OPZ177FPZ [ADI]

IC OP-AMP, 40 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8, Operational Amplifier;
OPZ177FPZ
型号: OPZ177FPZ
厂家: ADI    ADI
描述:

IC OP-AMP, 40 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8, Operational Amplifier

放大器 光电二极管
文件: 总16页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultraprecision  
Operational Amplifier  
OP177  
FEATURES  
PIN CONFIGURATION  
Ultralow offset voltage  
TA = 25°C, 25 μV maximum  
Outstanding offset voltage drift 0.1 μV/°C maximum  
Excellent open-loop gain and gain linearity  
12 V/μV typical  
1
2
3
4
8
7
6
5
V
TRIM  
–IN  
V
TRIM  
OS  
OS  
OP177  
V+  
+IN  
V–  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
CMRR: 130 dB minimum  
Figure 1. 8-Lead PDIP (P-Suffix),  
8-Lead SOIC (S-Suffix)  
PSRR: 115 dB minimum  
Low supply current 2.0 mA maximum  
Fits industry-standard precision op amp sockets  
operational amplifier. The combination of outstanding  
specifications of the OP177 ensures accurate performance in  
high closed-loop gain applications.  
GENERAL DESCRIPTION  
The OP177 features one of the highest precision performance of  
any op amp currently available. Offset voltage of the OP177 is  
only 25 μV maximum at room temperature. The ultralow VOS of  
the OP177 combines with its exceptional offset voltage drift  
(TCVOS) of 0.1 μV/°C maximum to eliminate the need for  
external VOS adjustment and increases system accuracy over  
temperature.  
This low noise, bipolar input op amp is also a cost effective  
alternative to chopper-stabilized amplifiers. The OP177  
provides chopper-type performance without the usual problems  
of high noise, low frequency chopper spikes, large physical size,  
limited common-mode input voltage range, and bulky external  
storage capacitors.  
The OP177 open-loop gain of 12 V/μV is maintained over the  
full 10 V output range. CMRR of 130 dB minimum, PSRR of  
120 dB minimum, and maximum supply current of 2 mA are  
just a few examples of the excellent performance of this  
The OP177 is offered in the −40°C to +85°C extended industrial  
temperature ranges. This product is available in 8-lead PDIP, as  
well as the space saving 8-lead SOIC.  
FUNCTIONAL BLOCK DIAGRAM  
V+  
(OPTIONAL NULL)  
R
*
R
*
2A  
2B  
C
1
R
7
R
R
1A  
1B  
Q
2B  
19  
R
Q
Q
10  
9
9
Q
Q
12  
11  
Q
Q
Q
8
7
Q
Q
Q
6
Q
Q
OUTPUT  
3
5
4
R
R
C
Q
3
C
3
2
17  
NONINVERTING  
INPUT  
Q
R
27  
26  
25  
10  
Q
16  
15  
R
Q
1
R
5
Q
Q
Q
Q
20  
21  
23  
24  
Q
Q
22  
4
INVERTING  
INPUT  
Q
2
Q
18  
R
Q
14  
Q
13  
6
8
V–  
*R AND R ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY.  
2A 2B  
Figure 2. Simplified Schematic  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©1995–2009 Analog Devices, Inc. All rights reserved.  
 
