AK7746VT [AKM]

Audio DSP with 5-channel 24-bit ADC and Input Mux; 音频DSP与5信道24位ADC和输入复用器
AK7746VT
型号: AK7746VT
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Audio DSP with 5-channel 24-bit ADC and Input Mux
音频DSP与5信道24位ADC和输入复用器

复用器 消费电路 商用集成电路
文件: 总62页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[ASAHI KASEI]  
[AK7746]  
AK7746  
Audio DSP with 5-channel 24-bit ADC and Input Mux  
1. General Description  
The AK7746 is a highly integrated audio processor, including 5 A/D channels, an input mux that can select 2 stereo pairs  
from 8 stereo inputs, and an on-chip DSP. High quality analog performance is provided by the ADC’s achieving 98dB  
(48kHz) dynamic range. The A/D supports sampling frequencies from 8kHz to 96kHz. The AK7746 includes 72kbits of  
SRAM for audio delay that is suitable for simulated surround functions and speaker compensation. The programmable  
DSP allows up to 4608 execution lines per audio sample cycle at 8kHz, 768 lines at 48kHz, or 384 lines at 96kHz with  
multiple functions per line. The AK7746 can be used to implement complete sound field control, such as echo, 3D,  
parametric equalization, etc. It is packaged in a 64-lead LQFP.  
2. Features  
DSP:  
-
-
-
-
-
-
-
Word length:  
Instruction cycle time:  
Multiplier:  
24-bit (Data RAM)  
27ns (768fs, fs=48kHz )  
24 x 16 40-bit  
Divider:  
24 / 24 16-bit or 24-bit  
34-bit arithmetic operation (Overflow margin: 4bit)  
24-bit arithmetic and logic operation  
1, 2, 3, 4, 6, 8 and 15 bits shifted left  
1, 2, 3, 4, 8 and 15 bits shifted right  
(Other numbers in parentheses are restricted.  
Provided with indirect shift function)  
768 x 32-bit  
ALU:  
Shift+Register:  
-
-
-
-
Program RAM:  
Coefficient RAM:  
Data RAM:  
1024 x 16-bit  
256 x 24-bit  
Offset RAM:  
48 x 13-bit  
(6144 x 12-bit / 3072 x 24-bit / 4096 x 12-bit + 1024 x 24-bit )  
72kbit SRAM  
-
-
-
-
-
-
Internal Memory:  
Sampling frequency:  
Serial interface port for micro-controller  
Master clock:  
Master/Slave operation  
Serial signal input port ( 8(10) ch ):16/20/24-bit : Output port ( 8ch + 4ch ): 24-bit  
8kHz to 96kHz  
768fs@48kHz ( generated by PLL from 256fs or 384fs )  
ADC: 4 channels (2 channels 2 sets )  
-
-
-
-
-
-
-
24-bit 64 x Over-sampling delta sigma  
Sampling frequency:  
DR:  
8kHz to 96kHz  
98dBA ( fs=48 kHz Full-differential Input )  
98dBA ( fs=48 kHz Full-differential Input )  
91dB ( fs= 48 kHz Full-differential Input )  
S/N :  
S/(N+D) :  
Digital HPF (fc = 1Hz)  
Single-ended or Full-differential Input  
ADC: Monaural 1 channel  
-
-
-
-
-
24-bit 64x Over-sampling delta sigma  
Sampling frequency:  
8kHz to 96kHz  
DR:  
97dBA ( fs=48 kHz )  
97dBA ( fs=48 kHz )  
91dB ( fs= 48 kHz )  
S/N :  
S/(N+D) :  
Other  
-
-
-
-
-
-
External Jump pin:  
CRC error check function  
LRCLK and BITCLK input and output for slave mode  
Power supply:  
Operating temperature range:  
Package:  
3(maximum)  
+3.3V±0.3V  
-40°C~85°C  
64pin LQFP (0.5mm pitch)  
[MS0369-E00]  
- 1 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
3. Block diagram  
2
2
2
2
2
4
2
2
pull down  
Hi-z  
@
RQ ="H"  
ctrl reg sw  
AVDD  
2
2
VREFH  
ADC2  
ADCM  
VREF  
ADC1  
VCOM  
VREFL  
AVSS  
SWQM2  
SDOUTA2  
SDOUTA1  
SWQM1  
OUTA2E  
N
OUTA1E_N  
SWAD1  
N
SWQMD  
SDIN5  
SDIN4  
SWQ4  
SWQ3  
SWSDIN4  
N
SDOUT4  
OUT4E_N  
SDOUT4  
SWADM3_N  
SDIN4/JX2  
SDIN3/JX1  
SDIN2  
SDOUT3  
SWSDIN3  
SWSDIN2  
N
OUT3E_N  
OUT2E_N  
OUT1E_N  
SDOUT3  
SDOUT2  
SDOUT1  
SDIN3  
SDIN2  
SDIN1  
SWQ2  
SWQ1  
SDOUT2  
SDOUT1  
N
SWADM2_N  
SWSDIN1  
SDIN1/JX0  
CS  
RQ  
CS  
RQ  
JX0  
JX0_E  
JX1_E  
JX2_E  
SCLK  
SCLK  
JX1  
SI  
SO  
SI  
SO  
JX2  
RDY  
RDY  
DRDY  
DRDY  
DSP  
XTI  
INIT_RESET  
PLL&DIVIDER  
XTO  
CLKO  
S_RESET  
TESTI  
CONTROLLER  
CLKOE_N  
CKS1  
CKS0  
BVSS  
DVDD  
3
3
DVSS  
This block diagram is a simplified illustration of the AK7746; it is not a circuit diagram.  
Ctrl reg SW describes default setting.  
[MS0369-E00]  
- 2 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
‹ AK7746 DSP Block diagram  
DP0,DP1  
CP0,CP1  
DP0,DP1  
DLRA  
OFRAM  
48w × 13bit  
6kw × 12bit or 3kw × 24bit  
4kw × 12bit & 1kw × 24bit  
CRAM  
DRAM  
256w × 24bit  
1024w × 16bit  
CMP(Compress & Expand)  
CBUS(16bit)  
DBUS(24bit)  
Micon I/F  
Control  
MPX16  
MPX24  
Serial I/F  
Y
X
PRAM  
DEC  
Multiply  
768w × 32bit  
16bit × 24bit Æ40bit  
PC  
Stack : 1level  
24bit  
40bit  
TMP 8 × 24bit  
DBUS  
MU  
PTMP(LIFO) 6 × 24bit  
SHIF  
34bit  
SDIN5  
2 × 24/bit  
34bit  
SDIN4  
SDIN3  
SDIN2  
2 × 24/20/16bit  
2 × 24/20/16bit  
2 × 24/20/16bit  
A
B
AL  
34bit  
Overflow Margin: 4bit  
SDIN1  
SDOUT4  
SDOUT3  
SDOUT2  
SDOUT1  
2 × 24/20/16bit  
2 × 24bit  
DR0  
3
24bit  
Over Flow Data  
Generator  
2 × 24bit  
2 × 24bit  
2 × 24bit  
Division  
24÷2424or16  
Peak Detector  
[MS0369-E00]  
- 3 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
4. Description of Input/Output Pins  
(1) Pin layout  
1
LFLT  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AINR5  
AINL5  
AINR6  
AINL6  
AINR7  
AINL7  
AINR8  
AINL8  
BVSS  
2
AVSS  
3
AVDD  
4
TESTI  
5
CKS1  
6
CKS0  
7
SDOUTA1  
SDOUTA2  
SDOUT4  
SDOUT3  
SDOUT2  
SDOUT1  
8
64pin LQFP  
(TOP VIEW)  
9
10  
11  
12  
13  
14  
15  
16  
DVSS  
DVDD  
CS  
RQ  
SI  
DVDD  
DVSS  
XTI  
SCLK  
SO  
XTO  
Note) *** is internal pull-down pin.  
[MS0369-E00]  
- 4 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(2) Pin function  
Pin No  
Pin name  
I/O  
Function  
Classification  
1
2
3
4
5
6
7
8
9
AINR5  
AINL5  
AINR6  
AINL6  
AINR7  
AINL7  
AINR8  
AINL8  
BVSS  
I
I
I
I
I
I
I
I
-
Analog input  
ADC1 or ADC2 Rch single ended analog input 5  
ADC1 or ADC2 Lch single ended analog input 5  
ADC1 or ADC2 Rch single ended analog input 6  
ADC1 or ADC2 Lch single ended analog input 6  
ADC1 or ADC2 Rch single ended analog input 7  
ADC1 or ADC2 Lch single ended analog input 7  
ADC1 or ADC2 Rch single ended analog input 8  
ADC1 or ADC2 Lch single ended analog input 8  
Analog ground (Silicon base ground level)  
Connect with AVSS pin  
Analog Power supply  
Digital Power supply  
10  
11  
DVSS  
DVDD  
-
-
Digital Ground 0.0V  
Digital power supply 3.3V(typ)  
Microcomputer  
Interface  
Chip select pin for Microcomputer interface. (Internal pull-down)  
Normaly leave OPEN or connect with DVSS.  
CS =”H” : SI can not input, SO,RDY,DRDY = Hi-Z.  
Write request pin for Microcomputer interface.  
RQ =”L” : Microcomputer interface enable.  
12  
I
CS  
13  
I
RQ  
For run-time data read out: RQ =”H”.  
When Microcomputer interface is not used or during initial reset, leave  
RQ =”H”.  
Serial data input and serial data output control pin for Microcomputer  
interface.  
When SI is not used, leave SI=”L”.  
Serial data clock pin for Microcomputer interface.  
When SCLK is not used, leave SCLK=”H”.  
Serial data output pin for Microcomputer interface.  
14  
15  
16  
SI  
SCLK  
SO  
I
I
O
CS =”H” : SO = Hi-Z.  
17  
18  
19  
RDY  
O
O
I
Data write ready output pin for Microcomputer interface.  
CS =”H” : RDY = Hi-Z.  
DRDY  
Output data ready pin for Microcomputer interface.  
CS =”H” : DRDY = Hi-Z.  
Reset  
Reset pin ( for initialization )  
INIT_RESET  
Used for initialization of the AK7746. When changing CKS1 or CKS0 and  
changing XTI input frequency, this pin setting is necessary.  
System Reset pin  
20  
21  
I
I
S_RESET  
SDIN4/JX2  
Digital section  
DSP serial data input pin / External condition jump pin  
(Internal pull-down )  
Serial input data /  
* Compatible with MSB justified 24 bits / LSB justified 24,20 and 16 bits Conditional input  
* It can change its function as a conditional jump pin JX2 by control register  
setting (JX2_E).  
DSP serial data input pin / External condition jump pin  
(Internal pull-down )  
* Compatible with MSB justified 24 bits / LSB justified 24,20 and 16 bits Conditional input  
* It can change its function as a conditional jump pin JX1 by control register  
setting (JX1_E).  
22  
SDIN3/JX1  
I
Digital section  
Serial input data /  
[MS0369-E00]  
- 5 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
Pin No  
23  
Pin name  
SDIN2  
I/O  
I
Function  
Classification  
Digital section  
DSP serial data input pin (Internal pull-down )  
* Compatible with MSB justified 24 bits / LSB justified 24,20 and 16 bits Serial input data  
24  
SDIN1/JX0  
I
Digital section  
DSP serial data input / External condition jump  
(Internal pull-down )  
Serial input data /  
* Compatible with MSB justified 24 bits / LSB justified 24,20 and 16 bits Conditional input  
* It can change its function as a conditional jump pin JX0 by control register  
setting (JX0_E).  
25  
26  
27  
LRCLK_I  
BITCLK_I  
SMODE  
I
I
I
System Clock  
LR channel select clock input  
Slave mode (SMODE=”L”) : Input the fs clock.  
Master mode (SMODE=”H”): Connect to DVSS.  
Serial bit clock input  
Slave mode: Input 64 fs or 48 fs clocks.  
When it uses only for master mode then connect to DVSS. (SMODE=”H”)  
Slave / Master mode selector  
Control  
SMODE=”L”: Slave mode.  
SMODE=”H”: Master mode.  
28  
29  
30  
DVDD  
DVSS  
BITCLK_O  
-
-
O
Digital  
Digital Power supply pin 3.3V (typ)  
Power supply  
Digital Ground pin 0.0V  
System clock  
Serial bit clock output  
Master mode (SMODE=”H”) : Outputs 64fs clock.  
Slave mode (SMODE=”L” ) : Outputs BITCLK_I clock.  
31  
LRCLK_O  
O
LR channel select clock output  
Master mode (SMODE=”H”) : Outputs the fs clock.  
Slave mode (SMODE=”L”) : Outputs LRCLK_I clock.  
32  
33  
CLKO  
XTO  
O
O
System clock  
System clock  
Clock output  
Output frequency can be selectable by control register.  
Crystal oscillator output  
When crystal oscillator is used, it should be connected to this pin and XTI.  
When the external clock is used, keep this pin open.  
Master clock input  
Connect a crystal oscillator between this pin and the XTO pin,  
Or input the external CMOS clock signal to XTI pin.  
Digital Ground pin 0.0V  
34  
XTI  
I
35  
36  
DVSS  
DVDD  
-
-
Digital  
Power supply  
Digital Power supply pin 3.3V (typ)  
[MS0369-E00]  
- 6 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
Classification  
Digital section  
Serial output data  
Pin No  
37  
Pin name  
I/O  
Function  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
SDOUTA2  
SDOUTA1  
O DSP Serial data output  
* Outputs MSB justified 24-bit data.  
* Allows the selectable output from SDIN1 by control register setting  
(SWQ1).  
38  
39  
40  
41  
42  
O DSP Serial data output  
* Outputs MSB justified 24-bit data.  
* Allows the selectable output from SDIN2 by control register setting  
(SWQ2).  
O DSP Serial data output  
* Outputs MSB justified 24-bit data.  
* Allows the selectable output from SDIN3 by control register setting  
(SWQ3).  
O DSP Serial data output  
* Outputs MSB justified 24-bit data.  
* Allows the selectable output from SDIN4 by control register setting  
(SWQ4).  
O ADC2 Serial data output  
* Outputs MSB justified 24-bit data.  
* Allows the selectable output from ADCM by control register setting  
(SWQM2).  
O ADC1 Serial data output  
* Outputs MSB justified 24-bit data.  
* Allows the selectable output from ADCM by control register setting  
(SWQM1).  
Master clock (XTI or BITCLK_I ) select  
Master clock (XTI or BITCLK_I ) select  
Test pin (Internal pull-down)  
43  
44  
45  
CKS0  
CKS1  
TESTI  
I
I
I
Control  
TEST  
* Normally , connect to DVSS pin.  
[MS0369-E00]  
- 7 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
Pin No  
46  
47  
Pin name  
I/O  
-
-
Function  
Analog Power supply pin 3.3V (typ)  
Analog Ground 0.0V  
Classification  
Analog Power Supply  
AVDD  
AVSS  
LFLT  
48  
O Filter connection pin for PLL  
Analog output  
When using the PLL function, connect a 22kresistor and a 1.5nF capacitor  
in series to the analog ground (AVSS)  
49  
50  
51  
52  
53  
54  
55  
56  
AINM  
AINR4  
AINL4  
AINR3  
AINL3  
AINR2  
AINL2  
AVDD  
I
I
I
I
I
I
I
-
ADCM Monaural single ended input  
ADC1 or ADC2 Rch single ended input 4  
ADC1 or ADC2 Lch single ended input 4  
ADC1 or ADC2 Rch single ended input 3  
ADC1 or ADC2 Lch single ended input 3  
ADC1 or ADC2 Rch single ended input pin 2  
ADC1 or ADC2 Lch single ended input pin 2  
Analog Power Supply 3.3V (typ)  
Analog input  
Analog Power supply  
Analog input  
Analog reference voltage input  
57  
VREFH  
I
Normally, connect to AVDD, and connect 0.1µF and 10µF capacitors  
between this pin and AVSS.  
Common voltage  
Analog output  
58  
59  
VCOM  
VREFL  
O
I
Normally, connect 10µF and 0.1µFcapacitor between this pin and AVSS.  
Don’t connect to other circuitry.  
Analog reference voltage input pin for low-level.  
Normally, connect to AVSS.  
Analog input  
60  
61  
62  
63  
64  
AVSS  
AINR-  
AINR+  
AINL-  
AINL+  
-
I
I
I
I
Analog Ground 0.0V  
Analog Power Supply  
Analog input  
ADC1 or ADC2 Rch analog inverted input  
ADC1 or ADC2 Rch analog non-inverted input  
ADC1 or ADC2 Lch analog inverted input  
ADC1 or ADC2 Lch analog non-inverted  
Note) Do NOT leave open digital input pins unless they are internally pulled down and BITCLK_I, LRCLK_I in master mode.  
(If you do not use pull-down pin, leave open or connects to DVSS. However, TESTI pin should connect to DVSS. )  
* If analog input pins (1~8, 49~55, 61~64 pin ) are not used, leave them open.  
[MS0369-E00]  
- 8 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
Unit  
5. Absolute Maximum Rating  
(AVSS, BVSS, DVSS = 0 V: All voltages indicated are relative to the ground.)  
Parameter  
Symbol  
min  
max  
Power supply voltage  
Analog(AVDD)  
VA  
VD  
GND  
IIN  
-0.3  
-0.3  
4.6  
4.6  
0.3  
V
V
V
Digital(DVDD)  
|AVSS(BVSS)-DVSS|  
Note 1)  
Input current (except for power supply pin )  
-
mA  
±10  
Analog input voltage  
AINL+,AINL-,AINR+,AINR-,  
VINA  
-0.3  
VA+0.3  
V
Digital input voltage  
Operating ambient temperature  
Storage temperature  
VIND  
Ta  
Tstg  
-0.3  
-40  
-65  
VA+0.3  
85  
150  
V
°C  
°C  
Note 1) AVSS(BVSS) should be same level as DVSS.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operations are not guaranteed at maximum rating conditions.  
6. Recommended Operating Conditions  
(AVSS, BVSS, DVSS = 0 V: All voltages indicated are relative to the ground.)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Power supply voltage  
AVDD  
DVDD  
VA  
VD  
3.0  
3.0  
3.3  
3.3  
3.6  
V
V
VA  
Reference voltage (VREF)  
VREFH Note 1)  
VRH  
VRL  
VA  
0.0  
V
V
VREFL Note 2)  
Note 1) VREFH normally connects with AVDD.  
Note 2) VREFL normally connects with AVSS  
Note: The analog input voltage and output voltage are proportional to the VREFH-VREFL voltages.  
[MS0369-E00]  
- 9 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
7. Electric Characteristics  
(1) Analog characteristics  
(Unless otherwise specified, Ta = 25°C; AVDD, DVDD = 3.3V; VREFH = AVDD, VREFL = AVSS;  
BITCLK = 64 fs; Signal frequency 1 kHz;  
Measurement bandwidth = 20 Hz to 20 kHz @48 kHz, 20 Hz to 40 kHz @96kHz;  
ADC with all differential inputs, CLKO output = 18.432MHz; XTI = 18.432MHz, SMODE = “H”)  
Parameter  
min  
typ  
max  
Unit  
24  
Bits  
Resolution  
Dynamic characteristics  
S/(N+D) fs = 48kHz (-1dBFS)  
fs = 96kHz (-1dBFS)  
(Note1)  
81  
88  
88  
90  
91  
88  
dB  
dB  
dBFS  
dBFS  
dBFS  
dBFS  
dB  
Dynamic range fs = 48kHz (A filter)  
fs = 96kHz  
(Note 1,2)  
98  
Stereo  
ADC  
Section  
94  
S/N  
fs = 48kHz ( A filter )  
fs = 98kHz  
98  
94  
ADC1  
ADC2  
Inter-channel isolation (f=1kHz)  
DC accuracy  
(Note 3)  
115  
Inter-channel gain mismatching  
Analog input  
0.1  
0.3  
dB  
Input voltage ( differential inputs)  
Input voltage ( single ended)  
Input impedance  
(Note 4)  
(Note 5)  
(fs=48kHz) (Note 6)  
Vp-p  
Vp-p  
kΩ  
±1.85  
1.85  
22  
±2.00  
2.00  
33  
±2.15  
2.15  
24  
Bits  
Monaural Resolution  
ADC  
Dynamic characteristics  
Section  
S/(N+D)  
fs = 48kHz (-1dBFS)  
fs = 96kHz (-1dBFS)  
76  
80  
80  
91  
88  
97  
93  
97  
93  
dB  
dB  
ADCM  
Dynamic range fs = 48kHz (A filter)  
fs = 96kHz  
S/N  
(Note2)  
dBFS  
dBFS  
dBFS  
dBFS  
fs = 48kHz ( A filter )  
fs = 98kHz  
Analog input  
Input voltage  
(Note 7)  
1.85  
22  
2.00  
33  
2.15  
Vp-p  
kΩ  
Input impedance  
(Note 8)  
Note 1) This value is not guaranteed with single-ended input operation  
Note 2) Indicates S/(N+D) when -60 dBFS signal is applied  
Note 3) Specified for L-ch and R-ch of each input selector with a -1dBFS signal  
Note 4) This applies to AINL+, AINL-, AINR+ and AINR-.  
Full-scale range (AIN = (AIN+) - (AIN-)) is represented by (±FS = ± (VREFH-VREFL) × (2.0/3.3)).  
Note 5) This applies to AINL2~L8 and AINR2~R8.  
The full-scale of single-snded input is (FS=(VREFH-VREFL) × (2.0/3.3)).  
Note 6) This applies to AINL+, AINL-, AINR+, AINR-, AINL2~L8 and AINR2~R8.  
Note 7) This applies to AINM.  
Full-scale range is represented by (FS = ±(VREFH-VREFL) × (2.0/3.3)).  
Note 8)) This applies to AINM.  
[MS0369-E00]  
- 10 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(2) DC Characteristics  
(VDD=AVDD=DVDD=3.0~3.6V, Ta=25°C)  
Parameter  
High level input voltage  
Low level input voltage  
High level output voltage Iout=-100µA  
Low level output voltage Iout=100µA  
Symbol  
VIH  
min  
typ  
max  
Unit  
V
80% of VDD  
VIL  
20% of VDD  
V
VOH  
VDD-0.5  
V
VOL  
0.5  
±10  
V
Input leak current  
Note 1)  
Iin  
Iid  
Iix  
µA  
µA  
µA  
Input leak current (pull-down) Note 2)  
Input leak current (XTI pin)  
22  
50  
Note 1) The pull-down pins and XTI pin are not included.  
Note 2) The pull-down pins are: CS , SDIN4/JX2, SDIN3/JX1, SDIN2, SDIN1/JX0, TESTI  
Note:  
Regarding the input/output levels in the text, the low level will be represented as "L" or 0, and the high level as "H" or 1. In  
principle, "0" and "1" will be used to represent the bus (serial/parallel) such as registers.  
(3) Current Consumption  
(AVDD=DVDD=3.0V~3.6V, Ta=25°C; master clock (XTI)=18.432MHz=384fs[fs=48kHz];  
PLL is in active mode. )  
Parameter  
min  
typ  
max  
Unit  
Power supply current  
Note 1)  
1)Normal Speed  
a) AVDD  
40  
45  
85  
mA  
mA  
mA  
b) DVDD  
c) total(a+b)  
2)Double Speed  
a) AVDD  
Note 2)  
Note 3)  
42  
53  
95  
60  
90  
mA  
mA  
mA  
b) DVDD  
c) total(a+b)  
150  
3) INIT_RESET ="L"(reference)  
2
mA  
Note 1) Varies slightly different according to the system frequency and contents of the DSP program.  
Note 2) Max value is “Double Speed” mode.  
Note 3) This is a reference value when using the crystal oscillator. Because most of the power current at the initial reset state is in  
the oscillator section, the value may vary slightly according to the type of crystal oscillators and external circuits.  
This is a reference value only.  
[MS0369-E00]  
- 11 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(4) Digital Filter Characteristics  
Values described below are design values cited as references.  
1) ADC Section (ADC1, ADC2):  
(Ta=25°C; AVDD, DVDD =3.0V~3.6V; fs=48 kHz; HPF=off (Note1))  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Digital filter  
PB  
0
-
21.5  
kHz  
kHz  
kHz  
Pass band  
(±0.005dB) Note 2)  
21.768  
24.00  
-
-
(-0.02dB)  
(-6.0dB)  
-
Stop band  
Pass band ripple  
SB  
PR  
SA  
GD  
GD  
26.5  
80  
kHz  
dB  
dB  
us  
(Note 2)  
(Note3,4)  
±0.005  
0
Stop band attenuation  
Group delay distortion  
Group delay  
(Ts=1/fs)  
29.3  
Ts  
Digital filter + SFC  
Amplitude characteristics (0~20.0kHz)  
±0.01  
dB  
Note 1) HPF response is not included  
Note 2) The passband is from DC to 21.5 kHz when fs = 48 kHz.  
Note 3) The stopband is from 26.5 kHz to 3.0455MHz when fs = 48 kHz.  
Note 4) When fs = 48 kHz, the analog modulator samples the analog input at 3.072MHz. The input signal is not attenuated by  
the digital filter in the multiple bands (n x 3.072MHz ± 21.99kHz; n=0, 1, 2, 3...) of the sampling frequency.  
2) Monaural ADC Section (ADCM):  
(Ta=25°C; AVDD, DVDD =3.0V~3.6V; fs=48 kHz; HPF=off (Note1))  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Digital filter  
PB  
0
-
21.5  
kHz  
kHz  
kHz  
Pass band  
(±0.005dB) Note 2)  
21.768  
24.00  
-
-
(-0.02dB)  
(-6.0dB)  
-
Stop band  
Pass band ripple  
Stop band attenuation  
Group delay distortion  
Group delay  
Digital filter + SFC  
Amplitude characteristics (0~20.0kHz)  
SB  
PR  
SA  
GD  
GD  
26.5  
80  
kHz  
dB  
dB  
us  
(Note 2)  
(Note3,4)  
±0.005  
0
(Ts=1/fs)  
29.3  
±0.1  
Ts  
dB  
Note 1) HPF response is not included  
Note 2) The passband is from DC to 21.5 kHz when fs = 48 kHz.  
Note 3) The stopband is from 26.5 kHz to 3.0455MHz when fs = 48 kHz.  
Note 4) When fs = 48 kHz, the analog modulator samples the analog input at 3.072MHz. The input signal is not attenuated by  
the digital filter in the multiple bands (n x 3.072MHz ± 21.99kHz; n=0, 1, 2, 3...) of the sampling frequency.  
[MS0369-E00]  
- 12 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(5) Switching Characteristics  
5-1) System clock  
(AVDD=DVDD=3.0V~3.6V,Ta=-40~85°C)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Master clock (XTI)  
a) With a crystal oscillator:  
Note 1)  
Note 1)  
CKS[1:0]=0h  
fMCLK  
fMCLK  
-
-
16.9344  
18.432  
11.2896  
12.288  
-
-
MHz  
MHz  
CKS[1:0]=1h  
b) With an external clock:  
40  
45  
16.0  
11.0  
50  
50  
60  
55  
18.6  
12.4  
%
%
MHz  
MHz  
Duty factor (18.5MHz)  
(>18.5MHz)  
CKS[1:0]=0h  
CKS[1:0]=1h  
fMCLK  
fMCLK  
CKS[1:0]=2h @SMODE=”L”  
fXTI  
―――  
―――  
MHz  
(BITCLK_I input )  
CKS[1:0]=2h @SMODE=”H”  
(PLL enable frequency)  
Clock rise time  
fXTI  
2.75  
3.1  
MHz  
tCR  
tCF  
6
6
ns  
ns  
Clock fall time  
fs  
8
48  
96  
kHz  
LRCLK Sampling Frequency  
Slave mode :clock rise time  
Slave mode :clock fall time  
tLR  
tLF  
8
8
ns  
ns  
48  
64  
fs  
BITCLK_I, BITCLK Frequency  
(@CKS[1:0]2h)  
Slave mode: High level width  
Slave mode: Low level width  
Slave mode :clock rise time  
Slave mode :clock fall time  
BITCLK_I, BITCLK Frequency  
(@CKS[1:0]=2h, SMODE=”L”)  
(PLL enable frequency )  
Duty  
Note 3)  
Note 4)  
fBCLK  
tBCLKH  
tBCLKL  
tBR  
70  
70  
ns  
ns  
ns  
ns  
6
6
3.1  
tBF  
2.75  
64  
50  
fs  
fBCLK  
MHz  
40  
140  
140  
60  
%
ns  
ns  
ns  
ns  
Slave mode: High level width  
Slave mode: Low level width  
Slave mode :clock rise time  
Slave mode :clock fall time  
tBCLKH  
tBCLKL  
tBR  
6
6
tBF  
Note 1) CKS[1]=CKS1, CKS[0]=CKS0  
Note 2) LRCLK and sampling rate (fs) must be matched.  
Note 3) 48fs is enabled in slave mode.  
Note 4) When using BITCLK_I as master clock. Accurate 64 divide clock is required during 1fs.  
(Available fs are 44.1kHz and 48kHz ).  
5-2) Reset  
(AVDD=DVDD=3.0V~3.6V,Ta=-40~85°C)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
tRST  
600  
ns  
INIT_RESET  
S_RESET  
Note 1)  
tRST  
600  
ns  
Note 1) When “H”, the AK7746 needs a stable master clock input to the device.  
[MS0369-E00]  
- 13 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
5-3) Audio Interface  
(AVDD=DVDD=3.0~3.6V,Ta=-40°C ~85°C,CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Slave mode  
BITCLK_I frequency  
fBCLK  
tBLRD  
48  
40  
64  
64  
fs  
ns  
Delay time from BITCLK_I"" to LRCLK_I  
Note1)  
tLRBD  
40  
ns  
Delay time from LRCLK_I to BITCLK_I ""  
Note1)  
Delay time from LRCLK_O to serial data output tLRD  
Delay time from BITCLK_O to serial data output tBSOD  
40  
40  
ns  
ns  
ns  
ns  
Serial data input latch setup time  
tBSIDS  
tBSIDH  
40  
40  
Serial data input latch hold time  
Master mode  
BITCLK_O frequency  
fBCLK  
64  
50  
fs  
%
ns  
ns  
ns  
ns  
BITCLK_O duty factor  
Delay time from LRCLK_O to serial data output tLRD  
Delay time from BITCLK_O to serial data output tBSOD  
Serial data input latch setup time  
Serial data input latch hold time  
40  
40  
tBSIDS  
tBSIDH  
40  
40  
Note 1) This feature is to avoid LRCLK_I edge and BITCLK_I "“edge.  
[MS0369-E00]  
- 14 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
5-4) Microcomputer Interface  
(AVDD=DVDD=3.0V~3.6V, Ta=-40~85°C, CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Unit  
Microcomputer Interface Signal  
RQ Fall time  
tWRF  
tWRR  
30  
30  
ns  
ns  
RQ Rise time  
SCLK fall time  
tSF  
30  
30  
1.4  
ns  
ns  
SCLKrise time  
tSR  
SCLK frequency  
SCLK low level width  
SCLK high level width  
1/fSCLK  
tSCLKL  
tSCLKH  
MHz  
ns  
350  
350  
ns  
Microcomputer to AK7746  
Time from RESET "" to RQ ""  
tREW  
tWRE  
tWRQH  
tWSC  
500  
500  
500  
500  
800  
ns  
ns  
ns  
ns  
ns  
Time from RQ "" to RESET ""  
RQ high level width  
Note 1)  
Time from RQ "" to SCLK""  
Time from SCLK"" to RQ "”  
tSCW  
SI latch setup time  
tSIS  
tSIH  
300  
300  
ns  
ns  
SI latch hold time  
AK7746 to microcomputer  
tSDR  
tSIDR  
tSIH  
tSOS  
tSOH  
600  
600  
ns  
ns  
ns  
ns  
ns  
Time from SCLK"" to DRDY""  
Time from SI""to DRDY""  
SI high level width  
Delay time from SCLK"" to SO output  
Hold time from SCLK"" to SO output  
600  
150  
300  
AK7746 to microcomputer (RAM DATA read-out)  
SI latch setup time (SI="H")  
tRSISH  
tRSISL  
tRSIH  
tSOD  
300  
300  
300  
ns  
ns  
ns  
ns  
SI latch setup time (SI="L")  
SI latch hold time  
Time from SCLK"" to SO output  
AK7746 to microcomputer (CRC result out) (Note 2)  
Delay time from RQ "" to SO output  
300  
400  
tRSOC  
tFSOC  
ns  
ns  
Delay time from RQ "" to SO output  
(Note 3)  
300  
CS  
CS Fall time  
tCSF  
tCSR  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Rise time  
Time from S_RESET "" to CS ""  
Time from CS "" to S_RESET ""  
CS high level width  
tWRCS  
tWCSR  
tWCSH  
tWCSRQ  
tWRQCS  
tCSHR  
600  
600  
1000  
600  
Time from CS "" to RQ ""  
Time from RQ "" to CS ""  
CS "" to SO,RDY,DRDY Hi-Z release  
CS "" to SO,RDY,DRDY Hi-Z  
600  
600  
600  
tCSHS  
Note 1) Except for external jump code set at reset state.  
Note 2) If there is excess serial data D(x) and when divided by G(x) it is equal to R(x), then SO = “H”.  
Note 3) Must read for more than 300ns before RQ falls .  
[MS0369-E00]  
- 15 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(6) Timing Waveform  
6-1) System clock  
1/fXTI  
1/fXTI  
tXTI=1/fXTI  
VIH  
VIL  
XTI  
tCF  
tCR  
tLR  
tBR  
1/fs  
1/fs  
VIH  
VIL  
LRCLK_I  
tLF  
1/fBCLK  
1/fBCLK  
tBCLK=1/fBCLK  
VIH  
VIL  
BITCLK_I  
tBF  
tBCLKH  
tBCLKL  
6-2) RESET  
INIT_RESET  
S_RESET  
tRST  
VIL  
[MS0369-E00]  
- 16 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
6-3) Audio interface  
LRCLK*  
50%DVDD  
tBLRD  
tLRBD  
50%DVDD  
BITCLK*  
SDOUT*  
SDIN*  
tLRD  
tBSOD  
50%DVDD  
50%DVDD  
tBSIDS  
tBSIDH  
LRCLK* : LRCLK_I, LRCLK_O  
BITCLK* : BITCLK_I, BITCLK_O  
SDOUT* : SDOUT1~4,SDOUTA1~2  
SDIN* : SDIN1~4  
[MS0369-E00]  
- 17 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
6-4) Microcomputer Interface  
„ Microcomputer interface  
VIH  
VIL  
RQ  
tWRF  
tWRR  
tSF  
tSR  
VIH  
VIL  
SCLK  
tSCLKH  
tSCLKL  
„ Microcomputer Æ AK7746  
tWRE  
tREW  
S_RESET  
VIL  
VIH  
VIL  
tWRQH  
RQ  
VIH  
VIL  
SCLK  
tWSC  
tSCW  
tWSC  
tSCW  
VIH  
VIL  
SI  
tSIS  
tSIH  
Note: The timing of the RUN state is the same except S_RESET is “H”.  
[MS0369-E00]  
- 18 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
„ AK7746 Æ Microcomputer (DBUS Output)  
1) DBUS 24-bit output  
DVDD  
DVSS  
S_RESET  
DVDD  
DVSS  
RQ  
SI  
DVSS  
tSDR  
tSOH  
DRDY  
VOL  
VIH  
VIL  
SCLK  
tSOS  
SO  
VOH  
VOL  
2) DBUS less than 24-bit (Using SI control )  
DVDD  
DVSS  
DVDD  
DVSS  
S_RESET  
RQ  
tSIH  
VIH  
SI  
DRDY  
VOL  
tSIDR  
SCLK  
VIL  
tSOS  
VOH  
VOL  
SO  
[MS0369-E00]  
- 19 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
„ AK7746 Æ Microcomputer (Read out RAM DATA)  
S_RESET  
DVSS  
DVSS  
RQ  
tRSIH  
tRSISL  
VIH  
VIL  
SI  
tRSISH  
tRSIH  
tRSISL  
VIL  
SCLK  
SO  
VOH  
VOL  
tSOD  
„ AK7746 Æ Microcomputer (CRC Check: {the surplus of D(x)/G(x)}=R(x) )  
VIH  
RQ  
tFSOC  
VIH  
SCLK  
tRSOC  
VOH  
VOL  
SO  
[MS0369-E00]  
- 20 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
„
CS  
tWRCS  
tWCSR  
S_RESET  
CS  
VIL  
VIH  
VIL  
tWCSH  
VIH  
RQ  
tWCSRQ  
tCSF  
tWRQCS  
tCSR  
VIH  
VIL  
CS  
tCSHS  
tCSHR  
Hi-Z  
SO,RDY,DRDY  
DVDD  
Measurement  
circuit  
RL=10KΩ  
SO,RDY,DRDY  
RL=10KΩ  
CL=20pF  
[MS0369-E00]  
- 21 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
8. Function Description  
(1) Various Settings  
1-1) SMODE: slave and master mode selector pin  
This pin sets LRCLK and BITCLK to either inputs or outputs.  
a) Slave mode: SMODE="L"  
LRCLK_I (1fs) and BITCLK_I (64fs or 48fs) are inputs.  
The LRCLK_O outputs the input signal to LRCLK_I.  
The BITCLK_O outputs the input signal to BITCLK_I.  
Note) BITCLK_I is able to input 48fs when CKS[1:0]2h.  
b) Master mode: SMODE=”H”  
LRCLK_I and BITCLK_I is disabled.  
LRCLK_O outputs 1fs, BITCLK_O outputs 64fs.  
Note) SMODE pin can be chenged while the S_RESET is ”L”. (When stopping XTI or changing the frequency, it must be set  
during the initial reset ( INIT_RESET =”L” and S_RESET =”L”).  
When the input frequency is changed, it should be done during the initial reset ( INIT_RESET =”L” and S_RESET =”L”).  
1-2) CKS1 pin,CKS0 pin: Master Clock (XTI or BITCLK_I) select pin  
Available  
Frequency  
Range  
Maximum  
number of  
DSP Steps  
(fs=48kHz)  
768  
Main Input  
frequency  
(MHz)  
CLK  
Mode  
CKS  
[1:0]  
Clock  
Input pin  
Crystal  
use  
Internal  
PLL  
SMODE  
(MHz)  
0
1
2S  
2M  
3
0h  
1h  
2h  
2h  
3h  
“L”,”H”  
“L”,”H”  
“L”  
XTI  
XTI  
18.432, 16.9344  
12.288, 11.2896  
3.072, 2.8224  
3.072, 2.8224  
N/A  
16.0~18.6  
11.0~12.4  
2.75~3.1  
2.75~3.1  
N/A  
OK  
OK  
NG  
NG  
N/A  
Use  
Use  
Use  
Use  
N/A  
768  
BITCLK_I  
XTI  
768  
“H”  
768  
“L”,”H”  
N/A  
N/A  
Note) CKS1=CKS[1], CKS0=CKS[0]  
CLK Mode 2S is available only when fs =44.1kHz and 48kHz. CLK Mode 3 is not available (test use only).  
The internal master clock (MCLK) of the AK7746 is 36.864MHz maximum.  
XTI  
1/6  
MCLK  
PLL × 12  
PLL × 12  
PLL × 12  
PLL × 12  
CLK Mode 0  
CLK Mode 1  
CLK Mode 2S  
CLK Mode 2M  
18.432MHz/16.9344MHz  
36.864MHz/33.8688MHz  
XTI  
1/4  
MCLK  
36.864MHz/33.8688MHz  
12.288MHz/11.2896MHz  
BITCLK_I  
3.072MHz/2.8224MHz  
MCLK  
36.864MHz/33.8688MHz  
XTI  
MCLK  
36.864MHz/33.8688MHz  
3.072MHz/2.8224MHz  
Fig.8-1 Relationship of XTI or BITCLK_I and MCLK (internal master clock)  
[MS0369-E00]  
- 22 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
CLK Mode 2S is used when BITCLK_I is used instead of XTI. Do NOT forget to set SMODE=”L” , when using this mode. CLK  
Mode 2M can be used when SMODE= “H”, however, it cannot be used with the crystal oscillator.  
When CKS1 or CKS0 settings are changed after power up, (including changing between CLK mode 2S and CLK mode 2M), it must  
be done during the initial reset state ( INIT_RESET =”L” and S_RESET =”L”). The CKS1 and the CKS0 pins control the PLL and  
the internal clock control circuits, therefore an erroneous operation may occur if any pin settings change during the run time of the  
AK7746. Changing the frequency of the XTI pin should be done at the initial reset state. The sampling rate is set by the control  
register. (The CLK mode 2S is valid only for 44.1kHz and 48kHz fs mode. )  
1-3) Source of the master clock  
a) XTI select  
Clocks can be supplied to the AK7746’s XTI pin as follows:  
* When CLK mode 0 or 1 is used, either connect a proper crystal oscillator between XTI and XTO pins or supply a clock  
of proper frequency to the XTI pin.  
* When CLK mode 2M is used, supply a clock of proper frequency to the XTI pin.  
XTI  
XTO  
AK7746  
Fig.8-2 Using X’tal : CLK mode 0,1  
XTI  
External Clock  
XTO  
AK7746  
Fig.8-3 Using external clock : CLK mode 0,1,2M  
[MS0369-E00]  
- 23 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
b) BITCLK_I Select  
The CLK mode 2S is used when the BITCLK_I is used instead of XTI. When selecting this mode, set SMODE=”L”.  
The clock supplied on the BITCLK_I pin is directly frequency- multiplied by the PLL and a master clock is  
generated. When the system is using this mode only, it is recommended to connect the XTI pin to DVSS.  
XTI  
0
1
Divider  
PLL  
XTO  
BITCLK_I  
External  
Clock  
MCLK  
BITCLK  
SMODE="L"  
CKS1="H"  
CKS0="L"  
AK7746  
Fig.8-4 Image of the internal connection of the CLK mode 2S.  
Input on BITCLK_I pin a divided-by-64 clock of the LRCLK_I ( 64fs ). (BITCLK_I must be in synchronized with  
LRCLK_I. )  
LR C LK _I  
B ITC LK _I  
Left ch  
R ight ch  
32 x B ITC LK _I(B ITC LK )  
32 x B ITC LK _I(B ITC LK )  
Fig.8-5 R elationship betw een B ITC LK _I and LR C LK _I.  
[MS0369-E00]  
- 24 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(2) Control registers  
The control registers can be set via the microcomputer interface in addition to the control pins. These 8 registers consist of 7-bit data  
however; SCLK always needs to be a16-bit clock (Command Code 8-bits, Data 8-bits). Each register is set after the last D0 data is  
written. For the value to be written in the control registers see the description of the interface with microcomputer. The following  
table describes the control register map.  
These control registers are initialized by INIT_RESET =”L”, but these are NOT initialized by S_RESET ="L”.  
TEST: for TEST (input 0), (X: it ignores input data, but should input 0).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
W
R
60h  
62h  
64h  
66h  
70h  
72h  
74h  
76h  
CONT0  
CONT1  
CONT2  
CONT3  
DFS[2]  
DRAM  
DFS[1]  
RM  
DFS[0]  
BANK[1]  
JX0_E  
DIFS  
BANK[0]  
SSDIN4  
TEST  
DIF[1]  
CMP_N  
SSDIN3  
ASEL1[2]  
DIF[0]  
SS[1]  
SETCK  
SS[0]  
X
X
X
X
0000 000X  
0000 000X  
0000 000X  
0000 000X  
JX2_E  
JX1_E  
SWQMD  
ASEL1[1]  
TEST  
ASEL2[2]  
ASEL2[1]  
SWSDIN4_  
N
OUT3E_N  
CLKS[1]  
SWQM1  
ASEL2[0]  
SWSDIN3_  
N
ASEL1[0]  
SWSDIN2_  
N
SWADM3_ SWADM2_  
68h  
78h  
CONT4  
SWAD1_N  
SWSDIN1  
X
0000 000X  
N
N
6Ah  
6Ch  
6Eh  
7Ah  
7Ch  
7Eh  
CONT5  
CONT6  
CONT7  
OUT4E_N  
TEST  
SWQM2  
OUT2E_N  
CLKS[0]  
OUTA2E_N OUTA1E_N  
OUT1E_N  
SWQ4  
CLKOE_N  
SWQ3  
PSADM  
TEST  
SWQ2  
PSAD2  
TEST  
SWQ1  
PSAD1  
X
X
X
0000 000X  
0000 000X  
0000 000X  
1. CONT0 can be set only at system reset ( INIT_RESET =”H” & S_RESET =”L”).  
2. It is recommended to set CONT1~CONT2, CONT4~CONT7 at system reset.  
3. When changing the selector switch of CONT3, a click noise may occur. The selector switchs are set during the writing  
timing of the CONT3 D0 (SCLK ).  
4. The control registers can be read during run time.  
5. The default setting is initialized by initial reset ( INIT_RESET =”L”).  
[MS0369-E00]  
- 25 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
2-1) CONT0 : Sampling rate and interface selection.  
This register is enabled only during the system reset state ( S_RESET =”L”).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0000 000X  
W
R
60h  
70h  
CONT0  
DFS[2]  
DFS[1]  
DFS[0]  
DIFS  
DIF[1]  
DIF[0]  
SETCK  
×
c
D7,D6,D5:DFS2,DFS1,DFS0 Sampling rate setting.  
fs: sampling frequency  
DSP  
Number  
of Steps  
CKS[1:0]  
(Input frequency of XTI)  
DFS  
Mode  
fs(kHz)  
ADC  
DFS[2]  
DFS[1]  
DFS[0]  
0h  
1h  
2h  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
384fs  
192fs  
N/A  
256fs  
128fs  
N/A  
64fs  
48(44.1)  
768  
384  
ο
ο
N/A  
ο
ο
ο
32fs  
N/A  
96fs  
256fs  
128fs  
192fs  
384fs  
96(88.2)  
N/A  
N/A  
1152  
3072  
1536  
2304  
4608  
576fs  
1536fs  
768fs  
1152fs  
2304fs  
384fs  
1024fs  
512fs  
768fs  
1536fs  
32(29.4)  
12(11.025)  
24(22.05)  
16(14.7)  
8
ο
ο
Note) When CLK Mode 2S (CLKS[1:0]=2h & SMODE=”L”), DFS Mode 0 should be set.  
d D4:DIFS Audio interface selection  
0: AKM method  
1: I2S compatible (In this case, all input / output pins are I2S compatible.)  
e D3,D2:DIF[1],DIF[0] SDIN1,SDIN2,SDIN3,SDIN4 Input mode selector  
Mode  
DIF[1]  
DIF[0]  
0
1
2
3
0
0
1
1
0
1
0
1
MSB justified (24bit)  
LSB justified (24bit)  
LSB justified (20bit)  
LSB justified (16bit)  
Note) When D4 = 1, the state is I2S compatible, DIF[1:0] Mode 0 should be set.  
This setting has no relation with ADC1, ADC2 and ADCM connection. When SWSDIN1=0, SWSDIN2_N=1, SWSDIN3_N=1  
and SWSDIN4_N=1, then it will be MSB justified 24-bit compatible format independent of DIF1 and DIF0 setting.  
f D1: SETCK  
Select output clock of the CLKO when the condition of CONT6 CLKS Mode 3.  
CONT0  
DFS Mode  
SETCK=0  
SETCK=1  
DFS[2:0]  
3
256fs  
64fs  
0
1
N/A  
64fs  
2
N/A  
32fs  
4
5
6
7
256fs  
64fs  
1024fs  
256fs  
N/A  
256fs  
512fs  
128fs  
1024fs  
256fs  
g D0: Always 0  
When inputs D0, CONT0 setting is fixed.  
Note) Underline of the settings with “_” mean default setting.  
[MS0369-E00]  
- 26 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
2-2) CONT1 : RAM control  
Recommend changing this register during the system reset state ( S_RESET =”L”).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0000 000X  
W
R
62h  
72h  
CONT1  
DRAM  
RM  
BANK[1]  
BANK[0]  
CMP_N  
SS[1]  
SS[0]  
×
c D7:DATARAM DATARAM addressing mode selector  
0: Ring addressing mode  
1: Linear addressing mode  
DATARAM has 256-word x 24-bit and has 2 addressing pointer (DP0, DP1).  
The Ring addressing mode: starting address increments by 1 every sample period.  
The Linear addressing mode: starting address is always the same, DP0 = 00h and DP1 = 80h.  
d D6:RM: Decompress bit mode  
0: SIGN bit  
1: Random data  
When Compress & Decompress modes (D3:CMP_N = 0) are selected, this bit determines the decompressed LSB bits.  
e D5,D4:BANK[1:0] DLRAM Setting  
Mode  
BANK1:D5 BANK0:D4  
Memory  
0
1
2
3
0
0
1
1
0
1
0
1
24-bit 3kword(RAM A)  
12-bit 6kword(RAM A)  
12-bit 4kword(RAM A),24bit 1kword(RAM B)  
24-bit 1kword(RAM A),12bit 4kword(RAM B)  
Note) When mode 0 or 1 is selected, pointer 0 and 1 are available for both RAM area.  
When mode 2 or 3 is selected, pointer 0 is available for RAM A and pointer 1 is available for RAM B.  
When DLRAM is not used, mode 2 or 3 should be selected.  
f D3:CMP_N 12bitDLRAM Compress & Decompress selector  
When mode 1, 2 or 3 is selected, this register can set the compress/decompress function.  
0: Compress & Decompress function ON  
When data is written to DLRAM the DBUS data is compressed to 12-bits. and when it data is read from DLRAM, it is  
decompressed to 24-bits.  
1: Compress & Decompress function OFF  
It always writes to DLRAM MSB 12-bit of DBUS data and it read from MSB 12-bit of DLRAM and add to 000h for LSB bits.  
g D2,D1:SS[1:0] DLRAM setting of sampling timing (only for RAM A)  
Mode  
SS[1]:D2  
SS[0]:D1  
RAM A mode selected by BANK[1:0]  
Update every sampling time  
0
1
2
3
0
0
1
1
0
1
0
1
Update every 2 sampling time  
Update every 4 sampling time  
Update every 8 sampling time  
Note) When the mode 1,2 or 3 is selected, it comes out aliasing.  
h D0: Input always 0  
When inputs D0, CONT1 setting is fixed.  
Note) Underlines of the setting of “_” mean default setting.  
[MS0369-E00]  
- 27 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
3) CONT2 : Conditional jump, instruction setting. ( See 3. Block diagram )  
Recommend changing this register at the system reset state ( S_RESET =”L”).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
000 000X  
W
R
64h  
74h  
CONT2  
JX2_E  
JX1_E  
JX0_E  
SSDIN4  
SSDIN3  
SWQMD  
TEST  
×
c D7 : JX2_E (See. 3. Block diagram )  
0: Normal operation (SDIN4)  
1: JX2 is enable. (SDIN4 can not be read)  
d D6 : JX1_E (See. 3. Block diagram )  
0: Normal operation (SDIN3)  
1: JX1 is enable. (SDIN3 can not be read)  
e D5 : JX0_E (See. 3. Block diagram )  
0: Normal operation (SDIN1)  
1: JX0 is enable. (SDIN1 can not be read)  
f D4 : SSDIN4 DSP instruction select.  
0: ODRB and MSRG are enabled (@SWSDIN4_N=0) / INL4 and MSRG are enabled (@SWSDIN4_N=1)  
1: INL4 and INR4 (Digital input of SDIN4 ) are enabled.  
SSDIN4  
SWSDIN4_N  
SRC field  
SRC field  
(CONT4 D6)  
0
0
1
0
1
×
ODRB  
INL4  
INL4  
MSRG  
MSRG  
INR4  
g D3 : SSDIN3 DSP insturuction select  
0: TDR2 and TDR3 (DR2 and DR3 through output ) are enabled  
1: INL3 and INR3 ( Digital input of SDIN3 ) are enabled.  
When SRC data loads to DBUS, TDR2 and TDR3 data is changed to INL3 and INR3 data.  
h D2 : SWQMD (See 3. Block diagram )  
0: Normal operation  
1: The digital output of ADCM connects to SDOUT4.  
i D1 : TEST  
0: Normal operation  
1: TEST MODE ( Do NOT use this.)  
j D0 : Always input 0  
Note) Underlines of the c~i mean default setting.  
[MS0369-E00]  
- 28 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
4) CONT3 : ADC2, ADC1 input selector setting  
When changing this setting during RUN steate, it may come out click noise.  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0000 000X  
W
R
66h  
76h  
CONT3  
ASEL2[2]  
ASEL2[1]  
ASEL2[0]  
TEST  
ASEL1[2]  
ASEL1[1]  
ASEL1[0]  
×
c D7,D6,D5 : ASEL2[2:0] ADC2 Input selector setting  
ASEL2[2]  
ASEL2[1]  
ASEL2[0]  
Selected analog input pins  
AINL-,AINL+,AINR-,AINR+  
AINL2,AINR2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AINL3,AINR3  
AINL4,AINR4  
AINL5,AINR5  
AINL6,AINR6  
AINL7,AINR7  
AINL8,AINR8  
d D4 : TEST  
0: Normal operation  
1: TEST MODE ( Do NOT use this.)  
e D3,D2,D1 : ASEL1[2:0] ADC1 input  
ASEL1[2]  
ASEL1[1]  
ASEL1[0]  
Selected analog input pins  
AINL-,AINL+,AINR-,AINR+  
AINL2,AINR2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AINL3,AINR3  
AINL4,AINR4  
AINL5,AINR5  
AINL6,AINR6  
AINL7,AINR7  
AINL8,AINR8  
f D0 : Always input 0  
Note) Underlines of the c~e mean default setting.  
[MS0369-E00]  
- 29 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
5) CONT4 : Internal path setting ( see. 3. Block diagram)  
Recommend this register changing at system reset state ( S_RESET =”L” ).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
W
R
SWSDIN4_  
N
SWSDIN3_  
N
SWSDIN2_  
N
SWADM3_  
N
SWADM2_  
N
68h  
78h  
CONT4  
SWAD1_N  
SWSDIN1  
×
0000 000X  
c D7 : SWAD1_N DSP SDIN5 input select  
0: DSP SDIN5 connects with ADC1 serial out  
1: DSP SDIN5 connects with ADCM serial out  
d D6 : SWSDIN4_N DSP SDIN4 input select  
0: DSP SDIN4 connects with SDIN4 –pin  
1: DSP SDIN4 connects with ADCM serial out.  
e D5 : SWSDIN3_N DSP SDIN3 input select  
0: DSP SDIN3 connects with SDIN3 pin.  
1: DSP SDIN3 connects with D2: SWADM3_N.  
SWADM3_N=0 ADCM selected  
SWADM3_N=1 ADC2 selected  
f D4 : SWSDIN2_N DSP SDIN2 input select  
0: DSP SDIN2 connects with SDIN2 pin  
1: DSP SDIN2 connects with D1: SWADM2_N.  
SWADM2_N=0 ADCM selected  
SWADM2_N=1 ADC2 selected  
g D3 : SWSDIN1 DSP SDIN1 input select  
0: DSP SDIN1 connects with ADC2 serial output.  
1: DSP SDIN1 connects with SDIN1 pin  
h D2 : SWADM3_N ADCM,ADC2 select  
0: ADCM Selected  
1: ADC2 Selected  
i D1 : SWADM2_N ADCM,ADC2 select  
0: ADCM Selected  
1: ADC2 Seleted  
j D0 : Always input 0  
Note) Underlines of the c~i mean default setting.  
[MS0369-E00]  
- 30 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
6) CONT5 : Output control ( See. 3 Block diagram)  
Recommend this register changing at system reset state ( S_RESET =”L”).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0000 000X  
W
R
6Ah  
7Ah  
CONT5  
OUT4E_N  
OUT3E_N  
OUT2E_N  
OUT1E_N  
CLKOE_N  
TEST  
TEST  
×
c D7: OUT4E_N DSP SDOUT4 Output select  
0: Normal operation  
1: When SWQMD=0 & SWQ4=0, then SDOUT4 = ”L”.  
d D6 : OUT3E_N DSP SDOUT3 Output select  
0: Normal operation  
1: When SWQ3=0 then SDOUT3 =”L”.  
e D5 : OUT2E_N DSP SDOUT2 Output select  
0: Normal operation  
1: When SWQ2=0, then SDOUT2=”L”.  
f D4 : OUT1E_N DSP SDOUT1 Output select  
0: Normal operation  
1: When SWQ1=0 then SDOUT1=”L”.  
g D3 : CLKOE_N CLKO Output select  
0: Normal operation  
1: CLKO=”L”  
If CLKOE_N=1 is changed to CLKOE_N=0, CLKO should output the clock.  
h D2 : TEST  
0: Normal operation  
1: TEST mode ( Do NOT use this mode. )  
i D1 : TEST  
0: Normal operation  
1: TEST mode ( Do NOT use this mode. )  
j D0: Always input 0  
Note) Underlines of the c~i mean default setting.  
[MS0369-E00]  
- 31 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
7) CONT6 : CLKO setting & Internal path setting ( See. 3 Block diagram)  
Recommend this register changing at system reset state ( S_RESET =”L” ).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0000 000X  
W
R
6Ch  
7Ch  
CONT6  
TEST  
CLKS[1]  
CLKS[0]  
SWQ4  
SWQ3  
SWQ2  
SWQ1  
×
c D7 : TEST  
0: Normal operation  
1: TEST Mode ( Do NOT use. )  
d
D6,D5 : CLKS[1],CLKS[0] CLKO Output select  
CLKS  
Mode  
MCLK  
@36.864MHz  
MCLK  
@33.8688MHz  
CLKS[1] CLKS[0]  
CLKO  
0
1
2
3
0
0
1
1
0
1
0
1
MCLK/2  
MCLK/3  
18.432MHz  
12.288MHz  
8.192MHz  
16.9344MHz  
11.2896MHz  
7.5264MHz  
CONT0(D1)  
MCLK × 2/9  
SETCK  
CONT0(D1)  
Note1) MCLK is the internal master clock. MCLK is changed by inputting XTI frequency. Normally, MCLK is 36.864MHz or  
33.8688MHz. See (5) 1) Master clock select table.  
Note 2) CLKS Mode 3 output data is determined by CONT0 SETCK(D1).  
Note 3) It takes 12ms(max) until the clock comes out following INIT_RESET release.  
Note 4) When this control register changes, noise may occur on CLKO. Once CLKO comes out, it can not stop  
unless CLKE_N is set to 1 or a reset is initialized (while the clock is supplied)  
e D4 : SWQ4 SDOUT4 Output select  
0: Normal operation  
1: Through outputs of SDIN4.  
Note that it includes output delay.  
f D3 : SWQ3 SDOUT3 Output select  
0: Normal operation  
1: Through outputs of SDIN3.  
Note that it includes output delay.  
g D2 : SWQ2 SDOUT2 Output select  
0: Normal operation  
1: Through outputs of SDIN2.  
Note that it includes output delay.  
h D1 : SWQ1 SDOUT1 Output select  
0: Normal operation  
1: Through outputs of SDIN1.  
Note that it includes output delay.  
i D0 : Always input 0  
Note) Underlines of the c~h mean default setting.  
[MS0369-E00]  
- 32 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
8) CONT7 : ADC setting ( See. 3 Block diagram)  
Recommend this register changing at system reset state ( S_RESET =”L”).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0000 000X  
W
R
6Eh  
7Eh  
CONT7  
SWQM2  
SWQM1  
OUTA2E_N OUTA1E_N  
PSADM  
PSAD2  
PSAD1  
×
c D7 : SWQM2 SDOUTA2 Output select  
0: Select ADC2 output  
1: Select ADCM output  
d D6 : SWQM1 SDOUTA1 Output select  
0: Select ADC1 output.  
1: Select ADCM output  
e D5 : OUTA2E_N SDOUTA2 Output select  
0: Normal operation  
1: SDOUTA2=”L”  
f D4 : OUTA1E_N SDOUTA1 Output select  
0: Normal operation  
1: SDOUTA1=”L”  
g D3 : PSADM  
0: Normal operation  
1: ADCM power save mode.  
When ADCM is not used, it can be powered down  
( The digital output data of the ADCM is 000000h )  
When it resumes normal operation, it should write 0.  
h D2 : PSAD2  
0: Normal operation  
1: ADC2 power save mode  
When ADC2 is not used, it can be powered down  
( The digital output data of the ADC2 is 000000h )  
When it resumes normal operation, it should write 0.  
i D1 : PSAD1  
0: Normal operation  
1: ADC1 power save mode  
When ADC1 is not used, it can be powered down  
( The digital output data of the ADC1 is 000000h )  
When it resumes normal operation, it should write 0.  
j D0 : Always input 0.  
Note) Underlines of the c~i mean default setting.  
[MS0369-E00]  
- 33 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(3) Power supply startup sequence  
At the rise of AVDD and DVDD, INIT_RESET and S_RESET should be set to “L”.  
INIT_RESET = “L” initializes all control registers. Note 1), Note 2). VREF (Analog reference level) of the AK7746 is set up and  
begins to generate the internal master clock by setting to INIT_RESET = “H”. The interface of the AK7746 cannot accept data  
before the PLL locks; it must wait at least 15ms from INIT_RESET = “H”. Note 3)  
Normally, INIT_RESET setting is only done at power-on.  
Note 1): To confirm initialization power up and master clock (XTI) supplied.  
Note 2): Set to INIT_RESET = “H” after setting the oscillation when a crystal oscillator is used.  
This setting time may differ depending on the crystal oscillator and its external circuit.  
Note 3): In case of CKS[1:0] = 0h then waiting time is 15ms. CKS[1:0] = 1h or 2h then waiting time is 22ms.  
NOTE: Do not stop the system clock (slave mode: XTI, LRCLK_I, BITCLK_I (CLK2S mode : LRCLK_I, BITCLK_I),  
master mode: XTI) except when S_RESET = "L". If these clock signals are not supplied, excess current will flow due to  
dynamic logic that is used internally, and an operation failure may result.  
Don’t set S_RESET ="H" during INIT_RESET ="L", unless its crystal oscillator will stop or be in unstable.  
AVDD  
DVDD  
INIT_RESET  
S_RESET  
XTI  
(internal PLLCLK)  
CLKO1,CLKO2  
Enable to transfer command or  
Before PLL stable  
Inhibit to transfer data  
(15ms)  
When a crystal oscillator  
is used, ensure stable  
Power OFF  
DSP Program code.  
oscillation in this period.  
CLKO output start  
12ms(MAX)*  
22ms(MAX)* : CKS[1:0] = 1h or 2h  
( 15ms : CKS[1:0] = 0h )  
Fig.8-6 Power supply startup sequence  
[MS0369-E00]  
- 34 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(4) Resetting  
The AK7746 has two reset pins: INIT_RESET and S_RESET .  
The INIT_RESET pin is used to set up VREF and initialize the AK7746, as shown in "Power supply startup sequence section (3)."  
The system is reset when S_RESET =”L”. (Description of "reset" is for "system reset".)  
During a system reset, a program write operation is normally performed (except for write operation during running).  
During the system reset phase, the ADC sections are also reset. (The digital section of ADC output is MSB first 00000h).  
However, VREF will be active; LRCLK and BITCLK in the master mode will be inactive.  
The system reset is released by setting S_RESET to "H", which activates the internal counter.  
This counter generates LRCLK and BITCLK in the master mode: however, a problem may occur when a clock signal is  
generated.  
When the system reset is released in slave mode, internal timing will be actuated in synchronization with rising edge "Ç" of  
LRCLK (when the standard input format is used). Timing between the external and internal clocks is adjusted at this time. Therefore  
make sure to avoid phase difference between LRCLK and internal timing. If the phase difference in LRCLK and internal timing is  
within about -1/16 to 1/16 of the input sampling cycle (1/fs) during the operation, the operation is performed with internal timing  
remaining unchanged. If the phase difference exceeds the above range, the phase is adjusted by synchronizing the "Ç" of LRCLK  
(when the standard input format is used). This prevents synchronization failure with the external circuit.  
The ADC section can output 516-LRCLK after its internal counter has started. (The internal counter starts at the first rising  
edge of LRCLK in master mode. In slave mode, it starts 6 LRCLKs(max) after the release of system reset. )  
The AK7746 performs normal operation when S_RESET is set to "H".  
RAM Clear  
The AK7746 will write automatically all 0 data into all DRAM and DLRAM after release the system reset. ( RAM Clear).  
It takes 5*LRCLK(max)+2048*MCLK(internal master clock) at slave mode, and it takes 2*LRCLK(max)+2048*MCLK at master  
mode.  
Therefore in the slave mode, it will take about 160µs [(5/48kHz)+(2048/36.864MHz)] at fs=48kHz, or 174µs  
[(5/44.1kHz)+(2048/33.8688MHz)] at fs=44.1kHz.  
INIT_RESET  
S_RESET  
RAM CLEAR  
DSP START  
Master Mode: 1LRCLK  
RAM CLEAR TIME  
DSP PROGRAM  
START  
Slave Mode : 4LRCLK  
(1LRCLK + 2048 * MCLK )  
Fig.8-7 RAM CLEAR SEQUENCE  
[MS0369-E00]  
- 35 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(5) System clock  
1) master clock select table.  
(A) Sampling frequency 48kHz series ( Normal :48kHz, Double:96kHz )  
INPUT  
PIN  
CKS1  
INPUT  
PIN  
CKS0  
XTI  
[MHz]  
CONT0 CONT0 CONT0  
FS  
[KHz]  
DSP  
STEP  
MCLK  
PLL  
AD  
X’tal  
SMODE  
DFS2  
DFS1  
DFS0  
[MHz] active active active  
0 or 1  
18.432  
0
0
1
0
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
48  
96  
N/A  
32  
12  
24  
16  
8
768  
384  
N/A  
1152  
3072  
1536  
2304  
4608  
768  
36.864  
ο
ο
-
ο
ο
ο
ο
ο
ο
ο
-
ο
ο
ο
ο
ο
ο
ο
-
ο
ο
ο
ο
ο
0 or 1  
12.288  
48  
96  
N/A  
32  
12  
24  
16  
8
36.864  
ο
ο
-
ο
ο
ο
ο
ο
ο
ο
-
ο
ο
ο
ο
ο
ο
ο
-
384  
N/A  
1152  
3072  
1536  
2304  
4608  
768  
ο
ο
ο
ο
ο
×
×
-
×
×
×
×
×
1
3.072  
48  
96  
N/A  
32  
12  
24  
16  
8
36.864  
ο
ο
-
ο
ο
ο
ο
ο
ο
ο
-
ο
ο
ο
ο
ο
384  
N/A  
1152  
3072  
1536  
2304  
4608  
INPUT INPUT  
BITCLK_I  
[MHz]  
CONT0 CONT0 CONT0  
FS  
[KHz]  
DSP  
STEP  
MCLK  
PLL  
AD  
X’tal  
SMODE  
PIN  
PIN  
DFS2  
DFS1  
DFS0  
[MHz] active active active  
CKS1  
CKS0  
0
3.072  
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
48  
768  
36.864  
×
ο
ο
[MS0369-E00]  
- 36 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(B) Sampling frequency 44.1kHz series (Normal: 44.1kHz, Double: 88.2kHz)  
INPUT INPUT  
AD  
Activ  
e
ο
ο
-
ο
ο
ο
ο
X’tal  
XTI  
CONT0 CONT0 CONT0  
FS  
DSP  
MCLK  
[MHz]  
PLL  
SMODE  
PIN  
PIN  
Activ  
e
[MHz]  
DFS2  
DFS1  
DFS0  
[KHz]  
STEP  
Active  
CKS1  
CKS0  
0 or 1  
16.9344  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
44.1  
88.2  
N/A  
29.4  
11.025  
22.05  
768  
384  
N/A  
1152  
3072  
1536  
33.8688  
ο
ο
-
ο
ο
ο
ο
ο
ο
-
ο
ο
ο
ο
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
14.7  
-
2304  
-
-
-
-
-
0 or 1  
0
1
1
0
11.2896  
44.1  
88.2  
N/A  
29.4  
11.025  
22.05  
14.7  
-
768  
384  
N/A  
1152  
3072  
1536  
2304  
-
33.8688  
ο
ο
-
ο
ο
ο
ο
-
ο
ο
-
ο
ο
ο
ο
-
ο
ο
-
ο
ο
ο
ο
-
-
2.8224  
1
44.1  
88.2  
N/A  
29.4  
11.025  
22.05  
14.7  
-
768  
384  
N/A  
1152  
3072  
1536  
2304  
-
33.8688  
×
×
-
×
×
×
×
-
ο
ο
-
ο
ο
ο
ο
-
ο
ο
-
ο
ο
ο
ο
-
-
INPUT INPUT  
AD  
Activ  
e
ο
X’tal  
Activ  
e
×
BITCLK_I  
{MHz}  
CONT0 CONT0 CONT0  
FS  
DSP  
MCLK  
[MHz]  
PLL  
SMOD  
E
PIN  
PIN  
DFS2  
DFS1  
DFS0  
[KHz]  
STEP  
Active  
CKS1  
CKS0  
2.8224  
0
1
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
44.1  
768  
33.8688  
ο
1
1
1
1
0
1
[MS0369-E00]  
- 37 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(C) CLKO Output select information. (fs=48kHz)  
XTI or  
BITCLK_I  
[MHz]  
INPUT  
INPUT  
OUTPUT  
CLKO  
CONT0  
SETCK  
CONT6  
CLKS1  
CONT6  
CLKS0  
PIN  
PIN  
CKS[1]  
CKS[0]  
[MHz]  
18.432  
0
0
1
1
0
1
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
1
1
X
0
0
1
1
X
0
0
1
1
X
0
0
1
1
X
0
1
0
1
X
0
1
0
1
X
0
1
0
1
X
0
1
0
1
X
18.432  
12.288  
8.192  
256fs  
64fs  
18.432  
12.288  
8.192  
256fs  
64fs  
18.432  
12.288  
8.192  
256fs  
64fs  
18.432  
12.288  
8.192  
256fs  
64fs  
12.288  
3.072  
36.864  
(D) CLKO Output information  
INIT_RESET  
CLKO  
S_RESET  
CLKOE_N=0  
CLKOE_N=1  
L
H
H
L
L
H
Stop  
Active  
Active  
Stop  
Stop  
(E) Output timing image  
The following figure indicates the timing when changing of CLKO.  
( The phase of the clock is not always same as following figure.)  
S_RESET  
RQ  
SCLK  
SI  
6Ch  
00100000  
6Ah  
00001000  
CLKO  
MCLK/2  
MCLK/3  
STOP  
Fig.8-8 Example of changing control register CONT6 setting 00h(Default) into new value.  
[MS0369-E00]  
- 38 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
2) Master Clock (XTI pin or BITCLK_I pin )  
The master clock can get from the crystal oscillator connected between the XTI and the XTO pins, or from the external clock to the  
XTI pin and XTO pin is open. Only the CLK mode 2S (CKS[1:0]=2h and SMODE=”L”) can use the clock input to the BITCLK_I pin  
instead of the XTI pin. At that time the XTI pin should be connected to DVSS.  
3) Slave Mode  
When the mode is CKS[1:0]2h, the requied system clocks are XTI , LRCLK_I(1fs) and BITCLK_I (64fs or 48fs ). At that time, the  
master clock (XTI) must be synchronized with LRCLK_I, but it does not need to be in phase.  
When the mode is CKS[1:0]=2h, the requied system clocks are LRCLK_I(1fs) and BITCLK_I (64fs only, 48fs can not be use). In  
this mode the master clock (BITCLK_I ) must be in synchronized with LRCLK_I and also need to be in phase.  
LRCLK_I, BITCLK_I are directly output on LRCLK_O and BITCLK_O respectively.  
CD etc.  
XTI  
(Master Equipment)  
LRCLK_I  
BITCLK_I  
Clk Gen.  
SMODE  
LRCLK_O  
BITCLK_O  
1fs  
64fs  
DAC etc.  
CLKO  
(Slave Equipment)  
CLKO  
AK7746  
Fig. 8-9 Slave mode example  
4) Master Mode  
Master mode requires a clock input to XTI pin. When a clock is applied to the XTI input, LRCLK_O and BITCLK_O are  
automatically generated by an XTI-synchronized internal counter. No output is available on LRCLK_O and BITCLK_O pins during  
an initial reset ( INIT_RESET ="L") and a system reset ( INIT_RESET =”H” and S_RESET ="L").  
When using only for the master mode on the AK7746, the LRCLK_I and the BITCLK_I should set “L”.  
[MS0369-E00]  
- 39 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(6) Audio data interface (internal connection mode)  
The serial audio data pins SDIN1,SDIN2,SDIN3,SDIN4,SDOUT1,SDOUT2,SDOUT3, SDOUT4, SDOUTA1 and SDOUTA2 are  
interfaced with the external system, using LRCLK_I, LRCLK_O, BITCLK_I and BITCLK_O. These ports are controlled via registers.  
( See the block diagram on page.2 and the control register setting section at page 28.)  
The data format is MSB-first 2's complement. Normally, the input/output format, in addition to the standard format used by AKM,  
can be changed to I2S compatible mode by setting the control register “CONT0 DIF (D4) to 1”. (In this case, all input/output audio data  
pin interface are in the I2S compatible mode.)  
The input SDIN1, SDIN2, SDIN3 and SDIN4 formats are MSB justified 24-bit at initialization. Setting the control registers  
CONT0: DIF1 (D3), DIF0 (D2) will cause these ports to be compatible with LSB justified 24-bit, 20-bit and 16-bit.  
However, individual setting of SDIN1, SDIN2, SDIN3 and SDIN4 is not allowed. The output SDOUT1, SDOUT2,  
SDOUT3 and SDOUT4 are fixed at 24-bit MSB justified only. The ADCM is monoral but outputs same data for Lch and Rch.  
In slave mode BITCLK_I corresponds to not only 64fs but also 48fs. 64fs is the recommended mode. Following formats  
describe 64fs examples.  
1) Standard input format (DIFS = 0: default set value)  
a) Mode 1 (DIF[1:0] = 0 default set value)  
LRCLK  
BITCLK  
Right ch  
Left ch  
10 9  
8
L
7
6
5
4
3
2
1 0  
31 30 29  
M 22 21  
10 9  
8
7
6
5
4
3
2
1 0  
31 30 29  
M 22 21  
SDIN1,SDIN2,  
SDIN3,SDIN4  
2
1
L
2 1  
M : MSB, L : LSB  
Fig.8-10  
* When you want to input the MSB-justified 20-bit data into SDIN, SDINA input four "0" following the LSB.  
b) Mode 2, Mode 3, Mode 4  
SDIN1,SDIN2,SDIN3,SDIN4  
SDIN1,SDIN2,SDIN3,SDIN4  
SDIN1,SDIN2,SDIN3,SDIN4  
Mode2 : DIF[1:0]=1 LSB justified 24-bit  
Mode3 : DIF[1:0]=2 LSB justified 20-bit  
Mode4 : DIF[1:0]=3 LSB justified 16-bit  
LRCLK  
Right ch  
Left ch  
BITCLK  
1
0
1
0
31 30  
23 22 21 20 19 18 17 16 15  
M 22 21 20 19 18 17 16 15  
23 22 21 20 19 18 17 16 15  
M 22 21 20 19 18 17 16 15  
31 30  
Don't Care  
1
L
Don't Care  
1
L
SDIN1,SDIN2,  
SDIN3,SDIN4  
1
1
L
L
Don't Care  
Don't Care  
M
18 17 16 15  
M
SDIN1,SDIN2  
SDIN3,SDIN4  
M 18 17 16 15  
M
1
1
L
L
Don't Care  
Don't Care  
SDIN1,SDIN2  
SDIN3,SDIN4  
M : MSB, L : LSB  
Fig.8-11  
- 40 -  
[MS0369-E00]  
2004/12  
[ASAHI KASEI]  
[AK7746]  
2) I2S compatible input format (DIFS=1)  
LRCLK  
BITCLK  
Left ch  
Right ch  
9
8
7
6
5
4
3 2 1 0  
31 30 29 28  
M 22 21  
31 30 29 28  
M 22 21  
9
2
8
1
7
L
6
5
4
3
2
1 0  
2
1 L  
SDIN1,SDIN2  
SDIN3,SDIN4  
M : MSB, L : LSB  
Mode 1: DIF[1:0]= 0 must be set.  
Fig.8-12  
3) Standard output format (DIFS=0: default set value)  
LRCLK  
Right ch  
Left ch  
BITCLK  
10 9  
8
L
7
6
5
4
3
2
1
0
10  
2
9
1
8
L
7 6 5 4 3 2 1 0  
31 30 29  
M 22 21  
31 30 29  
M 22 21  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
SDOUTA1  
SDOUTA2  
2
1
M : MSB, L : LSB  
Fig.8-13  
4) I2S compatible output format (DIFS=1)  
LRCLK  
BITCLK  
Left ch  
Right ch  
31 30 29 28  
M 22 21  
9
8
1
7
6
5
4
3 2 1 0  
31 30 29 28  
M 22 21  
9
8
1
7
L
6
5
4
3 2 1 0  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
SDOUTA1  
SDOUTA2  
2
2
L
M : MSB, L : LSB  
Fig.8-14  
[MS0369-E00]  
- 41 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(7) Interface with microcomputer  
The microcomputer interface uses 6 control pins; RQ (ReQuest Bar), SCLK (Serial data input Clock), SI (Serial data Input), SO  
(Serial data Output), RDY (ReaDY) and DRDY (Data ReaDY).  
In the AK7746, two types of operations are provided; writing and reading during the reset phase (system reset) and R/W during the  
run phase. During the reset phase, writing of the control register, program RAM, coefficient RAM, offset RAM, external conditional  
jump code, and reading of the program RAM, coefficient RAM and offset RAM are enabled. During the run phase, writing of  
coefficient RAM, offset RAM and external conditional jump code, and reading of data on the DBUS (data bus) from the SO, are  
enabled. Its data is MSB first serial I/O.  
When the AK7746 transfers data to the microcomputer, it starts by RQ going “L” (Expects when reading the data on the DBUS).  
The AK7746 reads data at the rising point of SCLK from the SI pin, and outputs data on the falling edge of SCLK to the SO pin.  
The AK7746 first data is command code and then address data for the data input / output to start.  
When RQ changes to “H”, one command has finished. For a new command requests, set RQ to “L” again. For DBUS data reads,  
leave RQ =”H”. (It does not need command code input.) To clear the output buffer (MICR), the SI pin is used. (In this case, it is  
necessary to protect against a noise as SCLK.)  
The Command code table is as follows.  
Command code list  
Conditions  
for use  
Code name  
Command code  
Remark:  
WRITE  
READ  
70h  
RESET  
phase  
CONT0  
60h  
62h  
For the function of each bit,  
See the description of Control Registers.  
72h  
CONT1  
CONT2  
CONT3  
CONT4  
64h  
66h  
68h  
6Ah  
74h  
76h  
78h  
7Ah  
CONT5  
C0h  
C1h  
PRAM  
CRAM  
A0h  
A1h  
OFRAM  
90h  
91h  
External condition jump  
CRC check (R(x))  
(CONT1~CONT7)  
CONT3  
C4h  
-
B6h  
D6h  
RUN  
phase  
(Note 1)  
66h  
7Xh  
76h  
Only CONT3 can use  
It needs to do before CRAM rewrite  
CRAM rewrite preparation  
CRAM rewrite  
OFRAM rewrite preparation  
OFRAM rewrite  
External condition jump  
CRC check (R(x))  
A8h  
A4h  
98h  
-
-
-
It needs to do before OFRAM rewrite  
94h  
-
-
C4h  
B6h  
Same code as RESET  
Same code as RESET  
D6h  
NOTE: Do not send other than the above command codes. Otherwise an operation error may occur.  
If there is no communication with the microcomputer, set the SCLK to "H” and the SI to "L" for use.  
Note 1) It is recommended that CONT1~CONT7 registers are also only written to at a system reset to avoid any unwanted noise.  
However, the CONT3 analog switch selectors can change during runtime.  
[ See. 8. (2) Control registers. ]  
[MS0369-E00]  
- 42 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
1) Write during reset phase  
a) Control register write (during reset phase)  
The data comprises a set of 2 bytes used to perform control register write operations (during reset phase). When all data has been  
entered, the new data is sent at the rising edge of the 16th count of SCLK.  
Data transfer procedure  
c Command code  
60h,62h,64h,66h,68h,6Ah,6Ch  
d Control data  
(D7 D6 D5 D4 D3 D2 D1 D0)  
For the function of each bit, see the description of Control registers (p.25).  
S_RESET  
RQ  
SCLK  
60h  
64h  
D7 ***D1 D0  
D7 ***D1 D0  
SI  
SO  
Fig .8-15 Control Registers write operation  
[MS0369-E00]  
- 43 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
b) Program RAM writes (during reset phase)  
Program RAM write operations are performed during the reset phase using 7-bytes of data. When all data have been transferred, the  
RDY terminal is set to "L". Upon completion of writing into the PRAM, RDY returns “H” to allow the next data bit input. When  
writing to sequential addresses, input the data without a command code or address. To write discontinuous data, shift the RQ terminal  
from "H" to "L" again and then input the command code, address and data in that order.  
Data transfer procedure  
c Command code C0h ( 1 1 0 0 0 0 0 0)  
d Address upper  
e Address lower  
f Data  
( 0 0 0 0 0 0 A9 A8)  
(A7 . . . . . . . A0)  
(D31 . . . . . . D24)  
(D23 . . . . . . D16)  
(D15 . . . . . . D8)  
(D7 . . . . . . D0)  
g Data  
h Data  
i Data  
S_RESET  
RQ  
SCLK  
A7 ****A1A0  
11000000  
000000A9A8  
D31***** D0  
SI  
D31***** D0  
RDY  
SO  
Fig.8-16 Input of continuous address data into PRAM  
S_RESET  
RQ  
SCLK  
11000000  
000000A9A8 A7**A1A0  
11000000  
000000A9A8 A7**A1A0  
D31***D0  
SI  
RDY  
SO  
Fig.8-17 Input of discontinuous address data into PRAM  
[MS0369-E00]  
- 44 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
c) Coefficient RAM writes (during reset phase)  
5 bytes of data are used to perform coefficient RAM write operations (during reset phase). When all data has been transferred, the  
RDY terminal goes to "H". Upon completion of writing into the CRAM, it goes to "H" to allow the next data to be input. When writing  
to sequential addresses, input the data as shown below. To write discontinuous data, transition the RQ terminal from "H" to "L" and  
then input the command code, address and data.  
Data transfer procedure  
c Command code A0h ( 1 0 1 0 0 0 0 0 )  
d Address upper  
e Address lower  
f Data  
( 0 0 0 0 0 0 A9 A8)  
(A7 . . . . . . . A0)  
(D15 . . . . . . D8)  
(D7 . . . . . . D0)  
g Data  
S_RESET  
RQ  
SCLK  
SI  
10100000  
000000A9A8  
A7****A1A0  
D15****D0  
D15****D0  
RDY  
SO  
Fig.8-18 Input of continuous address data into CRAM  
S_RESET  
RQ  
SCLK  
10100000  
000000A9A8 A7***A1A0 D15****D0  
10100000  
D15**  
A7***A1A0  
SI  
000000A9A8  
RDY  
Input of discontinuous address data into CRAM  
SO  
Fig.8-19 Input of discontinuous address data into CRAM  
[MS0369-E00]  
- 45 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
d) Offset RAM writes (during reset phase)  
5 bytes of data are used to perform offset RAM write operations (during reset phase). When all data has been transferred, the RDY  
terminal goes to "H". Upon completion of writing into the OFRAM, it goes to "H" to allow the next data to be input. When writing to  
sequential addresses, input the data without a command code or address. To write discontinuous data, shift the RQ terminal from "H"  
to "L" and then input the command code, address and data in that order.  
Data transfer procedure  
c Command code 90h ( 1 0  
0
1 0 0 0 0 )  
A5 A4 .. . . A0 )  
0 0 0 0 )  
d Address  
e Data  
( 0  
(0  
0
0
0
0
f Data  
(0 0 0 D12 D11 * * . D8 )  
g Data  
(D7  
.
.
.
.
.
.
D0 )  
S_RESET  
RQ  
SCLK  
SI  
10010000  
00A5****A0  
00000000  
D7****D1D0  
000D12****D8  
RDY  
SO  
Fig.8-20 Input of data into OFRAM  
S_RESET  
RQ  
SCLK  
SI  
10010000  
00 A5***A0  
000D12***D0  
10010000  
00 A5***A0  
000D12***D0  
RDY  
SO  
Fig.8-21 Input of discontinuous address data into OFRAM  
[MS0369-E00]  
- 46 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
e) External conditional jump code writes (during reset phase)  
Two bytes of data are used to perform external conditional jump operations. The data can be entered during both the reset and  
operation phases, and the input data are set to the specified register at the leading edge of the LRCLK. When all data bits have been  
transferred, the RDY terminal goes to "L". Upon write completion, it goes to "H". A jump command will be executed if there is any  
one agreement between "1" of each bit of external condition code 8 bits (soft set) plus 3 bits (hard set) at the external input terminal  
JX0, JX1,JX2 and "1" of each bit of the IFCON field. The data during the reset phase can be written only before release of the reset,  
after all data has been transferred. RQ Transition from "L" to "H" in the write operation during the reset phase must be executed after  
three LRCLK in the slave mode or one LRCLK in master mode, respectively, from the trailing edge of the LRCLK after release of the  
reset. Then the RDY goes to "H" after capturing the rise of the next LRCLK. A write operation from the microcomputer is disabled  
until the RDY goes to "H". The IFCON field provides external conditions written on the program. It resets to 00h by INIT_RESET  
=”L”, however, it remains previous condition even S_RESET =”L”.  
Note: It should be noted that the LRCLK phase is inverted in the I2S-compatible state.  
7
0 JX0 JX1 JX2  
External condition code „„„„„„„„ † † †  
Ç
Check if there is any one agreement between the bit specified in IFCON and "1" in the  
external condition code  
16 9 8 7 6  
‹‹‹‹‹‹‹‹‹‹‹  
È
IFCON field  
Data transfer procedure  
c Command code  
d Code data  
C4h ( 1 1 0 0 0 1 0 0)  
(D7 . . . . . D0)  
S_RESET  
SCLK  
11000100  
D7****D0  
SI  
SO  
L ch  
R ch  
RQ  
LRCLK  
2LRCLK(max)  
RDY  
Fig.8-22 Timing for external conditional jump write operation (during reset phase)  
[MS0369-E00]  
- 47 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
2) Read during reset phase  
a) Control register data read (during reset phase)  
To read data written into the control registers, input the command code and 16 bits of SCLK. After the input command code,  
the data of D7 to D1 outputs from SO is synchronized with the falling edge of SCLK. D0 is invalid, so please ignore this bit.  
Data transfer procedure  
c Command code  
70h,72h,74h,76h,78h,7Ah, 7Ch, 7Eh  
S_RESET  
RQ  
SCLK  
70h (example)  
74h (example)  
SI  
SO  
D7 **** D1  
D7 **** D1  
Fig.8-23 Reading of Control Register data  
[MS0369-E00]  
- 48 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
b) Program RAM read (during reset phase)  
To read data written into PRAM, input the command code and the address you want to read out. After that, set SI to "H" and  
SCLK to "L". The data is then clocked out from SO in synchronization with the falling edge of SCLK. (Ignore the RDY operation that  
will occur in this case.)  
If there are continuous addresses to be read, repeat the above procedure starting from the step where SI is set to "H".  
Data transfer procedure  
cCommand code input C1h ( 1 1 0 0 0 0 0 1 )  
dRead address input MSB ( 0 0 0 0 0 0 A9 A8)  
eRead address input LSB  
(A7 .  
.
.
.
A0)  
S_RESET  
RQ  
SCLK  
SI  
11000001  
000000A9A8  
A7 **** A1 A0  
SO  
RDY  
D31 **** D0  
D31 **** D0  
Fig.8-24 Reading of PRAM data  
[MS0369-E00]  
- 49 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
c) CRAM data read (during reset phase)  
To read out the written coefficient data, input the command code and the address you want to read out. After that, set SI to  
"H" and SCLK to "L”. The data is clocked out from SO in synchronization with the falling edge of SCLK. If there are continuous  
addresses to be read, repeat the above procedure starting from the step where SI is set to "H".  
Data transfer procedure  
c Command code A1h ( 1 0 1 0 0 0 0 1 )  
d Address upper  
e Address lower  
( 0 0 0 0 0 0 A9 A8)  
(A7 . . . .  
.
. A0)  
S_RESET  
RQ  
SCLK  
10100001  
000000A9A8  
A7 **** A1A0  
SI  
D15 **** D0  
D15 **** D0  
SO  
RDY  
Fig.8-25 Reading of CRAM data  
[MS0369-E00]  
- 50 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
d) OFRAM data read (during reset phase)  
The written offset data can be read out during the reset phase. To read it, input the command code and the address you want  
to read. After that, set SI to "H" and SCLK to "L". This completes preparation for outputting the data. Then set SI to "L", and the data  
is clocked out in synchronization with the falling edge of SCLK. If there are continuous addresses to be read, repeat the above  
procedure starting from the step where SI is set to “H”.  
Data transfer procedure  
c Command code  
d Address  
91h ( 1 0 0 1 0 0 0 1 )  
( 0 0 A5 . . . . A0)  
S_RESET  
RQ  
SCLK  
SI  
10010001  
00 A5 **** A0  
D12 *** D1 D0  
D12 *** D1 D0  
D12*** D1 D0  
SO  
RDY  
Fig.8-26 Reading of OFRAM data  
[MS0369-E00]  
- 51 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
3) Write during RUN phase  
a) CRAM rewrites preparation and writes (during RUN phase)  
This function is used to rewrite CRAM (coefficient RAM) during program execution. After inputting the command code,  
you can input a maximum of 16 data (2 bytes 1set) of a continuous address you want to rewrite, then input the write command code and  
rewrite the leading address. Every time the RAM address to be rewritten is specified, the contents of RAM are rewritten. The  
following is an example to show how five data bytes from address "10" of the coefficient RAM are rewritten:  
Coefficient RAM execution address  
7
8
9 10 11 13 16 11 12 13 14 15  
È
}
È
}
È
}
È
}
È
}
Rewrite position  
Ç
Note that address "13" is not executed until address "12" is rewritten.  
Data transfer procedure  
* Preparation for rewrite c Command code A8h ( 1 0 1 0 1 0 0 0 )  
d Data  
e Data  
( D15 . . . . D8 )  
( D7 . . . . . D0 )  
* Rewrite  
c Command code A4h ( 1 0 1 0 0 1 0 0 )  
d Address upper  
e Address lower  
( 0 0 0 0 0 0 A9 A8 )  
(A7 A0 )  
.
.
.
.
S_RESET  
RQ  
SCLK  
SI  
10101000  
10100100  
D15 **** D0  
000000A9*A0  
max 400ns  
RDY  
SO  
RDYLG  
Note: The RDY signal will go to high within the maximum of two LRCLKs if the RDYLG width  
is programmed to ensure a new address to be rewritten within one sampling cycle.  
Fig. 8-27 CRAM rewriting preparation and writing  
[MS0369-E00]  
- 52 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
b) OFRAM rewrites preparation and writes (during RUN phase)  
This function is used to rewrite OFRAM (offset RAM) during program execution. After inputting the command code, you  
can input a maximum of 16 data (3 bytes 1 set) of a continuous address you want to rewrite.  
Then input the write command code and rewrite the leading address. Every time the RAM address to be rewritten is specified, the  
contents of RAM are rewritten. The following is an example to show how five data bytes from address "10" of the offset RAM are  
rewritten:  
Offset RAM execution address 7 8 9 10 11 13 16 11 12 13 14 15  
È
}
È
}
È
}
È
}
È
}
Rewrite position  
Ç
Note that address "13" is not executed until address "12" is rewritten.  
Data transfer procedure  
* Preparation for rewrite c Command code 98h ( 1 0 0 1 1 0 0 0 )  
d Data  
e Data  
f Data  
( 0 0 0 0 0 0 0 0 )  
( 0 0 0 D12 . . . D8 )  
( D7 . . . . . . D0 )  
* Rewrite  
c Command code 94h ( 1 0 0 1 0 1 0 0 )  
d Address  
( 0 0 A5A4 . . . A0)  
S_RESET  
RQ  
SCLK  
SI  
10010100  
00 A5***A0  
10011000 0**0D12 ** D0  
max 400ns  
RDY  
SO  
RDYLG  
Note: The RDY signal will go to high within the maximum of two LRCLKs if the RDYLG width is  
programmed to ensure a new address to be rewritten within one sampling cycle.  
Fig.8-28 OFRAM rewriting preparation and writing  
[MS0369-E00]  
- 53 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
c) External conditional jump code rewrite (during RUN phase)  
Two data bytes are used to write an external conditional jump code. Data can be input during both the reset and operation  
phases, and input data is set to the specified register at the rising edge of LRCLK. When all data has been transferred, the RDY pin goes  
to "L". Upon completion of writing, it goes to "H". A jump command will be executed if there is any one agreement between each bit  
of the 8-bit external condition code and "1"of each bit of the IFCON field. A write operation from the microcomputer is disabled until  
RDY goes to "H".  
Note: The LRCLK phase is inverted in the I2S-compatible state.  
Data transfer procedure  
c Command code  
d Code data  
C4h ( 1 1 0 0 0 1 0 0 )  
(D7 . . . . . D0)  
S_RESET  
SCLK  
SI  
11000100  
D7 *** D0  
SO  
RQ  
L ch  
R ch  
LRCLK  
max 2LRCLK  
RDY  
max0.25LRCLK  
Fig.8-29 External condition jump write timing (during RUN phase)  
[MS0369-E00]  
- 54 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
4) Read-out during RUN phase (SO output )  
a) Control register data read (during run phase)  
The control register can read during run time. To read data written into the control registers, input the command code and 16  
bits of SCLK. After the input command code, the data of D7 to D1 outputs from SO is synchronized with the falling edge of SCLK. D0  
is invalid, so please ignore this bit.  
Data transfer procedure  
c Command code  
70h,72h,74h,76h,78h,7Ah, 7Ch, 7Eh  
In order to know the each bit function, see 8. Function description (2) Control registers.  
S_RESET =”H”  
RQ  
SCLK  
70h (example)  
74h (example)  
SI  
SO  
D7 **** D1  
D7 **** D1  
Fig.8-30 Control register read (during RUN phase)  
[MS0369-E00]  
- 55 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
b) SO data read (during run phase)  
SO outputs data on DBUS (data bus) of the DSP section. Data is set when @MICR the DST field specifies. Setting of data  
allows DRDY to go to "H", and data is output synchronized with the falling edge of SCLK. When SI goes to "H", DRDY goes to "L"  
to wait for the next command. Once DRDY goes to "H", the data of the last @MICR command immediately before DRDY goes to "H"  
will be held until SI goes to "H" or read out 24-bit data with SCLK, and subsequent commands will be rejected. A maximum of 24 bits  
are output from SO.  
Note) In the case of read out 24-bit data, DRDY falls down when 24th SCLK rising edge and SO output bit is not stable. So, if the  
microcontroller cannot read out at SCLK rising edge, it should ignore the last 1bit (D0).  
S_RESET  
RQ  
SI  
@MICR  
DRDY  
SCLK  
Data1  
Data2  
24 SCLK Clock  
D23 D22 D21* * * * * D3 D2 D1 D0  
Less than 24 SCLK  
SO  
D23 D22 D21D20 D19 D18  
Fig.8-31 SO read (during RUN phase)  
[MS0369-E00]  
- 56 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
5) Simple error check for communication  
The AK7746 has a simple CRC error check function.  
(Note: Its main purpose is checking against the noise effects during writes from microprocessor to the AK7746. This check CANNOT  
guarantee 100% error detection on the AK7746.  
Explanation:  
* Serial data(X): Input SI data from RQ fall to rise up.  
* Generator polynomial G(x) =x16+x12+x5+1 (X.25 of CCITT standard order of hexadecimal is 11021h).  
* The rest of D(x) divides by G(x) is R(x).  
This division is using exclusive-or instead of subtraction during this calculation.  
It makes good 16-bit zero data after translated serial data D(X) and the rest R(X) of  
this division comes out 16bit data.  
In order to do simple error check is as following:  
1) Use the command code B6h and write the R(x) (the rest result of serial data D(x) divided by G(x)).  
2) Then use the command code D6h and read out R(x) to check whether the R(x) is correct or not. (Unless this read out, CRC  
check itself works.)  
3) If the result of D(x) divided by G(x) is equal to R(x), SO outputs “H” from the next rising edge of RQ to falling edge of  
RQ . (However, SO read out from micro-controller is prior to this signal. Refrain from a runtime read out while doing CRC  
check.) If R(x) is not equal to the result, it outputs “L”.  
4) If you want to check other serial data, then repeat action form 1) to 3).  
Note) In the case of detecting CRC error in runtime “CRAM rewrite” (A4h) or “OFRAM rewrite“(94h), the possibility of writing  
data to the wrong address exists.  
* Specific order of data translates.  
1) Write the register  
The rest R(x) data writing is using 3-byte/unit (24bit)  
Data translate order.  
cCommand code  
B6h  
dUpper 8bit of R(x) (D15 * * * * * * D8)  
eLower 8bit of R(x) ( D7 * * * * * * D0)  
2) Read out the register  
The rest R(x) data reading out is 3-byte/unit (24bit)  
Data translate order  
cCommand code  
D6h  
dUpper 8bit of R(x) (D15 * * * * * * D8)  
eLower 8bit of R(x) ( D7 * * * * * * D0)  
[MS0369-E00]  
- 57 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
R(x)  
RQ  
SCLK  
SI  
B6h  
D15 *** D0  
D6h  
D15 *** D0  
SO  
Fig.8-32 Example: Control register writing, reading  
3) CRC Check  
D(x)  
Rest of D(x)/G(x)  
RQ  
SCLK  
10100000 000000A9A8 A7***A1 A0 D15*** D0  
B6h  
R(x)  
SI  
SO  
The rest (D(x)/G(x))=R(x)  
Fig.8-33 The rest of D(x)/G(x)=R(x) CRC Check example.  
4) Example of the R(x) made from D(x).  
Examples  
D(X)  
D6ABCDh  
D2A5A5h  
A855557777AAAA0000FFFFh  
R(X)  
1
2
3
1E51h  
0C30h  
2297h  
6) ADC high-pass filter  
The AK7746 incorporates a digital high-pass filter (HPF) for canceling DC offset in the ADC. The HPF cut-off frequency is  
about 1 Hz (fs = 48 kHz). This cut-off frequency is proportional to the sampling frequency (fs).  
96kHz  
1.86Hz  
48kHz  
0.93Hz  
44.1kHz  
0.86Hz  
32kHz  
0.62Hz  
8kHz  
0.16Hz  
Cut-off frequency  
[MS0369-E00]  
- 58 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
9. System Design  
(1) Connection example  
Digital +3.3V  
0.1µ  
0.1µ  
0.1µ  
10µ  
28  
DVDD  
36  
DVDD  
11  
DVDD  
27  
SMODE  
CKS1  
DRDY  
SO  
18  
16  
17  
CLOCK  
44  
43  
CONTROL  
CKS0  
RDY  
RQ  
Micom  
13  
14  
15  
12  
Rd  
SI  
I/F  
33  
34  
XTO  
XTI  
CL  
CL  
SCLK  
CS  
AK7746  
25  
LRCLK_I  
BITCLK_I  
INIT_RESET  
S_RESET  
19  
20  
RESET  
26  
CONTROL  
32  
30  
31  
CLKO  
TESTI  
45  
BITCLK_O  
LRCLK_O  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
24  
23  
22  
21  
Analog Lch+  
Analog Lch-  
Analog Rch+  
Analog Rch-  
64  
AINL+  
AINL-  
AINR+  
AINR-  
63  
62  
61  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4  
SDOUTA2  
SDOUTA1  
37  
38  
39  
40  
41  
42  
Audio  
I/F  
2,4,6,8,51,53,55  
1,3,5,7,50,52,54  
Analog Lch  
Analog Rch  
AINL2~8  
AINR2~8  
Analog Mono  
49  
AINM  
LFLT  
22k  
48  
1.5n  
VCOM  
58  
0.1µ  
10µ  
Analog +3.3V  
46  
56  
AVDD  
10µ  
0.1µ  
AVSS  
VREFL  
BVSS  
47,60  
59  
AVDD  
10µ  
0.1µ  
57  
VREFH  
9
10,29,35 DVSS  
Fig.9-1  
- 59 -  
[MS0369-E00]  
2004/12  
[ASAHI KASEI]  
[AK7746]  
(2) Peripheral circuit  
1) Ground and power supply  
To minimize digital noise coupling, AVDD and DVDD should be individually de-coupled at the AK7746. System analog  
power is supplied to AVDD.  
Generally, power supply and ground wires must be connected separately according to the analog and digital systems.  
Connect them at a position close to the power source on the PCB board. Decoupling capacitors and ceramic capacitors of small  
capacity in particular, should be connected at positions as close as possible to the AK7746.  
2) Reference voltage  
The input voltage difference between the VREFH pin and the AVSS pin determines the full scale of analog input. Normally,  
connect AVDD to VREFH, and connect 0.1µF ceramic capacitors from them to AVSS. To shut out high frequency noise, connect a  
0.1µF ceramic capacitor in parallel with an appropriate 10µF electrolytic capacitor between this pin and AVSS. The ceramic capacitor  
in particular should be connected as close as possible to the pin. To avoid coupling to the AK7746, digital signals and clock signals  
should be kept away as far as possible from the VREFH pin.  
VCOM is used as the common voltage of the analog signal.To filter out high frequency noise, connect a 0.1µF ceramic capacitor in  
parallel with an appropriate 10µF electrolytic capacitor between this pin and AVSS. The ceramic capacitor should be connected as  
close as possible to the pin. Do not draw current from the VCOM pin.  
3) Analog input  
Analog input signals are applied to the modulator through the differential input pins of each channel. The input voltage is  
equal to the differential voltage between AIN+ and AIN- (VAIN = (AIN+) - (AIN-)), and the input range is ±FS = ±(VRADH -  
VRADL) × 2.0/3.3. When VRADH = 3.3V and VRADL = 0V, the input range is within ±2.00V. The output code format is given in  
terms of 2's complements.  
When fs = 48 kHz, the AK7746 samples the analog input at 3.072 MHz. The digital filter eliminates noise from 30 kHz to  
3.042 MHz. However, noise is not rejected in the bandwidth close to 3.072 MHz. Most audio signals do not have large noise in the  
vicinity of 3.072 MHz, so a simple RC filter is sufficient.  
The analog source voltage to the AK7746 is +3.3V(Typ.). Voltage of AVDD + 0.3 V or more, voltage of AVSS - 0.3 V or  
less, and current of 10 mA or more must not be applied to analog input pins (AINL and AINR). Excessive current will damage the  
internal protection circuit and will cause latch-up, thereby damaging the IC. Accordingly, if the surrounding analog circuit voltage is  
±15 V, the analog input pins must be protected from signals with the absolute maximum rating or more.  
10k  
10k  
47p  
22µ  
2.00Vpp  
10k  
+10V  
-10V  
+
10k  
47p  
-
+
Signal  
+
4.7µ  
+
-
+
AIN+  
NJM5532D  
AIN-  
4.7µ  
2.00Vpp  
Fig.9-2 Example of the input buffer circuit ( Differensial input )  
The internal center level ( AVDD/2 ) for the analog input pins of the AK7746 (AINL+, AINL-, AINR+, AINR-, AINL2~L8,  
AINR2~R8 and AINM) is made after initial reset release.  
4) Connection to digital circuit  
To minimize the noise resulting from the digital circuit, connect low voltage logic to the digital output. The applicable logic  
family includes the 74LV, 74LV-A, 74ALVC and 74AVC series.  
[MS0369-E00]  
- 60 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
10. Package  
64pin LQFP  
(Unit : mm )  
12.0±0.3  
Max 1.70  
1.40  
10.0  
0.10±0.10  
33  
32  
48  
49  
64  
17  
16  
1
0.17±0.05  
0.21±0.05  
0.5  
0.10  
M
1.0  
0°~10°  
0.45 ±0.2  
0.10  
Material & Lead finish  
Package: Epoxy  
Lead-frame:  
Copper  
Lead-finish:  
Soldering plate  
[MS0369-E00]  
- 61 -  
2004/12  
[ASAHI KASEI]  
[AK7746]  
11. Marking  
AKM  
AK7746VT  
XXXXXXX  
1) Pin #1 indication  
2) Date Code: XXXXXXX(7 digits)  
3) Marking Code: AK7746VT  
4) Asahi Kasei Logo  
IMPORTANT NOTICE  
z
These products and their specifications are subject to change without notice. Before  
considering any use or application, consult the Asahi Kasei Microsystems Co.,  
Ltd.(AKM) sales office or authorized distributor concerning their current status.  
AKM assumes no liability for infringement of any patent, intellectual property, or other  
right in the application or use of any information contained herein.  
z
z
Any export of these products, or devices or systems containing them, may require an  
export license or other official approval under the law and regulations of the country of  
export pertaining to customs and tariffs, currency exchange, or strategic materials.  
AKM products are neither intended nor authorized for use as critical components in any  
safety, life support, or other hazard related device or system, and AKM assumes no  
responsibility relating to any such use, except with the express written consent of the  
Representative Director of AKM. As used here:  
z
(a): A hazard related device or system is one designed or intended for life support or  
maintenance of safety or for applications in medicine, aerospace, nuclear energy, or  
other fields, in which its failure to function or perform may reasonably be expected to  
result in loss of life or in significant injury or damage to person or property.  
(b): A critical component is one whose failure to function or perform may reasonably be  
expected to result, whether directly or indirectly, in the loss of the safety or effectiveness  
of the device or system containing it, and which must therefore meet very high standards  
of performance and reliability.  
z
It is the responsibility of the buyer or distributor of an AKM product who distributes,  
disposes of, or otherwise places the product with a third party to notify that party in  
advance of the above content and conditions, and the buyer or distributor agrees to  
assume any and all responsibility and liability for and hold AKM harmless from any and  
all claims arising from the use of said product in the absence of such notification.  
[MS0369-E00]  
- 62 -  
2004/12  

相关型号:

AK7750

Audio DSP with Built-in Hands-Free Phone Features
AKM

AK7750VT

Audio DSP with Built-in Hands-Free Phone Features
AKM

AK7752

Audio/Hands Free DSP with Stereo CODEC
AKM

AK7752VQ

Audio/Hands Free DSP with Stereo CODEC
AKM

AK7753ET

Telecom Circuit, 1-Func, PQFP64, LEAD FREE, LQFP-64
AKM

AK7754

Audio DSP with Stereo CODEC MIC/HP-AMP
AKM

AK7754EN

Audio DSP with Stereo CODEC MIC/HP-AMP
AKM

AK7755

DSP with Mono ADC Stereo CODEC Mic/Lineout Amp
AKM

AK7755EN

Consumer Circuit, PQCC36, QFN-36
AKM

AK7755EN_16

DSP with Mono ADC Stereo CODEC Mic/Lineout Amp
AKM

AK7756

DSP with Mono CODEC + Mic/Lineout Amp
AKM

AK7756EN

DSP with Mono CODEC + Mic/Lineout Amp
AKM