SSM2311CBZ-REEL [ADI]

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier; 滤波的高效单声道3瓦D类音频放大器
SSM2311CBZ-REEL
型号: SSM2311CBZ-REEL
厂家: ADI    ADI
描述:

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
滤波的高效单声道3瓦D类音频放大器

消费电路 商用集成电路 音频放大器 视频放大器
文件: 总20页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Filterless High Efficiency  
Mono 3 W Class-D Audio Amplifier  
SSM2311  
The SSM2311 features a high efficiency, low noise modulation  
scheme that does not require any external LC output filters. The  
modulation continues to provide high efficiency even at low output  
power. It operates with 90% efficiency at 1.4 W into 8 Ω or 85%  
efficiency at 3 W into 3 Ω from a 5.0 V supply and has an SNR that  
is better than 98 dB. Spread-spectrum pulse density modulation  
is used to provide lower EMI-radiated emissions compared with  
other Class-D architectures.  
FEATURES  
Filterless Class-D amplifier with Σ-Δ modulation  
No sync necessary when using multiple Analog Devices, Inc.,  
Class-D amplifiers  
3 W into 3 Ω load and 1.4 W into 8 Ω load at 5.0 V supply with  
less than 10% total harmonic distortion (THD)  
90% efficiency at 5.0 V, 1.4 W into 8 Ω speaker  
Better than 98 dB signal-to-noise ratio (SNR)  
Single-supply operation from 2.5 V to 5.5 V  
20 nA ultralow shutdown current  
Short-circuit and thermal protection  
Available in 9-ball, 1.5 mm × 1.5 mm WLCSP  
Pop-and-click suppression  
Built-in resistors reduce board component count  
Default fixed 18 dB or user-adjustable gain setting  
The SSM2311 has a micropower shutdown mode with a typical  
shutdown current of 20 nA. Shutdown is enabled by applying a  
logic low to the  
pin.  
SD  
The device also includes pop-and-click suppression circuitry. This  
minimizes voltage glitches at the output during turn-on and turn-  
off, thus reducing audible noise on activation and deactivation.  
APPLICATIONS  
Mobile phones  
MP3 players  
Portable gaming  
Portable electronics  
Educational toys  
The fully differential input of the SSM2311 provides excellent  
rejection of common-mode noise on the input. Input coupling  
capacitors can be omitted if the dc input common-mode voltage  
is approximately VDD/2.  
The default gain of SSM2311 is 18 dB, but users can reduce the gain  
by using a pair of external resistors (see the Gain section).  
GENERAL DESCRIPTION  
The SSM2311 is a fully integrated, high efficiency, Class-D audio  
amplifier. It is designed to maximize performance for mobile  
phone applications. The application circuit requires a minimum  
of external components and operates from a single 2.5 V to 5.5 V  
supply. It is capable of delivering 3 W of continuous output power  
with less than 1% THD + N driving a 3 Ω load from a 5.0 V supply.  
The SSM2311 is specified over the industrial temperature range  
(−40°C to +85°C). It has built-in thermal shutdown and output  
short-circuit protection. It is available in a 9-ball, 1.5 mm × 1.5 mm  
wafer level chip scale package (WLCSP).  
FUNCTIONAL BLOCK DIAGRAM  
VBATT  
2.5V TO 5.0V  
10µF  
0.1µF  
300k  
VDD  
SSM2311  
1
1
22nF  
22nF  
R
R
37.5kΩ  
EXT  
IN+  
OUT+  
OUT–  
AUDIO IN+  
AUDIO IN–  
FET  