OP177  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.................................................................9  
Gain Linearity................................................................................9  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Test Circuits................................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Thermocouple Amplifier with Cold-Junction  
Compensation........................................................................................9  
Precision High Gain Differential Amplifier ........................... 10  
Isolating Large Capacitive Loads.............................................. 10  
Bilateral Current Source............................................................ 10  
Precision Absolute Value Amplifier......................................... 10  
Precision Positive Peak Detector.............................................. 12  
Precision Threshold Detector/Amplifier ................................ 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
3/09—Rev. E to Rev. F  
Added Figure 23, Renumbered Sequentially ................................ 8  
Updated Outline Dimensions....................................................... 13  
Changes to Figure 12 through Figure 17........................................7  
Changes to Figure 18 through Figure 22........................................8  
Change to Figure 27 ....................................................................... 10  
Changes to Figure 30 and Figure 31............................................. 11  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide.......................................................... 13  
5/06—Rev. D to Rev. E  
Changes to Figure 1.......................................................................... 1  
Change to Specifications Table 1 .................................................... 3  
Changes to Specifications Table 2................................................... 4  
Changes to Table 3............................................................................ 5  
Changes to Figure 23 and Figure 24............................................... 9  
Changes to Figure 32...................................................................... 12  
Updated the Ordering Guide ........................................................ 14  
1/05Rev. B to Rev. C  
Edits to Features.................................................................................1  
Edits to General Description ...........................................................1  
Edits to Pin Connections..................................................................1  
Edits to Electrical Characteristics .............................................. 2, 3  
Global deletion of references to OP177E ............................ 3, 4, 10  
Edits to Absolute Maximum Ratings..............................................5  
Edits to Package Type .......................................................................5  
Edits to Ordering Guide ...................................................................5  
Edit to Outline Dimensions .......................................................... 11  
4/06—Rev. C to Rev. D  
Change to Pin Configuration Caption........................................... 1  
Changes to Features.......................................................................... 1  
Change to Table 2 ............................................................................. 4  
Change to Figure 2 ........................................................................... 4  
Changes to Figure 10 and Figure 11............................................... 6  
11/95—Rev. 0: Initial Version  
Rev. F | Page 2 of 16  
 
OP177  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
@ VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 1.  
OP177F  
Typ  
OP177G  
Typ Max Unit  
Parameter  
Symbol  
Conditions  
Min  
Max Min  
INPUT OFFSET VOLTAGE  
LONG-TERM INPUT OFFSET1  
Voltage Stability  
VOS  
10  
25  
20  
60  
μV  
ΔVOS/time  
0.3  
0.3  
+1.2  
118  
3
0.4  
0.3  
+1.2  
118  
3
μV/mo  
nA  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
IOS  
IB  
1.5  
2.8  
−0.2  
26  
+2  
150  
8
−0.2  
18.5  
+2.8 nA  
INPUT NOISE VOLTAGE  
INPUT NOISE CURRENT  
INPUT RESISTANCE  
en  
in  
fO = 1 Hz to 100 Hz2  
fO = 1 Hz to 100 Hz2  
150  
8
nV rms  
pA rms  
Differential Mode3  
RIN  
45  
45  
MΩ  
GΩ  
V
INPUT RESISTANCE COMMON MODE  
INPUT VOLTAGE RANGE4  
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
LARGE SIGNAL VOLTAGE GAIN  
OUTPUT VOLTAGE SWING  
RINCM  
IVR  
200  
14  
200  
14  
13  
130  
115  
5000  
13.5  
12.5  
12.0  
0.1  
13  
115  
110  
2000  
13.5  
12.5  
12.0  
0.1  
CMRR  
PSRR  
AVO  
VCM = 13 V  
VS = 3 V to 18 V  
RL ≥ 2 kΩ, VO = 10 V5  
RL ≥ 10 kΩ  
RL ≥ 2 kΩ  
RL ≥ 1 kΩ  
140  
125  
12,000  
14.0  
13.0  
12.5  
0.3  
140  
120  
6000  
14.0  
13.0  
12.5  
0.3  
0.6  
60  
dB  
dB  
V/mV  
V
V
VO  
V
SLEW RATE2  
SR  
BW  
RO  
RL ≥ 2 kΩ  
V/μs  
MHz  
Ω
CLOSED-LOOP BANDWIDTH2  
OPEN-LOOP OUTPUT RESISTANCE  
POWER CONSUMPTION  
AVCL = 1  
0.4  
0.6  
0.4  
60  
PD  
VS = 15 V, no load  
VS = 3 V, no load  
VS = 15 V, no load  
RP = 20 kΩ  
50  
3.5  
60  
4.5  
2
50  
60  
4.5  
2
mW  
mW  
mA  
mV  
3.5  
1.6  
3
SUPPLY CURRENT  
ISY  
1.6  
OFFSET ADJUSTMENT RANGE  
3
1 Long-term input offset voltage stability refers to the averaged trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial  
hour of operation, changes in VOS during the first 30 operating days are typically less than 2.0 μV.  
2 Sample tested.  
3 Guaranteed by design.  
4 Guaranteed by CMRR test condition.  
5 To ensure high open-loop gain throughout the 10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and –10 V ≤ VO ≤ +10 V.  
Rev. F | Page 3 of 16  
 
