HMC558A [ADI]

Conversion loss: 7.5 dB typical at 5.5 GHz to 10 GHz;
HMC558A
型号: HMC558A
厂家: ADI    ADI
描述:

Conversion loss: 7.5 dB typical at 5.5 GHz to 10 GHz

文件: 总15页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5.5 GHz to 14 GHz,  
GaAs MMIC Fundamental Mixer  
HMC558A  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Conversion loss: 7.5 dB typical at 5.5 GHz to 10 GHz  
Local oscillator (LO) to radio frequency (RF) isolation: 45 dB  
typical at 5.5 GHz to 10 GHz  
HMC558A  
LO  
RF  
LO to intermediate frequency (IF) isolation: 45 dB typical at  
10 GHz to 14 GHz  
Input third-order intercept (IIP3): 21 dBm typical at 10 GHz  
to 14 GHz  
IF  
Figure 1.  
Input P1dB: 11.5 dBm typical at 10 GHz to 14 GHz  
Input second-order intercept (IIP2): 55 dBm typical at 10 GHz  
to 14 GHz  
Passive double-balanced topology  
Wide IF bandwidth: dc to 6 GHz  
12-lead ceramic leadless chip carrier package  
APPLICATIONS  
Point to point microwave radios  
Point to multipoint radios  
Military end use  
Instrumentation, automatic test equipment (ATE), and sensors  
GENERAL DESCRIPTION  
The HMC558A is a general-purpose, double-balanced mixer in a  
leadless RoHS compliant SMT package that can be used as an  
upconverter or downconverter between 5.5 GHz and 14 GHz.  
This mixer is fabricated in a gallium arsenide (GaAs) metal semi-  
conductor field effect transistor (MESFET) process, and requires  
no external components or matching circuitry.  
The HMC558A provides excellent LO to RF and LO to IF isolation  
due to optimized balun structures, and operates with LO drive  
levels as low as 9 dBm. The RoHS compliant HMC558A eliminates  
the need for wire bonding, and is compatible with high volume  
surface-mount manufacturing techniques.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC558A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Downconverter Performance ......................................................6  
Upconverter Performance............................................................9  
Return Loss and Isolation Performance.................................. 10  
Spurious Performance ............................................................... 12  
Theory of Operation ...................................................................... 13  
Applications Information.............................................................. 14  
Typical Application Circuit....................................................... 14  
Evaluation Board Information ................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
11/2016—Revision 0: Initial Version  
Rev. 0 | Page 2 of 15  
 
Data Sheet  
HMC558A  
SPECIFICATIONS  
LO drive level = 15 dBm, TA = 25°C, IF = 100 MHz, upper sideband, unless otherwise noted. All measurements performed as a  
downconverter.  
Table 1.  
Parameter  
Min  
5.5  
Typ  
Max  
14  
Unit  
GHz  
GHz  
dBm  
GHz  
RF FREQUENCY RANGE  
LO FREQUENCY RANGE  
LO DRIVE LEVEL  
5.5  
14  
15  
IF FREQUENCY RANGE  
PERFORMANCE AT RF = 5.5 GHz to 10 GHz  
Conversion Loss  
Single Sideband (SSB) Noise Figure  
Input Third-Order Intercept (IIP3)  
Input 1 dB Compression Point (IP1dB)  
Input Second-Order Intercept (IIP2)  
RF to IF Isolation  
DC  
15  
6
7.5  
7.5  
17.5  
10  
50  
16  
9.5  
dB  
dB  
dBm  
dBm  
dB  
8
dB  
LO to RF Isolation  
LO to IF Isolation  
35  
20  
45  
35  
dB  
dB  
PERFORMANCE AT RF = 10 GHz to 14 GHz  
Conversion Loss  
SSB Noise Figure  
8.5  
10  
10  
dB  
dB  
IIP3  
IP1dB  
IIP2  
16  
21  
11.5  
55  
dBm  
dBm  
dB  
RF to IF Isolation  
LO to RF Isolation  
LO to IF Isolation  
10  
30  
20  
19  
40  
45  
dB  
dB  
dB  
Rev. 0 | Page 3 of 15  
 
HMC558A  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source/Sink Current  
Maximum Junction Temperature  
Continuous PDISS (T = 85°C) (Derate  
5.5 mW/°C Above 85°C)  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering 60 sec)  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
25 dBm  
25 dBm  
25 dBm  
3 mA  
175°C  
495 mW  
Table 3. Thermal Resistance  
Package Type  
E-12-11  
θJC  
Unit  
180  
°C/W  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
−40°C to +85°C  
−65°C to +150°C  
−65°C to +150°C  
ESD CAUTION  
2500 V (Class 2)  
1000 V (Class C5)  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 4 of 15  
 