DRIVER  
MODULATOR  
IN–  
37.5kΩ  
EXT  
300kΩ  
SD  
POP-AND-CLICK  
SUPPRESSION  
BIAS  
OSCILLATOR  
SHUTDOWN  
GND  
300kΩ  
(37.5k+ R  
GAIN =  
)
EXT  
1
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
SSM2311  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Application Circuits ......................................................... 13  
Application Notes........................................................................... 15  
Overview ..................................................................................... 15  
Gain.............................................................................................. 15  
Pop-and-Click Suppression ...................................................... 15  
Layout .......................................................................................... 15  
Input Capacitor Selection.......................................................... 16  
Proper Power Supply Decoupling ............................................ 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
1/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
SSM2311  
SPECIFICATIONS  
VDD = 5.0 V, TA = 25oC, RL = 8 Ω, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power  
PO  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 3 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 3 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 3 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 3 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
POUT = 1.4 W, 8 Ω, VDD = 5.0 V  
1.2  
0.615  
W
W
W
W
W
W
W
W
W
W
W
W
%
1.53  
0.77  
2
1.4  
2.3  
1.6  
3
1.8  
3.3  
2.5  
89  
Efficiency  
η
Total Harmonic Distortion + Noise  
THD + N PO = 3 W into 3 Ω, f = 1 kHz, VDD = 5.0V  
0.5  
0.2  
%
%
PO = 1 W into 8 Ω, f = 1 kHz, VDD = 5.0 V  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Average Switching Frequency  
Differential Output Offset Voltage  
POWER SUPPLY  
VCM  
1.0  
VDD − 1.0  
V
CMRRGSM VCM = 2.5 V 100 mV at 217 Hz input referred  
fSW  
VOOS  
60  
800  
2.0  
dB  
kHz  
mV  
G = 18 dB  
12.0  
5.0  
Supply Voltage Range  
Power Supply Rejection Ratio  
VDD  
PSRR  
PSRRGSM  
Guaranteed from PSRR test  
VDD = 2.5 V to 5.0 V, dc input floating/ground  
VRIPPLE = 100 mV at 217 Hz, inputs ac GND,  
CIN = 0.1 μF  
2.5  
70  
V
dB  
dB  
85  
60  
Supply Current  
ISY  
VIN = 0 V, no load, VDD = 5.0 V  
VIN = 0 V, no load, VDD = 3.6 V  
VIN = 0 V, no load, VDD = 2.5 V  
SD = GND  
5.5  
4.5  
4.0  
20  
mA  
mA  
mA  
nA  
Shutdown Current  
ISD  
GAIN CONTROL  
Closed-Loop Gain  
Differential Input Impedance  
Av  
ZIN  
18  
37.5  
dB  
kΩ  
SD = VDD  
SHUTDOWN CONTROL  
Input Voltage High  
Input Voltage Low  
Turn-On Time  
VIH  
VIL  
tWU  
tSD  
ISY ≥ 1 mA  
ISY ≤ 300 nA  
SD rising edge from GND to VDD  
SD falling edge from VDD to GND  
SD = GND  
1.2  
0.5  
30  
V
V
ms  
μs  
kΩ  
Turn-Off Time  
5
Output Impedance  
ZOUT  
>100  
NOISE PERFORMANCE  
Output Voltage Noise  
en  
VDD = 3.6 V, f = 20 Hz to 20 kHz, inputs are  
ac grounded, AV = 18 dB, A weighting  
POUT = 1.4 W, RL = 8 Ω  
35  
98  
μV  
dB  
Signal-to-Noise Ratio  
SNR  
Rev. 0 | Page 3 of 20  
 