 
 
 
OP177  
@ VS = 15 V, 40°C ≤ TA ≤ +85°C, unless otherwise noted.  
Table 2.  
OP177F  
Typ  
OP177G  
Typ  
Parameter  
Symbol Conditions  
Min  
Max Min  
Max Unit  
INPUT  
Input Offset Voltage  
VOS  
TCVOS  
IOS  
TCIOS  
IB  
TCIB  
IVR  
CMRR  
PSRR  
AVO  
VO  
15  
40  
20  
0.7  
0.5  
1.5  
+2.4  
15  
13.5  
140  
115  
100  
1.2  
4.5  
85  
6
μV  
μV/°C  
nA  
pA/°C  
nA  
pA/°C  
V
Average Input Offset Voltage Drift1  
0.1  
0.5  
1.5  
0.3  
2.2  
40  
+4  
40  
Input Offset Current  
Average Input Offset Current Drift2  
Input Bias Current  
Average Input Bias Current Drift2  
Input Voltage Range3  
−0.2 +2.4  
8
60  
13  
120  
110  
13.5  
13  
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
LARGE-SIGNAL VOLTAGE GAIN4  
OUTPUT VOLTAGE SWING  
POWER CONSUMPTION  
SUPPLY CURRENT  
VCM = 13 V  
140  
120  
110  
106  
dB  
VS = 3 V to 18 V  
dB  
RL ≥ 2 kΩ, VO = 10 V 2000 6000  
1000 4000  
V/mV  
V
RL ≥ 2 kΩ  
12  
13  
60  
20  
12  
13  
60  
PD  
VS = 15 V, no load  
VS = 15 V, no load  
75  
75  
mW  
mA  
ISY  
2.5  
2
2.5  
1 TCVOS is sample tested.  
2 Guaranteed by endpoint limits.  
3 Guaranteed by CMRR test condition.  
4 To ensure high open-loop gain throughout the 10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and −10 V ≤ VO ≤ +10 V.  
TEST CIRCUITS  
200k  
50Ω  
V
OP177  
+
O
V
O
V
=
OS  
4000  
Figure 3. Typical Offset Voltage Test Circuit  
20k  
V+  
INPUT  
OUTPUT  
OP177  
+
+
V
TRIM RANGE IS  
OS  
TYPICALLY ±3.0mV  
V–  
Figure 4. Optional Offset Nulling Circuit  
20k  
+20V  
OP177  
+
PINOUTS SHOWN FOR  
P AND Z PACKAGES  
–20V  
Figure 5. Burn-In Circuit  
Rev. F | Page 4 of 16  
 
 
 
OP177  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Ratings  
Supply Voltage  
22 V  
500 mW  
30 V  
22 V  
Indefinite  
−65°C to +125°C  
−40°C to +85°C  
300°C  
Internal Power Dissipation1  
Differential Input Voltage  
Input Voltage  
Output Short-Circuit Duration  
StorageTemperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 60 sec)  
DICE Junction Temperature (TJ)  
THERMAL RESISTANCE  
θJA is specified for worst-case mounting conditions, that is, θJA  
is specified for device in socket for PDIP; θJA is specified for  
device soldered to printed circuit board for SOIC package.  
−65°C to +150°C  
1 For supply voltages less than 22 V, the absolute maximum input voltage is  
equal to the supply voltage.  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
43  
43  
Unit  
°C/W  
°C/W  
8-Lead PDIP (P-Suffix)  
8-Lead SOIC (S-Suffix)  
103  
158  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 5 of 16  
 