 
 
Data Sheet  
HMC558A  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
12 11 10  
GND  
LO  
1
2
3
9
8
7
GND  
RF  
HMC558A  
TOP VIEW  
(Not to Scale)  
GND  
GND  
4
5
6
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. EXPOSED PAD. CONNECT THE EXPOSED PAD TO A LOW  
IMPEDANCE THERMAL AND ELECTRICAL GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 4, 6, 7, 9 GND  
Ground. See Figure 6 for the ground interface schematic.  
2
5
LO  
IF  
Local Oscillator Port. This pin is ac-coupled and matched to 50 Ω. See Figure 4 for the LO interface schematic.  
DC-Coupled IF. For applications not requiring operation to dc, dc block this port externally using a series  
capacitor whose value is chosen to pass the necessary IF frequency range. For operation to dc, this pin  
must not source or sink more than 3 mA of current, or device nonfunction and possible device failure may  
result. See Figure 5 for the IF interface schematic.  
8
RF  
NIC  
EPAD  
RF Port. This pin is ac-coupled internally and matched to 50 Ω. See Figure 3 for the RF interface schematic.  
No Internal Connection. These pins can be grounded.  
Exposed Pad. Connect the exposed pad to a low impedance thermal and electrical ground plane.  
10, 11, 12  
INTERFACE SCHEMATICS  
IF  
RF  
Figure 5. IF Interface  
Figure 3. RF Interface  
GND  
LO  
Figure 6. Ground Interface  
Figure 4. LO Interface  
Rev. 0 | Page 5 of 15  
 
 
 
 
 
 
HMC558A  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE  
Data taken as downconverter, upper sideband (low-side LO), TA = 25°C, LO drive level = 15 dBm unless otherwise specified.  
0
0
9dBm  
–40°C  
+25°C  
+85°C  
12dBm  
15dBm  
18dBm  
20dBm  
–2  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
IF = 100 MHz  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Powers,  
IF = 100 MHz  
30.0  
27.5  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
32.5  
30.0  
27.5  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
5.0  
9dBm  
2.5  
0
5.0  
12dBm  
15dBm  
18dBm  
20dBm  
–40°C  
2.5  
0
+25°C  
+85°C  
–2.5  
–5.0  
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,  
IF = 100 MHz  
Figure 11. Input IP3 vs. RF Frequency at Various LO Powers,  
IF = 100 MHz  
0
0
–2  
–40°C  
9dBm  
+25°C  
12dBm  
15dBm  
18dBm  
20dBm  
–2  
+85°C  
–4  
–6  
–8  
–4  
–6  
–8  
–10  
–10  
–12  
–14  
–16  
–18  
–20  
–12  
–14  
–16  
–18  
–20  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Conversion Gain vs. RF Frequency at Various Temperatures,  
IF = 2 GHz  
Figure 12. Conversion Gain vs. RF Frequency at Various LO Powers,  
IF = 2 GHz  
Rev. 0 | Page 6 of 15  
 
