error on Channel 8.  
Undervoltage error on Channel 7.  
Undervoltage error on Channel 6.  
Undervoltage error on Channel 5.  
Undervoltage error on Channel 4.  
Undervoltage error on Channel 3.  
Undervoltage error on Channel 2.  
Undervoltage error on Channel 1.  
4
3
2
1
0
Address: 0x28, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH1_2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[2:0] CH1_DIAG_MUX_CTRL (R/W)  
Channel 1 diagnostic mux control.  
Select ±10V range.  
[5:3] CH2_DIAG_MUX_CTRL (R/W)  
Channel 2 diagnostic mux control.  
Select ±10V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select DLDO 1.8V x 4.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select ALDO 1.8V x 4.  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
.
.
.
.
Table 70. Bit Descriptions for DIAGNOSTIC_MUX_CH1_2  
Bits  
Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
[5:3] CH2_DIAG_MUX_CTRL  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 2 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select ALDO 1.8 V × 4.  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
[2:0] CH1_DIAG_MUX_CTRL  
Channel 1 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
0x0  
R/W  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select DLDO 1.8 V × 4.  
Rev. 0 | Page 64 of 69  
Data Sheet  
AD7606B  
Bits  
Bit Name  
Description  
Reset Access  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
Address: 0x29, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH3_4  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[2:0] CH3_DIAG_MUX_CTRL (R/W)  
Channel 3 diagnostic mux control.  
Select ±10V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select ALDO 1.8V x 4.  
[5:3] CH4_DIAG_MUX_CTRL (R/W)  
Channel 4 diagnostic mux control.  
Select ±10V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select ALDO 1.8V x 4.  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
.
.
.
.
Table 71. Bit Descriptions for DIAGNOSTIC_MUX_CH3_4  
Bits  
Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
[5:3] CH4_DIAG_MUX_CTRL  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 4 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select ALDO 1.8 V × 4.  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
[2:0] CH3_DIAG_MUX_CTRL  
Channel 3 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
0x0  
R/W  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select ALDO 1.8 V × 4.  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
Rev. 0 | Page 65 of 69  
AD7606B  
Data Sheet  
Address: 0x2A, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH5_6  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[2:0] CH5_DIAG_MUX_CTRL (R/W)  
Channel 5 diagnostic mux control.  
Select ±10V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select ALDO 1.8V x 4.  
[5:3] CH6_DIAG_MUX_CTRL (R/W)  
Channel 6 diagnostic mux control.  
Select ±10V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select ALDO 1.8V x 4.  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
.
.
.
.
Table 72. Bit Descriptions for DIAGNOSTIC_MUX_CH5_6  
Bits  
Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
[5:3] CH6_DIAG_MUX_CTRL  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 6 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select ALDO 1.8 V × 4.  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
[2:0] CH5_DIAG_MUX_CTRL  
Channel 5 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
0x0  
R/W  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select ALDO 1.8 V × 4.  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
Rev. 0 | Page 66 of 69  
Data Sheet  
AD7606B  
Address: 0x2B, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH7_8  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:6] RESERVED  
[2:0] CH7_DIAG_MUX_CTRL (R/W)  
Channel 7 diagnostic mux control.  
Select ±10V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select ALDO 1.8V x 4.  
[5:3] CH8_DIAG_MUX_CTRL (R/W)  
Channel 8 diagnostic mux control.  
Select ±10V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature  
= (output voltage - 0.17267)/0.0004832  
+ 25°C.  
010: select 2.5V.  
011: select ALDO 1.8V x 4.  
100: select ALDO 1.8V x 4.  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
101: select VDRIVE  
110: select AGND.  
111: select AVCC  
.
.
.
.
Table 73. Bit Descriptions for DIAGNOSTIC_MUX_CH7_8  
Bits  
Bit Name  
Description  
Reset Access  
[7:6] RESERVED  
[5:3] CH8_DIAG_MUX_CTRL  
Reserved.  
0x0  
0x0  
R
R/W  
Channel 8 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select ALDO 1.8 V × 4.  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
[2:0] CH7_DIAG_MUX_CTRL  
Channel 7 diagnostic mux control. Select 10 V range.  
000: select analog input pin.  
0x0  
R/W  
001: select temperature sensor. Die temperature = (output voltage −  
0.17267)/0.0004832 + 25°C.  
010: select 2.5 V.  
011: select ALDO 1.8 V × 4.  
100: select ALDO 1.8 V × 4.  
101: select VDRIVE  
.
110: select AGND.  
111: select AVCC.  
Address: 0x2C, Reset: 0x00, Name: OPEN_DETECT_QUEUE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] OPEN_DETECT_QUEUE (R/W)  
Number of conversions for no change  
on output codes before enabling  
open detect function. Range = 2 to  
256. Queue = 1 enables manual  
mode  
Table 74. Bit Descriptions for OPEN_DETECT_QUEUE  
Bits Bit Name Description  
[7:0] OPEN_DETECT_QUEUE Number of conversions for no change on output codes before enabling open detect  
function. Range = 2 to 256. Queue = 1 enables manual mode.  
Reset Access  
0x0 R/W  
Rev. 0 | Page 67 of 69  
AD7606B  
Data Sheet  
Address: 0x2D, Reset: 0x00, Name: FS_CLK_COUNTER  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CLK_FS_COUNTER (R)  
Determine the frequency of the FS  
clock oscillator. Counter is incremented  
at 16 M/64.  
Table 75. Bit Descriptions for FS_CLK_COUNTER  
Bits Bit Name  
Description  
Reset Access  
[7:0] CLK_FS_COUNTER  
Determine the frequency of the FS clock oscillator. Counter is incremented at 16 M/64.  
0x0  
R
Address: 0x2E, Reset: 0x00, Name: OS_CLK_COUNTER  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CLK_OS_COUNTER (R)  
Determine the frequency of the OS  
clock oscillator. Counter resolution  
= 200 kHz.  
Table 76. Bit Descriptions for OS_CLK_COUNTER  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
CLK_OS_COUNTER  
Determine the frequency of the OS clock oscillator. Counter resolution = 200 kHz.  
0x0  
R
Address: 0x2F, Reset: 0x14, Name: ID  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] DEVICE_ID (R)  
Generic  
[3:0] SILICON_REVISION (R)  
Silicon revision  
0000: reserved.  
0001: AD7606B Generic.  
Table 77. Bit Descriptions for ID  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
DEVICE_ID  
Generic.  
0x1  
R
0000: reserved.  
0001: AD7606B generic.  
Silicon revision.  
[3:0]  
SILICON_REVISION  
0x4  
R
Rev. 0 | Page 68 of 69  
Data Sheet  
AD7606B  
OUTLINE DIMENSIONS  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
17  
32  
PLANE  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 88. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
AD7606BBSTZ  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
Evaluation Board for the AD7606B  
ST-64-2  
ST-64-2  
AD7606BBSTZ-RL  
EVAL-AD7606BFMCZ  
EVAL-SDP-CH1Z  
Evaluation Controller Board  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15137-0-6/19(0)  
Rev. 0 | Page 69 of 69  
 