SSM2311  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 2.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
6 V  
VDD  
VDD  
Table 3. Thermal Resistance  
Package Type  
PCB  
1S0P1 162 38.5 °C/W  
2S0P1 76  
21 °C/W  
θJA  
θJB  
Unit  
Common-Mode Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
9-Ball, 1.5 mm × 1.5 mm WLCSP  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
1 Referencing the JEDEC thermal standard.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 20  
 
SSM2311  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
CORNER  
1
2
3
A
B
C
SSM2311  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 2. SSM2311 WLCSP Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
2C  
SD  
Shutdown Input. Active low digital input.  
Noninverting Input.  
Inverting Input.  
1A  
1C  
IN+  
IN−  
3C  
1B  
OUT−  
VDD  
Inverting Output.  
Power Supply.  
2A, 3B  
3A  
2B  
GND  
OUT+  
PVDD  
Ground.  
Noninverting Output.  
Power Supply.  
Rev. 0 | Page 5 of 20  
 
SSM2311  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
10  
R
= 8, 33µH  
GAIN = 6dB  
L
GAIN = 18dB  
R
= 4, 33µH  
L
V
= 2.5V  
DD  
10  
1
VDD = 2.5V  
1
0.1  
0.1  
VDD = 3.6V  
V
= 3.6V  
DD  
V
= 5V  
DD  
0.01  
0.001  
0.01  
0.001  
VDD = 5V  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 3. THD + N vs. Output Power into 8 Ω, AV = 18 dB  
Figure 6. THD + N vs. Output Power into 4 Ω, AV = 6 dB  
100  
10  
100  
10  
R
= 8, 33µH  
GAIN = 18dB  
L
GAIN = 6dB  
R
= 3, 33µH  
L
V
= 2.5V  
V
= 2.5V  
DD  
DD  
1
1
0.1  
V
= 3.6V  
0.1  
DD  
V
= 3.6V  
DD  
V
1
= 5V  
DD  
0.01  
0.01  
V
= 5V  
DD  
0.001  
0.0001  
0.001  
0.0001  
0.001  
0.01  
0.1  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 4. THD + N vs. Output Power into 8 Ω, AV = 6 dB  
Figure 7. THD + N vs. Output Power into 3 Ω, AV = 18 dB  
100  
10  
100  
10  
RL = 3, 33µH  
GAIN = 18dB  
R
= 4, 33µH  
GAIN = 6dB  
L
V
= 2.5V  
DD  
V
= 2.5V  
DD  
1
1
V
= 3.6V  
DD  
V
= 3.6V  
DD  
0.1  
0.1  
0.01  
0.001  
0.001  
0.001  
V
= 5V  
V
1
= 5V  
DD  
DD  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 5. THD + N vs. Output Power into 4 Ω, AV = 18 dB  
Figure 8. THD + N vs. Output Power into 3 Ω, AV = 6 dB  
Rev. 0 | Page 6 of 20  
 