 
OP177  
TYPICAL PERFORMANCE CHARACTERISTICS  
2
20  
25  
30  
35  
T
V
R
= 25°C  
= ±15V  
= 10k  
A
V = ±15V  
S
S
L
DEVICE IMMERSED IN  
70° OIL BATH (20 UNITS)  
1
0
40  
45  
50  
–1  
–2  
–10  
0
10  
20  
30  
40  
50  
60  
70  
–5  
0
5
10  
TIME (Seconds)  
OUTPUT VOLTAGE (V)  
Figure 9. Offset Voltage Change Due to Thermal Shock  
Figure 6. Gain Linearity (Input Voltage vs. Output Voltage)  
25  
20  
15  
10  
5
100  
10  
1
T
= 25°C  
V = ±15V  
S
A
0
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0
10  
20  
30  
40  
TEMPERATURE (°C)  
TOTAL SUPPLY VOLTAGE, V+ TO V– (V)  
Figure 10. Open-Loop Gain vs. Temperature  
Figure 7. Power Consumption vs. Power Supply  
16  
12  
8
5
4
T
R
= 25°C  
= 2k  
A
L
3
2
1
LOT A  
LOT B  
LOT C  
LOT D  
0
–1  
–2  
–3  
–4  
4
0
–5  
0
±5  
±10  
±15  
±20  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
POWER SUPPLY VOLTAGE (V)  
TIME (Seconds)  
Figure 11. Open-Loop Gain vs. Power Supply Voltage  
Figure 8. Warm-Up VOS Drift (Normalized) Z Package  
Rev. F | Page 6 of 16  
 