 

相关型号:

EVAL-AD7606EDZ

8-/6-/4-Channel DAS with 16-Bit,Bipolar Input,Simultaneous Sampling ADC
ADI

EVAL-AD7606SDZ

8-/6-/4-Channel DAS with 16-Bit, Bipolar Input, Simultaneous Sampling ADC
ADI

EVAL-AD7607EDZ

8-Channel DAS with 14-Bit, Bipolar Input, Simultaneous Sampling ADC
ADI

EVAL-AD7609EDZ

8-Channel Differential DAS with 18-Bit
ADI

EVAL-AD7610CB

16-Bit, 250 kSPS, Unipolar/Bipolar Programmable Input PulSAR ADC
ADI

EVAL-AD7621CB2

16-Bit, 2 LSB INL, 3 MSPS PulSAR® ADC
ADI

EVAL-AD7625FMCZ

16-Bit, 6 MSPS, PulSAR Differential ADC
ADI

EVAL-AD7626EDZ

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

EVAL-AD7626FMCZ

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

EVAL-AD7631CBZ

18-Bit, 250 kSPS, Differential Programmable Input PulSAR® ADC
ADI

EVAL-AD7641CB

18-Bit 250/670 kSPS PulSAR Bipolar Programmable Inputs ADC
ADI

EVAL-AD7641CB1

18-Bit, 2 MSPS SAR ADC
ADI