 
Data Sheet  
HMC558A  
32.5  
35  
30  
25  
20  
15  
10  
5
–40°C  
+25°C  
+85°C  
–40°C  
30.0  
+25°C  
27.5  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
+85°C  
5.0  
2.5  
0
–2.5  
–5.0  
–7.5  
0
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Input IP3 vs. RF Frequency at Various Temperatures,  
IF = 2 GHz  
Figure 16. Input P1dB vs. RF Frequency at Various Temperatures,  
IF = 100 MHz  
25  
0
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
–2.5  
+85°C  
20  
15  
10  
5
–5.0  
–7.5  
–10.0  
–12.5  
–15.0  
–17.5  
–20.0  
–22.5  
–25.0  
0
4
5
6
7
8
9
10 11 12 13 14 15 16  
0
1
2
3
4
5
6
7
8
9
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 14. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 17. SSB Noise Figure vs. RF Frequency at Various Temperatures,  
IF = 100 MHz  
35.0  
25  
9dBm  
32.5  
9dBm  
12dBm  
15dBm  
12dBm  
30.0  
27.5  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
5.0  
2.5  
0
–2.5  
–5.0  
–7.5  
–10.0  
–12.5  
15dBm  
18dBm  
20dBm  
18dBm  
20  
15  
10  
5
0
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Input IP3 vs. RF Frequency at Various LO Powers,  
IF = 2 GHz  
Figure 18. SSB Noise Figure vs. RF Frequency at Various LO Powers,  
IF = 100 MHz  
Rev. 0 | Page 7 of 15  
HMC558A  
Data Sheet  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
9dBm  
12dBm  
15dBm  
18dBm  
20dBm  
–40°C  
+25°C  
+85°C  
10  
0
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 19. Input IP2 vs. RF Frequency at Various Temperatures,  
IF = 100 MHz  
Figure 21. Input IP2 vs. RF Frequency at Various LO Powers,  
IF = 100 MHz  
90  
90  
–40°C  
+25°C  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
+85°C  
70  
60  
50  
40  
30  
20  
10  
0
9dBm  
12dBm  
15dBm  
18dBm  
20dBm  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Input IP2 vs. RF Frequency at Various Temperatures,  
IF = 2000 MHz  
Figure 22. Input IP2 vs. RF Frequency, at Various LO Powers,  
IF = 2000 MHz  
Rev. 0 | Page 8 of 15  
Data Sheet  
HMC558A  
UPCONVERTER PERFORMANCE  
Data taken as upconverter, upper sideband, TA = 25°C, LO drive level = 15 dBm unless otherwise specified.  
–2  
0
12dBm  
15dBm  
18dBm  
20dBm  
–40°C  
+25°C  
+85°C  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Conversion Gain vs. RF Frequency for Various Temperatures,  
IF = 100 MHz  
Figure 25. Conversion Gain vs. RF Frequency for Various LO Powers,  
IF = 100 MHz  
32.5  
32.5  
–40°C  
12dBm  
30.0  
30.0  
+25°C  
15dBm  
+85°C  
18dBm  
20dBm  
27.5  
27.5  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
25.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
7.5  
5.0  
5.0  
2.5  
2.5  
0
0
–2.5  
–5.0  
–2.5  
–5.0  
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY(GHz)  
Figure 26. Input IP3 vs. RF Frequency for Various LO Powers,  
IF = 100 MHz  
Figure 24. Input IP3 vs. RF Frequency for Various Temperatures,  
IF = 100 MHz  
Rev. 0 | Page 9 of 15  
 
HMC558A  
Data Sheet  
RETURN LOSS AND ISOLATION PERFORMANCE  
Data taken at TA = 25°C, LO drive level = 15 dBm unless otherwise specified.  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
–40°C  
+25°C  
9dBm  
12dBm  
15dBm  
18dBm  
20dBm  
+85°C  
70  
LO TO RF  
60  
LO TO RF  
50  
40  
30  
20  
10  
0
LO TO IF  
LO TO IF  
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 29. LO to RF and LO to IF Isolation vs. LO Frequency at Various  
LO Powers, IF = 100 MHz  
Figure 27. LO to RF and LO to IF Isolation vs. LO Frequency at Various  
Temperatures, IF = 100 MHz  
40  
40  
9dBm  
12dBm  
15dBm  
18dBm  
–40°C  
+25°C  
+85°C  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. RF to IF Isolation vs. RF Frequency at Various LO Powers,  
IF = 100 MHz  
Figure 28. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
IF = 100 MHz  
Rev. 0 | Page 10 of 15  
 
Data Sheet  
HMC558A  
10  
5
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
5
0
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
4
5
6
7
8
9
10 11 12 13 14 15 16  
4
5
6
7
8
9
10 11 12 13 14 15 16  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 31. LO Return Loss vs. LO Frequency at Various Temperatures  
Figure 33. RF Return Loss vs. RF Frequency at Various Temperatures,  
IF = 100 MHz, LO Power = 15 dBm  
5
–40°C  
+25°C  
+85°C  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
8.1  
9.1 10.1  
IF FREQUENCY (GHz)  
Figure 32. IF Return Loss vs. IF Frequency at Various Temperatures,  
LO Power = 15 dBm, LO Frequency = 11 GHz  
Rev. 0 | Page 11 of 15  
HMC558A  
Data Sheet  
SPURIOUS PERFORMANCE  
Mixer spurious products are measured in dBc from the IF output power level. Spur values are (M × RF) − (N × LO).  
Lower sideband selected, IF = 100 MHz, RF frequency = 8.1 GHz, RF input power = −10 dBm, LO frequency = 8.0 GHz, LO drive = 15 dBm.  
nLO  
0
1
2
3
4
0
1
2
3
4
N/A1  
10.3  
83.6  
79  
−1  
0
24.7  
22.7  
64  
24.4  
34.9  
58.9  
69.6  
85.7  
35.9  
54.3  
81.9  
75.7  
91.3  
mRF  
59  
84.3  
78.4  
77.8  
84.6  
76.3  
1 N/A means not applicable.  
Rev. 0 | Page 12 of 15  
 