OP177  
4
3
2
1
0
160  
V
= ±15V  
S
T
V
= 25°C  
= ±15V  
A
140  
120  
100  
80  
S
60  
40  
20  
0
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–50  
0
50  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Open-Loop Frequency Response  
Figure 12. Input Bias Current vs. Temperature  
2.0  
1.5  
1.0  
0.5  
0
150  
140  
130  
V
= ±15V  
T = 25°C  
A
S
120  
110  
100  
90  
80  
1
10  
100  
1k  
10k  
100k  
–50  
0
50  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. CMRR vs. Frequency  
Figure 13. Input Offset Current vs. Temperature  
130  
120  
110  
100  
80  
T
V
= 25°C  
= ±15V  
T
= 25°C  
A
A
S
60  
100  
90  
40  
20  
0
80  
70  
60  
0.1  
–20  
1
10  
100  
1k  
10k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. Closed-Loop Response for Various Gain Configurations  
Figure 17. PSRR vs. Frequency  
Rev. F | Page 7 of 16  
OP177  
1000  
20  
15  
10  
5
T
= 25°C  
A
R
= R = 200kΩ  
S2  
S1  
V
V
= +15V  
= ±10mV  
S
THERMAL NOISE OF SOURCE  
RESISTORS INCLUDED  
IN  
POSITIVE SWING  
NEGATIVE SWING  
100  
10  
EXCLUDED  
R
= 0  
S
T
V
= 25°C  
= ±15V  
A
S
0
100  
1
1
10  
100  
1k  
1k  
LOAD RESISTANCE TO GROUND ()  
10k  
FREQUENCY (Hz)  
Figure 18. Total Input Noise Voltage vs. Frequency  
Figure 21. Maximum Output Voltage vs. Load Resistance  
40  
35  
30  
10  
T
V
= 25°C  
= ±15V  
T
V
= 25°C  
= ±15V  
A
A
S
S
+I  
SC  
1
25  
20  
15  
–I  
SC  
0.1  
100  
0
1
2
3
4
1k  
10k  
100k  
TIME FROM OUTPUT BEING SHORTED (Minutes)  
BANDWIDTH (Hz)  
Figure 22. Output Short-Circuit Current vs. Time  
Figure 19. Input Wideband Noise vs. Bandwidth  
(0.1 Hz to Frequency Indicated)  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
32  
28  
24  
20  
16  
12  
8
T
V
= 25°C  
= ±15V  
A
T
V
= 25°C  
= ±15V  
A
S
S
I
I
I
I
I
I
1– (nA)  
2– (nA)  
3– (nA)  
1+ (nA)  
2+ (nA)  
3+ (nA)  
B
B
B
B
B
B
4
0
1k  
–16  
–14  
–10  
–6  
–2  
2
6
10  
14  
10k  
100k  
FREQUENCY (Hz)  
1M  
V
(V)  
CM  
Figure 23. Input Bias (IB) vs. Common-Mode Voltage (VCM  
)
Figure 20. Maximum Output Swing vs. Frequency  
Rev. F | Page 8 of 16  
OP177  
APPLICATIONS INFORMATION  
THERMOCOUPLE AMPLIFIER WITH COLD-  
JUNCTION COMPENSATION  
GAIN LINEARITY  
The actual open-loop gain of most monolithic op amps varies at  
different output voltages. This nonlinearity causes errors in high  
closed-loop gain circuits.  
An example of a precision circuit is a thermocouple amplifier  
that must accurately amplify very low level signals without  
introducing linearity and offset errors to the circuit. In this  
circuit, an S-type thermocouple with a Seebeck coefficient of  
10.3 μV/°C produces 10.3 mV of output voltage at a temperature  
of 1000°C. The amplifier gain is set at 973.16, thus, it produces  
an output voltage of 10.024 V. Extended temperature ranges  
beyond 1500°C are accomplished by reducing the amplifier  
gain. The circuit uses a low cost diode to sense the temperature  
at the terminating junctions and, in turn, compensates for any  
ambient temperature change. The OP177, with its high open-  
loop gain plus low offset voltage and drift, combines to yield a  
precise temperature sensing circuit. Circuit values for other  
thermocouple types are listed in Table 5.  
It is important to know that the manufacturers AVO specifica-  
tion is only a part of the solution because all automated testers  
use endpoint testing and, therefore, show only the average gain.  
For example, Figure 24 shows a typical precision op amp with a  
respectable open-loop gain of 650 V/mV. However, the gain is  
not constant through the output voltage range, causing non-  
linear errors. An ideal op amp shows a horizontal scope trace.  
Figure 25 shows the OP177 output gain linearity trace with its  
truly impressive average AVO of 12,000 V/mV. The output trace  
is virtually horizontal at all points, assuring extremely high gain  
accuracy. Analog Devices also performs additional testing to  
ensure consistent high open-loop gain at various output  
voltages. Figure 26 is a simple open-loop gain test circuit.  
Table 5.  
Thermocouple Seebeck  
Type  
Coefficient R1  
R2  
R7  
R9  
K
J
S
39.2 μV/°C  
50.2 μV/°C  
10.3 μV/°C  
110 Ω 5.76 kΩ 102 kΩ 269 kΩ  
100 Ω 4.02 kΩ 80.6 kΩ 200 kΩ  
100 Ω 20.5 kΩ 392 kΩ 1.07 MΩ  
V
X
–10V  
0V  
+10V  
10.000V  
2
6
REF01  
+15V  
4
R
R
2.2µF  
+
9
7
R
47k  
1%  
3
392kΩ  
1%  
1.07MΩ  
0.05%  
A
R
650V/mV  
= 2kΩ  
VO  
L
+15V  
Figure 24. Typical Precision Op Amp  
10µF  
+
0.1µF  
R
2
20.5kΩ  
V
Y
R
1.0kΩ  
0.05%  
10µF  
ISOTHERMAL  
COLD-  
JUNCTIONS  
8
1%  
+
COPPER  
COPPER  
TYPES  
R
5
V
OP177  
+
OUT  
100Ω  
(ZERO  
ADJUST-  
MENT)  
10µF  
V
X
ISOTHERMAL  
BLOCK  
0V  
–10V  
+10V  
R
1
10µF  
0.1µF  
100Ω  
1%  
R
4
COLD-JUNCTION  
COMPENSATION  
50Ω  
1%  
A
R
12000V/mV  
VO  
= 2kΩ  
–15V  
ANALOG  
GROUND  
L
ANALOG  
GROUND  
Figure 25. Output Gain Linearity Trace  
Figure 27. Thermocouple Amplifier with Cold Junction Compensation  
V
Y
10kΩ  
10kΩ  
1MΩ  
V
= ±10V  
IN  
V
X
OP177  
+
10Ω  
R
L
Figure 26. Open-Loop Gain Linearity Test Circuit  
Rev. F | Page 9 of 16  
 