SSM2311  
100  
10  
100  
10  
V
= 5V  
V
= 3.6V  
DD  
DD  
GAIN = 18dB  
= 8, 33µH  
GAIN = 18dB  
= 8, 33µH  
R
R
L
L
1
1
1W  
0.5W  
0.1  
0.1  
0.5W  
0.01  
0.001  
0.01  
0.001  
0.25W  
0.125W  
0.25W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 12. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω, AV = 18 dB  
Figure 9. THD + N vs. Frequency, VDD = 5.0 V, RL = 8 Ω, AV = 18 dB  
100  
100  
V
= 5V  
V
= 3.6V  
DD  
DD  
GAIN = 18dB  
= 4, 33µH  
GAIN = 18dB  
= 4, 33µH  
R
R
L
L
10  
1
10  
1
2W  
1W  
0.1  
0.1  
0.5W  
1W  
0.01  
0.001  
0.01  
0.001  
0.5W  
0.25W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 10. THD + N vs. Frequency, VDD = 5.0 V, RL = 4 Ω, AV = 18 dB  
Figure 13. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω, AV = 18 dB  
100  
100  
V
= 5V  
V
= 3.6V  
DD  
DD  
GAIN = 18dB  
= 3, 33µH  
GAIN = 18dB  
R = 3, 33µH  
L
R
L
10  
1
10  
1
1.5W  
3W  
0.1  
0.1  
0.75W  
1.5W  
0.01  
0.001  
0.01  
0.001  
0.75W  
0.38W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 11. THD + N vs. Frequency, VDD = 5.0 V, RL = 3 Ω, AV = 18 dB  
Figure 14. THD + N vs. Frequency, VDD = 3.6 V, RL = 3 Ω, AV = 18 dB  
Rev. 0 | Page 7 of 20  
SSM2311  
100  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.9  
3.4  
3.2  
V
= 2.5V  
DD  
NO LOAD  
GAIN = 18dB  
= 8, 33µH  
R
L
10  
1
0.25W  
0.1  
0.125W  
0.01  
0.001  
0.075W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.8  
5.0  
SUPPLY VOLTAGE (V)  
Figure 15. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω, AV = 18 dB  
Figure 18. Supply Current vs. Supply Voltage, No Load  
100  
12  
10  
8
V
= 2.5V  
DD  
GAIN = 18dB  
R
= 4, 33µH  
L
10  
1
0.5W  
V
= 5V  
DD  
6
0.1  
V
= 3.6V  
DD  
V
4
= 2.5V  
DD  
0.01  
0.001  
2
0.125W  
0.25W  
10k  
0
10  
100  
1k  
FREQUENCY (Hz)  
100k  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
SHUTDOWN VOLTAGE (V)  
Figure 16. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω, AV = 18 dB  
Figure 19. Shutdown Current vs. Shutdown Voltage  
100  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 2.5V  
f = 1kHz  
GAIN = 18dB  
= 8, 33µH  
DD  
GAIN = 18dB  
= 3, 33µH  
R
L
R
L
10  
1
0.75W  
10%  
1%  
0.1  
0.38W  
0.01  
0.001  
0.2W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
SUPPLY VOLTAGE (V)  
Figure 17. THD + N vs. Frequency, VDD = 2.5 V, RL = 3 Ω, AV = 18 dB  
Figure 20. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, AV = 18 dB  
Rev. 0 | Page 8 of 20  
SSM2311  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3
f = 1kHz  
GAIN = 18dB  
f = 1kHz  
GAIN = 6dB  
R
= 4, 33µH  
R
= 4, 33µH  
L
L
2.5  
2.0  
1.5  
1.0  
0.5  
0
10%  
10%  
1%  
1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 21. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, AV = 18 dB  
Figure 24. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, AV = 6 dB  
4.5  
4.5  
f = 1kHz  
f = 1kHz  
GAIN = 18dB  
GAIN = 6dB  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 3, 33µH  
R
= 3, 33µH  
L
L
10%  
10%  
1%  
1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 22. Maximum Output Power vs. Supply Voltage, RL = 3 Ω, AV = 18 dB  
Figure 25. Maximum Output Power vs. Supply Voltage, RL = 3 Ω, AV = 6 dB  
2.0  
100  
90  
f = 1kHz  
GAIN = 6dB  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
R
= 8, 33µH  
L
V
= 5V  
DD  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.6V  
DD  
V
= 2.5V  
DD  
10%  
1%  
0.2  
0
R
= 8, 33µH  
L
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
SUPPLY VOLTAGE (V)  
OUTPUT POWER (W)  
Figure 23. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, AV = 6 dB  
Figure 26. Efficiency vs. Output Power into 8 Ω  
Rev. 0 | Page 9 of 20  
SSM2311  
100  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 2.5V  
DD  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
DD  
V
= 3.6V  
DD  
V
= 5V  
DD  
R
= 4, 33µH  
R
= 4, 33µH  
L
L
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
OUTPUT POWER (W)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
OUTPUT POWER (W)  
Figure 27. Efficiency vs. Output Power into 4 Ω  
Figure 30. Power Dissipation vs. Output Power into 4 Ω at VDD = 5.0 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V
= 2.5V  
DD  
V
= 5V  
DD  
V
= 3.6V  
DD  
V
R
= 5V  
= 3, 33µH  
DD  
R
= 3, 33µH  
L
L
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 28. Efficiency vs. Output Power into 3 Ω  
Figure 31. Power Dissipation vs. Output Power into 3 Ω at VDD = 5.0 V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.10  
0.08  
0.06  
0.04  
0.02  
V
R
= 5V  
= 8, 33µH  
DD  
L
V
R
= 3.6V  
= 8, 33µH  
DD  
L
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 29. Power Dissipation vs. Output Power into 8 Ω at VDD = 5.0 V  
Figure 32. Power Dissipation vs. Output Power into 8 Ω at VDD = 3.6 V  
Rev. 0 | Page 10 of 20  
SSM2311  
600  
500  
400  
300  
200  
100  
0
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
R
= 3.6V  
= 4, 33µH  
DD  
L
V
= 3.6V  
DD  
V
= 5V  
DD  
V
= 2.5V  
DD  
R
= 4, 33µH  
L
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 36. Supply Current vs. Output Power into 4 Ω  
Figure 33. Power Dissipation vs. Output Power into 4 Ω at VDD = 3.6 V  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.40  
V
R
= 3.6V  
= 3, 33µH  
DD  
L
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 3.6V  
DD  
V
= 5V  
DD  
V
= 2.5V  
DD  
R
= 3, 33µH  
L
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 37. Supply Current vs. Output Power into 3 Ω  
Figure 34. Power Dissipation vs. Output Power into 3 Ω at VDD = 3.6 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
350  
300  
V
= 3.6V  
DD  
250  
200  
150  
100  
50  
V
= 5V  
DD  
V
= 2.5V  
DD  
R
= 8, 33µH  
L
0
10  
100  
1k  
10k  
100k  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
FREQUENCY (Hz)  
OUTPUT POWER (W)  
Figure 38. Power Supply Rejection Ratio vs. Frequency  
Figure 35. Supply Current vs. Output Power into 8 Ω  
Rev. 0 | Page 11 of 20  
SSM2311  
0
7
6
R
= 8, 33µH  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
5
4
3
2
1
0
–1  
–2  
10  
100  
1k  
10k  
100k  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY (Hz)  
TIME (ms)  
Figure 39. Common-Mode Rejection Ratio vs. Frequency  
Figure 41. Turn-On Response  
0
–20  
7
6
V
V
R
= 3.6V  
= 1V rms  
= 8, 33µH  
DD  
RIPPLE  
OUTPUT  
L
SD INPUT  
5
–40  
4
–60  
3
2
–80  
1
–100  
–120  
–140  
0
–1  
–2  
10  
100  
1k  
10k  
100k  
–20  
0
20  
40  
60  
80  
100 120 140 160 180  
FREQUENCY (Hz)  
TIME (ms)  
Figure 40. Crosstalk vs. Frequency  
Figure 42. Turn-Off Response  
Rev. 0 | Page 12 of 20  
SSM2311  
TYPICAL APPLICATION CIRCUITS  
VBATT  
2.5V TO 5.0V  
10µF  
0.1µF  
300k  
VDD  
SSM2311  
1
1
22nF  
22nF  
37.5kꢀ  
37.5kꢀ  
IN+  
IN–  
OUT+  
OUT–  
AUDIO IN+  
AUDIO IN–  
FET  
DRIVER  
MODULATOR  
300kꢀ  
BIAS  
SD  
POP/CLICK  
SUPPRESSION  
OSCILLATOR  
SHUTDOWN  
GND  
1
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 43. Differential Input Configuration  
VBATT  
2.5V TO 5.0V  
10µF  
0.1µF  
300k  
VDD  
SSM2311  
1
22nF  
22nF  
37.5kꢀ  
IN+  
IN–  
OUT+  
OUT–  
AUDIO IN+  
FET  
DRIVER  
MODULATOR  
1
37.5kꢀ  
300kꢀ  
BIAS  
SD  
POP/CLICK  
SUPPRESSION  
OSCILLATOR  
SHUTDOWN  
GND  
1
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 44. Single-Ended Input Configuration  
Rev. 0 | Page 13 of 20  
 