Data Sheet  
HMC558A  
THEORY OF OPERATION  
The HMC558A is a general-purpose double balanced mixer in a  
leadless RoHS compliant SMT package that can be used as an  
upconverter or downconverter between 5.5 GHz and 14 GHz. This  
mixer is fabricated in a GaAs MESFET process, and requires no  
external components or matching circuitry. The HMC558A  
provides excellent LO to RF and LO to IF isolation due to  
optimized balun structures and operates with LO drive levels as low  
as 9 dBm. The RoHS compliant HMC558A eliminates the need for  
wire bonding, and is compatible with high volume surface mount  
manufacturing techniques.  
Rev. 0 | Page 13 of 15  
 
HMC558A  
Data Sheet  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
EVALUATION BOARD INFORMATION  
The circuit board used in an application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance, and  
the package ground leads and exposed pad must be connected  
directly to the ground plane, similarly to that shown in Figure 35.  
Use a sufficient number of via holes to connect the top and  
bottom ground planes. The evaluation circuit board shown in  
Figure 35 is available from Analog Devices, Inc., upon request.  
12 11 10  
1
2
3
9
8
7
LO  
RF  
4
5
6
IF  
LO  
RF  
Figure 34. Typical Application Circuit  
J2  
J1  
IF  
U1  
J3  
Figure 35. HMC558A Evaluation Board Top Layer  
Table 5. Bill of Materials for the EV1HMC558ALC3B Evaluation Board  
Level Item Part Number Quantity Reference Designator Description  
1
1
1
1
1
2
3
4
117611-1  
104935  
105192  
1
2
1
1
PCB, evaluation board  
2.92 mm connector, SRI  
SMA connector, Johnson  
Device under test (DUT)  
J1 to J2  
J3  
U1  
HMC558ALC3B  
Rev. 0 | Page 14 of 15  
 
 
 
 
Data Sheet  
HMC558A  
OUTLINE DIMENSIONS  
3.13  
3.00 SQ  
2.87  
0.36  
0.30  
0.24  
PIN 1  
INDICATOR  
PIN 1  
(0.32 × 0.32)  
10  
12  
9
1
3
0.50  
BSC  
1.60  
1.50 SQ  
1.40  
EXPOSED  
PAD  
7
4
6
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
1.00 REF  
2.10 BSC  
0.92 MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 36. 12-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-12-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Package  
Option  
Package Body  
Material  
Lead  
Finish  
MSL  
Rating  
Model1  
Range  
Description  
Branding  
HMC558ALC3B  
−40°C to +85°C  
12-Terminal Ceramic  
Leadless Chip Carrier [LCC]  
12-Terminal Ceramic  
Leadless Chip Carrier [LCC]  
12-Terminal Ceramic  
Leadless Chip Carrier [LCC]  
E-12-1  
E-12-1  
E-12-1  
Alumina  
Ceramic  
Alumina  
Ceramic  
Alumina  
Ceramic  
Gold over  
Nickel  
Gold over  
Nickel  
Gold over  
Nickel  
MSL3  
H558A  
XXXX  
H558A  
XXXX  
H558A  
XXXX  
HMC558ALC3BTR  
−40°C to +85°C  
MSL3  
MSL3  
HMC558ALC3BTR-R5 −40°C to +85°C  
EV1HMC558ALC3B  
Evaluation PCB Assembly  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15000-0-11/16(0)  
Rev. 0 | Page 15 of 15  
 
 

相关型号:

HMC558ALC3B

HMC558ALC3B
ADI

HMC558ALC3BTR

HMC558ALC3BTR
ADI

HMC558ALC3BTR-R5

Conversion loss: 7.5 dB typical at 5.5 GHz to 10 GHz
ADI

HMC558LC3B

GaAs MMIC FUNDAMENTAL MIXER, 5.5 - 14.0 GHz
HITTITE

HMC558LC3BRTR

IC,RF MIXER,GAAS,LLCC,12PIN,CERAMIC
ADI

HMC558LC3BTR

Double Balanced Mixer
HITTITE

HMC559

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 20.0 GHz
HITTITE

HMC559_09

GaAs PHEMT MMIC POWER AMPLIFIER, DC - 20 GHz
HITTITE

HMC560

GaAs MMIC FUNDAMENTAL MIXER, 24 - 40 GHz
HITTITE

HMC560A

HMC560A
ADI

HMC560LM3

GaAs MMIC FUNDAMENTAL SMT MIXER, 24 - 40 GHz
HITTITE

HMC560LM3TR

暂无描述
HITTITE