 
 
 
 
OP177  
PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER  
ISOLATING LARGE CAPACITIVE LOADS  
The high gain, gain linearity, CMRR, and low TCVOS of the  
OP177 make it possible to obtain performance not previously  
available in single stage, very high gain amplifier applications.  
See Figure 28.  
The circuit shown in Figure 29 reduces maximum slew rate but  
allows driving capacitive loads of any size without instability.  
Because the 100 Ω resistor is inside the feedback loop, its effect  
on output impedance is reduced to insignificance by the high  
open loop gain of the OP177.  
R1  
R2  
R3  
R4  
For best CMR,  
must equal  
R
F
10pF  
In this example, with a 10 mV differential signal, the maximum  
errors are listed in Table 6.  
+15V  
0.1µF  
6
R
2
R
S
2
3
7
1M  
INPUT  
100  
+15V  
OUTPUT  
LOAD  
OP177  
0.1µF  
+
C
4
0.1µF  
R
1kΩ  
1
7
2
3
–15V  
6
R
3
OP177  
+
4
1kΩ  
Figure 29. Isolating Capacitive Loads  
R
0.1µF  
4
BILATERAL CURRENT SOURCE  
1MΩ  
The current sources shown in Figure 30 supply both positive  
and negative currents into a grounded load.  
–15V  
Figure 28. Precision High Gain Differential Amplifier  
Note that  
Table 6. High Gain Differential Amp Performance  
R4  
R2  
Type  
Amount  
R5  
+ 1  
Common-Mode Voltage  
Gain Linearity, Worst Case  
TCVOS  
TCIOS  
0.1%/V  
0.02%  
0.0003%/°C  
0.008%/°C  
ZO  
=
R5 + R4  
R3  
R2  
R1  
and that for ZO to be infinite  
R5 + R4  
R3  
R1  
must =  
R2  
PRECISION ABSOLUTE VALUE AMPLIFIER  
The high gain and low TCVOS assure accurate operation with  
inputs from microvolts to volts. In this circuit, the signal always  
appears as a common-mode signal to the op amps (for details,  
see Figure 31).  
Rev. F | Page 10 of 16  
 
 
 
 
OP177  
BASIC CURRENT SOURCE  
R
100mA CURRENT SOURCE  
R
3
1kΩ  
3
+15V  
R
1
R
1
100kΩ  
2
3
2
2N2222  
V
V
IN  
IN  
50Ω  
6
6
R
2
OP177  
+
OP177  
+
R
100kΩ  
2
3
2N2907  
R
5
R
5
10Ω  
R
4
R
4
990Ω  
–15V  
I
15mA  
I
100mA  
OUT  
OUT  
R
3
I
= V  
IN  
OUT  
R
× R  
5
1
GIVEN R = R + R , R = R  
2
3
4
5
1
Figure 30. Bilateral Current Source  
1kΩ  
1kΩ  
+15V  
+15V  
0.1µF  
0.1µF  
C
D
1
1
30pF  
1N4148  
7
2
3
7
6
2
V
OP177  
OUT  
0 < V  
6
< 10V  
OUT  
+
OP177  
+
4
3
2N4393  
4
V
0.1µF  
IN  
R
3
2kΩ  
0.1µF  
–15V  
–15V  
Figure 31. Precision Absolute Value Amplifier  
1kΩ  
+15V  
+15V  
0.1µF  
0.1µF  
1N4148  
NC  
2N930  
7
7
2
2
3
6
6
OP177  
V
AD820  
OUT  
1kΩ  
3
1kΩ  
V
IN  
+
+
4
4
0.1µF  
C
0.1µF  
H
–15V  
–15V  
RESET  
1kΩ  
Figure 32. Precision Positive Peak Detector  
Rev. F | Page 11 of 16  
 