 
 
SSM2311  
VBATT  
2.5V TO 5.0V  
10µF  
0.1µF  
300kꢀ  
VDD  
SSM2311  
1
1
22nF  
22nF  
R
R
37.5kꢀ  
EXT  
IN+  
OUT+  
AUDIO IN+  
AUDIO IN–  
FET  
DRIVER  
MODULATOR  
IN–  
OUT–  
37.5kꢀ  
EXT  
300kꢀ  
BIAS  
SD  
POP/CLICK  
SUPPRESSION  
OSCILLATOR  
SHUTDOWN  
GND  
300kꢀ  
(37.5k+ R  
GAIN =  
)
EXT  
1
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 45. Differential Input Configuration, User-Adjustable Gain  
VBATT  
10µF  
2.5V TO 5.0V  
0.1µF  
300kꢀ  
VDD  
SSM2311  
1
1
22nF  
22nF  
R
R
37.5kꢀ  
EXT  
EXT  
IN+  
OUT+  
OUT–  
AUDIO IN+  
FET  
DRIVER  
MODULATOR  
IN–  
37.5kꢀ  
300kꢀ  
SD  
POP/CLICK  
SUPPRESSION  
BIAS  
OSCILLATOR  
SHUTDOWN  
GND  
300kꢀ  
(37.5k+ R  
GAIN =  
)
EXT  
1
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 46. Single-Ended Input Configuration, User-Adjustable Gain  
Rev. 0 | Page 14 of 20  
SSM2311  
APPLICATION NOTES  
track length for lowest DCR, and use 1 oz or 2 oz of copper PCB  
traces to further reduce IR drops and inductance. A poor layout  
increases voltage drops, consequently affecting efficiency. Use  
large traces for the power supply inputs and amplifier outputs to  
minimize losses due to parasitic trace resistance.  
OVERVIEW  
The SSM2311 mono Class-D audio amplifier features a filterless  
modulation scheme that greatly reduces the external components  
count, conserving board space and thus reducing the system’s cost.  
The SSM2311 does not require an output filter, but instead relies  
on the inherent inductance of the speaker coil and the natural  
filtering of the speaker and the human ear to fully recover the audio  
component of the square-wave output. While many Class-D ampli-  
fiers use some variation of pulse-width modulation (PWM), the  
SSM2311 uses Σ-Δ modulation to determine the switching  
pattern of the output devices. This provides a number of important  
benefits. Σ-Δ modulators do not produce a sharp peak with  
many harmonics in the AM frequency band, as pulse-width  
modulators often do. Σ-Δ modulation provides the benefits of  
reducing the amplitude of spectral components at high frequencies;  
that is, reducing EMI emission that might otherwise be radiated  
by speakers and long cable traces. Due to the inherent spread-  
spectrum nature of Σ-Δ modulation, the need for oscillator  
synchronization is eliminated for designs incorporating  
multiple SSM2311 amplifiers.  
Proper grounding guidelines help to improve audio  
performance, minimize crosstalk between channels, and  
prevent switching noise from coupling into the audio signal. To  
maintain high output swing and high peak output power, the  
PCB traces that connect the output pins to the load and supply  
pins should be as wide as possible to maintain the minimum  
trace resistances. It is also recommended to use a large-area  
ground plane for minimum impedances.  
In addition, good PCB layouts isolate critical analog paths from  
sources of high interference. High frequency circuits (analog  
and digital) should be separated from low frequency ones.  
Properly designed multilayer printed circuit boards can reduce  
EMI emission and increase immunity to the RF field by a factor of  
10 or more compared with double-sided boards. A multilayer  
board allows a complete layer to be used for the ground plane,  
whereas the ground plane side of a double-sided board is often  
disrupted with signal crossover. If the system has separate analog  
and digital ground and power planes, the analog ground plane  
should be underneath the analog power plane, and, similarly, the  
digital ground plane should be underneath the digital power  
plane. There should be no overlap between analog and digital  
ground planes or analog and digital power planes.  
The SSM2311 also offers protection circuits for overcurrent and  
temperature protection.  
GAIN  
The SSM2311 has a default gain of 18 dB, but can be reduced by  
using a pair of external resistors with a value calculated as follows:  
External Gain Settings = 300k/(37.5k + Rext)  
70  
60  
50  
40  
30  
20  
10  
0
POP-AND-CLICK SUPPRESSION  
Voltage transients at the output of audio amplifiers can occur when  
shutdown is activated or deactivated. Voltage transients as low  
as 10 mV can be heard as an audio pop in the speaker. Clicks  
and pops can also be classified as undesirable audible transients  
generated by the amplifier system and therefore as not coming  
from the system input signal. Such transients can be generated  
when the amplifier system changes its operating mode. For example,  
the following can be sources of audible transients: system power-up/  
power-down, mute/unmute, input source change, and sample rate  
change. The SSM2311 has a pop-and-click suppression architecture  
that reduces these output transients, resulting in noiseless activation  
and deactivation.  
–10  
30  
100  
FREQUENCY (MHz)  
1000  
Figure 47. EMI Emissions from SSM2311  
LAYOUT  
As output power continues to increase, care needs to be taken to  
lay out PCB traces and wires properly between the amplifier,  
load, and power supply. A good practice is to use short, wide  
PCB tracks to decrease voltage drops and minimize inductance.  
Ensure that track widths are at least 200 mil for every inch of  
Rev. 0 | Page 15 of 20  
 
 
SSM2311  
PROPER POWER SUPPLY DECOUPLING  
INPUT CAPACITOR SELECTION  
To ensure high efficiency, low THD, and high PSRR, proper power  
supply decoupling is necessary. Noise transients on the power  
supply lines are short-duration voltage spikes. Although the actual  
switching frequency can range from 10 kHz to 100 kHz, these  
spikes can contain frequency components that extend into the  
hundreds of megahertz. The power supply input needs to be  
decoupled with a good quality low ESL, low ESR capacitor—usually  
of around 4.7 μF. This capacitor bypasses low frequency noises  
to the ground plane. For high frequency transients noises, use a  
0.1 μF capacitor as close as possible to the VDD pin of the device.  
Placing the decoupling capacitor as close as possible to the SSM2311  
helps maintain efficiency performance.  
The SSM2311 does not require input coupling capacitors if the  
input signal is biased from 1.0 V to VDD − 1.0 V. Input capacitors  
are required if the input signal is not biased within this recom-  
mended input dc common-mode voltage range, if high-pass  
filtering is needed (Figure 43), or if using a single-ended source  
(Figure 44). If high-pass filtering is needed at the input, the input  
capacitor along with the input resistor of the SSM2311 forms a  
high-pass filter whose corner frequency is determined by the  
following equation:  
fC = 1/(2π × RIN × CIN)  
The input capacitor can significantly affect the performance of  
the circuit. Not using input capacitors degrades both the output  
offset of the amplifier and the PSRR performance.  
Rev. 0 | Page 16 of 20  
 
SSM2311  
OUTLINE DIMENSIONS  
0.65  
0.59  
0.53  
1.575  
1.515  
1.455  
SEATING  
PLANE  
3
2
1
A
B
C
0.35  
0.32  
0.29  
BALL 1  
IDENTIFIER  
1.750  
1.690  
1.630  
0.50 BSC  
BALL PITCH  
TOP VIEW  
(BALL SIDE DOWN)  
0.28  
0.24  
0.20  
BOTTOM VIEW  
(BALL SIDE UP)  
Figure 48. 9-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-9-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
CB-9-1  
CB-9-1  
Branding  
A1G  
A1G  
SSM2311CBZ-R21  
SSM2311CBZ-REEL1  
SSM2311CBZ-REEL71  
SSM2311-EVALZ1  
SSM2311-MINI-EVALZ1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
CB-9-1  
A1G  
Evaluation Board, 7 mm × 7 mm  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 17 of 20  
 
SSM2311  
NOTES  
Rev. 0 | Page 18 of 20  
SSM2311  
NOTES  
Rev. 0 | Page 19 of 20  
SSM2311  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06161-0-1/08(0)  
Rev. 0 | Page 20 of 20  

相关型号:

SSM2311CBZ-REEL7

Filterless High Efficiency Mono 3 W Class-D Audio Amplifier
ADI

SSM2312GN

N-channel Enhancement-mode Power MOSFET
SSC

SSM2313GN

P-channel Enhancement-mode Power MOSFET
SSC

SSM2314GN

N-channel Enhancement-mode Power MOSFET
SSC

SSM2315

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315-EVALZ1

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-R21

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-REEL

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-REEL1

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-REEL7

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2315CBZ-REEL71

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
ADI

SSM2316GN

N-channel Enhancement-mode Power MOSFET
SSC