 
 
OP177  
C
C
PRECISION POSITIVE PEAK DETECTOR  
R
F
In Figure 32, CH must be polystyrene, Teflon®, or polyethylene  
to minimize dielectric absorption and leakage. The droop rate is  
determined by the size of CH and the bias current of the AD820.  
100k  
+15V  
7
0.1µF  
6
R
1kΩ  
S
PRECISION THRESHOLD DETECTOR/AMPLIFIER  
D
2
3
1
V
TH  
1N4148  
R
2kΩ  
1
In Figure 33, when VIN < VTH, amplifier output swings negative,  
V
OUT  
OP177  
V
reverse biasing diode D1. VOUT = VTH if RL = ∞. When VIN  
+
IN  
4
0.1µF  
VTH, the loop closes.  
–15V  
R
F
V
= V  
+
(
V
V  
TH  
)
1 +  
OUT  
TH  
IN  
Figure 33. Precision Threshold Detector/Amplifier  
R
S
CC is selected to smooth the response of the loop.  
Rev. F | Page 12 of 16  
 
 
OP177  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
1
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 34. 8-Lead Plastic Dual In-Line Package (PDIP)  
P-Suffix  
(N-8)  
Dimensions show in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 8-Lead Standard Small Outline Package (SOIC_N)  
S-Suffix  
(R-8)  
Dimensions shown in millimeters and( inches)  
Rev. F | Page 13 of 16  
 
OP177  
ORDERING GUIDE  
Model  
OP177FP  
OP177FPZ1  
OP177GP  
OP177GPZ1  
OP177FS  
OP177FS-REEL  
OP177FS-REEL7  
OP177FSZ1  
OP177FSZ-REEL1  
OP177FSZ-REEL71  
OP177GS  
OP177GS-REEL  
OP177GS-REEL7  
OP177GSZ1  
OP177GSZ-REEL1  
OP177GSZ-REEL71  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
P-Suffix (N-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
P-Suffix (N-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
1 Z = RoHS Compliant Part.  
Rev. F | Page 14 of 16  
 
 
 
 
OP177  
NOTES  
Rev. F | Page 15 of 16  
OP177  
NOTES  
©1995–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00289-0-3/09(F)  
Rev. F | Page 16 of 16  
 
 
 
 
 
 
 
 
 

相关型号:

OPZ177GPZ

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8, Operational Amplifier
ADI

OPZ200GPZ

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ213FPZ

IC DUAL OP-AMP, 325 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, PDIP8, PLASTIC, MS-001 DIP-8, Operational Amplifier
ADI

OPZ249GPZ

DUAL OP-AMP, 3600uV OFFSET-MAX, 4.7MHz BAND WIDTH, PDIP8, PLASTIC, MS-001, DIP-8
ADI

OPZ275GPZ

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 9 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ27EPZ

OP-AMP, 50uV OFFSET-MAX, 8MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ290GPZ

IC DUAL OP-AMP, 750 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ297FPZ

DUAL OP-AMP, 300uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ297GPZ

DUAL OP-AMP, 400uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ37GPZ

OP-AMP, 220uV OFFSET-MAX, 63MHz BAND WIDTH, PDIP8, PLASTIC, MO-095AA, DIP-8
ADI

OPZ467GPZ

IC QUAD OP-AMP, 1000 uV OFFSET-MAX, 22 MHz BAND WIDTH, PDIP14, PLASTIC, MS-001, DIP-14, Operational Amplifier
ADI

OPZ90GPZ

IC OP-AMP, 675 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI