AK7750VT [AKM]

Audio DSP with Built-in Hands-Free Phone Features; 音频DSP ,内置免提电话功能
AK7750VT
型号: AK7750VT
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Audio DSP with Built-in Hands-Free Phone Features
音频DSP ,内置免提电话功能

消费电路 商用集成电路 电话
文件: 总77页 (文件大小:803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[ASAHI KASEI]  
[AK7750]  
AK7750  
Audio DSP with Built-in Hands-Free Phone Features  
General Description  
The AK7750 is a highly integrated Audio Digital Signal Processor with a stereo audio codec in one chip.  
The AK7750 combines an on-chip DSP and an ARM7 processor that can be used to create Echo  
Cancellation (EC) and Noise Cancellation (NC) functions. These functions make the AK7750 a perfect  
choice for hands-free phones that require suppressing acoustic echo and noise. Voice quality and noise  
suppression levels can be precisely adjusted by externally setting various parameters. Additionally, no  
external Flash, ROM, or RAM is required as memories for Echo and Noise Cancellation are integrated on-  
chip.  
By using an external microprocessor to change algorithms, the AK7750 can be used in other audio  
applications including sound field enhancements like surround, volume control, parametric equalizer and  
speaker compensation. These functions are simplified by the AK7750 through the integration of 64K bit  
delay data RAM, a high-performance audio Codec with sample rates from 8 KHz ~ 48 KHz, and 8-  
channels of Digital Audio input / output.  
What’s more, the latest Surround Decoders can be also be implemented by using the certified algorithms  
from various technology partners.  
Features  
[DSP Block]  
„ Data Word Length: 24 bit  
„ Machine Cycle: 27.1 ns (fastest) (768fs at 48 KHz)  
„ Number of Steps: 768 steps max. at fs = 48 KHz  
4608 steps max. at fs = 8 KHz  
192 steps max. at fs = 192 KHz  
„ Multiply: 24 x 16 -> 40 bit (enables double precision operation)  
„ Division: 24 / 24 -> 24 bit or 16 bit  
„ ALU: 34 bit arithmetic operation (overflow margin 4 bits)  
24 bit arithmetic & logic operations  
„ Shift: 1,2,3,4,6,8,15 Bit Left Shift with indirect shift function  
1,2,3,4,8,14,15 bit Right Shift with indirect shift function  
„ Program RAM (PRAM): 768 words x 32 bit  
„ Coefficient RAM (CRAM): 1024 words x 16 bit  
„ Data RAM (DRAM): 256 words x 24 bit  
„ Offset RAM (OFRAM): 48 words x 12 bit  
„ Delay RAM (DLRAM): 64K bits (following 3 types are selectable):  
- 1K words 24 bit  
- 1K words 24 bit & 2K words 16 bit (limited pointer capability)  
- 4kword 16bit  
Data Compression/Expansion circuits for 16 bit data handling are integrated on-chip  
(Dynamic-range: 23 bit equivalent, S/N+D: 15 bit equivalent (FS)).  
- In Hands-free mode, Delay RAM cannot be used.  
„ Registers: 34 bits x 4 (ACC)  
[for ALU]  
24 bit x 8 (TMP)  
[for DBUS Interface]  
24 bit x 6 stage stacks (PTMP) [for DBUS Interface]  
„ On-chip ARM7TDMI Processor:  
[MS0296-E-00]  
1
2005/03  
[ASAHI KASEI]  
[AK7750]  
[ADC Block]  
„ 24 Bit 2 Channels (fs: 8 KHz ~ 48 KHz)  
„ S/N+D: 91 dB (fs = 48 KHz)  
„ Dynamic Range & S/N: 98 dBA (fs = 48 KHz)  
„ On-chip DC offset canceling High Pass Filter  
[DAC Block]  
„ 24 Bit 2 Channels  
„ S/N+D: 86 dB (fs = 48 KHz)  
„ Dynamic Range & S/N: 98 dBA (fs = 48 KHz)  
[Input/Output Digital Interface]  
„ Serial Data Input 8 channels (10 channels with on-board codec.)  
„ Serial Data Output 6 channels (8 channels with on-board codec.)  
„ Microprocessor Interface: 1 set of inputs and outputs  
[General]  
„ On-chip PLL  
„ On-chip EEPROM (AK6512C, AK6514C) Interface  
„ Single 3.3 V +/- 0.3 V Power Supply  
„ Operating Temperature Range: -40°C to +85°C  
„ 64-Pin LQFP  
[MS0296-E-00]  
2
2005/03  
[ASAHI KASEI]  
[AK7750]  
Block Diagram  
(1) Hands-Free Mode Diagram  
DSP Block  
A/D  
Speaker  
D/A  
Filter  
Tel. Line  
Echo  
Canceller  
VAD  
VAD  
Ctrl.  
+
Mic.  
Filter  
Spectrum  
A/D  
iFFT  
FFT  
Filter  
Tel. Line  
D/A  
Subtraction  
voice  
SW  
Noise Canceller  
ARM Processor  
I/F  
Digital  
OUT(8ch)  
RAM  
ROM  
PLL  
Digital  
IN(8ch)  
µP  
I/F  
EEPROM  
Block Diagram  
(2) Audio Surround Mode Diagram  
DSP Block  
A/D  
Speaker  
D/A  
Audio_in  
Sound processing  
(EQ,Surround,…)  
Audio_in  
A/D  
Speaker  
D/A  
voice  
SW  
VAD  
I/F  
Digital  
ROM  
RAM  
OUT(6(8))ch)  
Spectrum  
iFFT  
FFT  
Digital  
IN(8(10))ch)  
Subtraction  
PLL  
Noise Canceller  
ARM Processor  
OFF  
µP  
I/F  
EEPROM  
Block Diagram  
[MS0296-E-00]  
3
2005/03  
[ASAHI KASEI]  
[AK7750]  
(2) Total Block Diagram  
1) EESEL = “ L “  
AINR+  
AINR-  
VREFL VCOM VREFH  
AOUTL  
AOUTR  
pull down  
Hi-z  
AVDD  
AVSS  
REF  
DAC  
ADC  
@ CS ="H"  
BVSS  
SDATA_AD  
SDATA_DA  
ctrl reg sw  
SWIA  
DVDD  
DVSS  
SWQD  
SWQ4  
JX0/SDIN5A  
SDIN4/JX1  
SDIN3/JX2  
SDIN5  
SDIN4  
OUT4E  
SDOUT4  
SDOUT3  
SDOUT4A  
HF  
SDOUT3  
SDOUT2  
SDOUT1  
SDIN3  
SDIN2  
HF  
OUT3E_N  
SDOUT2  
SDOUT1  
SDIN2  
SDIN1  
OUT2E_N  
OUT1E_N  
SDIN1  
JX0  
SWJX0_N  
RQ  
SCLK  
SI  
SWJX1  
SWJX2  
JX1  
SO  
JX2  
RDY  
DRDY  
DSP  
HFST  
SDOUTH  
SDINH  
ARM  
HFST_N  
HFST  
TESTI1  
TESTI2  
EEST  
EEPIF  
EESI  
INIT_RESET  
CK_RESET  
CONTROLLER  
EECK  
EECS_N  
EESO  
S_RESET  
CS  
EEADR  
EESEL="L"  
CKSX  
XTI  
PLL&DIVIDER  
XTO  
CLKO  
CKS1  
CKS0  
BITCLK_I  
LRCLK_I  
LRCLK_O BITCLK_O  
SMODE  
LFLT  
The above shows a simplified AK 7750 block diagram. It does not necessarily show the circuit diagram.  
[MS0296-E-00]  
4
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) EESEL = “ H “  
AINL+ AINL- AINR+ AINR-  
VREFL VCOM VREFH  
AOUTL  
AOUTR  
pull down  
AVDD  
AVSS  
REF  
DAC  
ADC  
ctrl reg sw  
BVSS  
SDATA_AD  
SDATA_DA  
SWIA  
DVDD  
SWQD  
SWQ4  
DVSS  
JX0/SDIN5A  
SDIN5  
SDIN4  
OUT4E  
SDOUT4  
SDOUT3  
SDOUT4A  
SDIN4/JX1  
SDIN3/JX2  
SDIN2  
HF  
SDOUT3  
SDOUT2  
SDIN3  
SDIN2  
HF  
OUT3E_N  
OUT2E_N  
OUT1E_N  
SDOUT2  
SDOUT1  
SDOUT1  
SDIN1  
JX0  
SDIN1  
SWJX0_N  
RQ  
SCLK  
SI  
SWJX1  
SWJX2  
JX1  
JX2  
SO  
RDY  
DRDY  
HFST  
RDY/EESI  
DSP  
DRDY/EECK  
SDOUTH  
SDINH  
HFST  
SWEE  
ARM  
HFST_N/EEST  
TESTI1  
EEST  
EESI  
TESTI2  
INIT_RESET  
CK_RESET  
EEPIF  
CONTROLLER  
EECK  
EECK_N  
S_RESET  
EESO  
EEADR  
EESEL="H"  
CKSX="H"  
CKS1  
XTI  
PLL&DIVIDER  
XTO  
CLKO  
CKS0  
SMODE  
LRCLK BITCLK  
LFLT  
The above shows a simplified AK 7750 block diagram. It does not necessarily show the circuit diagram.  
[MS0296-E-00]  
5
2005/03  
[ASAHI KASEI]  
[AK7750]  
(3) DSP Block Diagram  
DP0,DP1  
CP0,CP1  
DP0,DP1  
DLRAM  
1kw × 24bit or 4kw × 16bit  
1kw × 24bit & 2kw × 16bit  
OFRAM  
48w × 12bit  
DRAM  
CRAM  
256w × 24bit  
1024w × 16bit  
CMP(comp/decomp)  
CBUS(16bit)  
DBUS(24bit)  
Micon I/F  
Control  
MPX16  
X
MPX24  
Serial I/F  
Y
PRAM  
DEC  
Multiply  
768w × 32bit  
16bit × 24bit 40bit  
PC  
Stack : 1level  
24bit  
40bit  
TMP 8 × 24bit  
PTMP(LIFO) 6 × 24bit  
MUL  
DBUS  
SHIFT  
34bit  
SDIN5A or from ADC  
SDIN4  
2 × 24/20/16bit  
2 × 24/20/16bit  
2 × 24/20/16bit  
2 × 24/20/16bit  
2 × 24/20/16bit  
34bit  
A
B
SDIN3H or from ARM  
SDIN2  
ALU  
34bit  
Overflow Margin: 4bit  
SDIN1  
SDOUT4A or to DAC  
DR0  
3
2 × 24bit  
24bit  
or to ARM  
SDOUT3  
2 × 24bit  
2 × 24bit  
Over Flow Data  
Generator  
SDOUT2  
SDOUT1  
2 × 24bit  
Division  
24÷224or16  
Peak Detector  
[MS0296-E-00]  
6
2005/03  
[ASAHI KASEI]  
[AK7750]  
Input/Output Pin Description  
(1) Pin Assignment  
Note) *** indicates Pulled-down pins ( xxx : pin name)  
TESTI2  
EESEL  
TESTI1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
CKS0  
CKS1  
BVSS  
DVSS  
DVDD  
CKSX  
SMODE  
SCLK  
SI  
2
3
4
5
6
7
SDOUT4A  
SDOUT3  
SDOUT2  
SDOUT1  
DVDD  
64pin LQFP  
(TOP VIEW)  
DVSS  
BVSS  
DVSS  
DVDD  
8
9
10  
11  
12  
13  
14  
15  
16  
SO  
RQ  
CLKO  
BITCLK_O/BITCLK  
LRCLK_O/ EECS  
BITCLK_I/EEADR  
LRCLK_I/LRCLK  
DVDD  
DVSS  
XTI  
XTO  
*** pins (*** is pin name) are pulled down to the digital ground of the device INTERNALLY. The words,  
pulled-down” with italic type characters in the following “Pin Functional Description” are used to clarify this  
function.  
[MS0296-E-00]  
7
2005/03  
[ASAHI KASEI]  
[AK7750]  
(3) Pin Functional Description  
Pin  
NO.  
1
Pin Name  
I/O  
Function  
Pin Classification  
TESTI2  
EESEL  
I Test pin (pulled-down). Connect to DVSS  
Test  
Control mode select pin (pulled-down)  
EESEL=“L”: for general use  
2
I
Control  
EESEL=“H”: program can be downloaded to the AKM’s  
EEPROMs, AK6512C, AK6514C.  
EESEL pin must be fixed to either “L” or “H” level.  
3
4
SDOUT4A  
SDOUT3  
O DSP Serial Data Output pin  
- MSB-justified 24 Bit data is output.  
- ADC Data output, selected by Control Register setting.  
O DSP Serial Data Output pin  
- MSB-justified 24 Bit data is output.  
- “L” is output during the hands-free operation.  
O DSP Serial Data Output pin  
- MSB-justified 24 Bit data is output.  
O DSP Serial Data Output pin  
- MSB-justified 24 Bit data is output.  
- Digital Power Supply pin 3.3 V (typ)  
- Digital Ground pin 0 V  
Digital  
Serial data output  
5
6
SDOUT2  
SDOUT1  
7
8
9
DVDD  
DVSS  
BVSS  
Digital Power Supply  
Digital Power Supply  
Analog Power Supply  
- Ground pin (silicon substrate potential)  
Connect to AVSS.  
10  
11  
12  
DVSS  
DVDD  
CLKO  
- Digital Ground pin 0 V  
Digital Power Supply  
Digital Power Supply  
Clock Output  
- Digital Power Supply pin 3.3 V (typ)  
O Clock Output pin  
Set by Control Register  
13  
14  
BITCLK_O O Serial Bit Clock Output pin  
System Clock  
(EESEL=”L”)  
SMODE=”H”: 64fs clock is output during master mode  
operation.  
SMODE=”L”: BITCLK-I clock is output during slave mode  
operation (except for DIF mode 5 and 6)  
I/O Serial Bit Clock Input/Output pin  
SMODE=”H”: 64fs clock is output during master mode  
operation.  
BITCLK  
System Clock  
(EESEL=”H”)  
SMODE=”L”: 64fs clock is input during slave mode operation  
(48fs clock can be output, except when using  
CKSX=L)  
LRCLK_O  
O L/R Channel Select Output pin  
System Clock  
EEP  
(EESEL=”L”)  
SMODE=”H”: 1fs clock is output during master mode  
operation.  
SMODE=”L”: LRCLK-I clock is output during slave mode  
operation (except for DIF mode 5 and 6).  
O EEPROM Chip Select Output pin  
EECS  
(EESEL=”H”)  
Connect to CS pin of AK6512C/14C.  
[MS0296-E-00]  
8
2005/03  
[ASAHI KASEI]  
[AK7750]  
Pin Pin Name  
NO.  
I/O  
Function  
Pin Classification  
Sytem Clock  
15 BITCLK_I  
(EESEL=”L”)  
I Serial Bit Clock Input pin  
SMODE=”H”: When master mode is used, connect this pin to  
DVSS.  
SMODE=”L”: 64fs clock is input during slave mode operation.  
(48fs clock can be input except for CKSX=”L”).  
BITCLK-I (64fs) can be used as master clock  
(CKSX=”L”) during slave mode operation  
EEADR  
I EEP Address Select pin  
EEP  
(EESEL=”H”)  
AK6512C: used at EEADR=”L”.  
AK6514C: read data starting at 0000h when EEADR=”L”.  
Read data starting at 2000h when EEADR=”H”.  
I L/R Channel Select Input pin  
16 LRCLK_I  
(EESEL=”L”)  
System Clock  
SMODE=”H”: When master mode is used, connect this pin to  
DVSS.  
SMODE=”L”: 1fs clock is input during slave mode operation.  
LRCLK  
I/O L/R Channel Select Input/Output pin  
SMODE=”H”: 1fs clock is output during master mode operation  
SMODE=”L”: 1fs clock is input during slave mode operation  
O Output Data Ready pin (Hi-Z)  
System Clock  
(EESEL=”H”)  
17 DRDY  
(EESEL=”H”)  
µC  
For microprocessor interface  
Hi-Z state when CS =”H”.  
DRDY/EECK  
(EESEL=”H”)  
O
Output Data Ready pin for µC interface /  
EEPROM Serial Data Output pin.  
EEP/µC  
Connect this pin to SCK pin of AK6512C/14C.  
After an EEPROM data read, (EEST transition from “L” to “H”),  
this pin is automatically switched to DRDY pin.  
External Conditional pin/DSP Serial Data Input pin (pulled-  
down).  
18 JX0/SDIN5A  
Digital  
Conditional input /  
- For normal use, this is the external conditional jump pin Serial data input  
(JXO).  
- Input to the DSP’s SDIN5 port is possible by setting a  
Control Register (normally SDIN5 is connected to ADC  
Serial Output, refer to block diagram). Supports MSB-  
justified 24 Bit /LSB-justified 24 Bit, 20 Bit, 16 Bit data  
formats.  
19 SDIN4/JX1  
I DSP Serial Data Input pin/External Conditional pin (pulled-  
Digital  
down)  
Serial data input  
- Supports MSB-justified 24Bit /LSB-justified 24Bit, 20Bit, /conditional input  
16bit formats  
- This pin can be used as external conditional jump pin JX1  
by setting a control register  
[MS0296-E-00]  
9
2005/03  
[ASAHI KASEI]  
[AK7750]  
Pin Pin Name  
NO.  
I/O  
Function  
Pin Classification  
20 SDIN3/JX2  
I DSP Serial Data Input pin/External Conditional pin (pulled-  
down)  
Digital  
Serial data input  
- Supports MSB-justified 24 Bit/LSB-justified 24 Bit, 20 Bit, /conditional input  
and 16 Bit data formats.  
- This pin can be used as external conditional jump pin JX2  
by setting a control register.  
- This pin cannot be used as a Serial Data input pin nor  
external conditional pin during hands-free mode.  
21 SDIN2  
22 SDIN1  
I
I
Digital  
DSP Serial Data Input pin (pulled-down)  
Serial Data Input  
Supports MSB-justified 24 Bit/ LSB-justified 24 Bit, 20 Bit, and  
16 Bit data format.  
DSP Serial Data Input pin (pulled-down)  
Supports MSB-justified 24 Bit/ LSB-justified 24 Bit, 20 Bit, and  
16 Bit data format.  
23 DVSS  
24 DVDD  
- Digital Ground pin 0 V  
Digital Power Supply  
- Digital Power Supply pin 3.3 V (typ)  
I Initial Reset N pin (for initialization)  
This is used to initialize the AK7750.This is also used to  
change CKS1 and CKS0 pin settings and to change XTI input  
frequency.  
25  
Reset  
INIT_RESET  
26  
I
CK Reset N pin  
CK_RESET  
This pin is used while S_RESET is at “low” to change XTI  
input frequency and to change CKS2, CKS1, CKS0 settings.  
CK_RESET bit in control register has similar function.  
When CK_RESET bit is used, CK_RESET pin must be  
commonly controlled with INIT_RESET pin or it must be set  
to “high”.  
27  
I System Reset N pin  
S_RESET  
28 DVDD  
29 DVSS  
- Digital Power Supply pin 3.3 V (typ)  
- Digital Ground pin 0 V  
Digital Power Supply  
Digital Power Supply  
µC  
30  
I
Chip Select pin for µC interface (pulled-down)  
CS  
Leave open or connect to DVSS for normal operation  
When CS =”H”, data on SI pin is not written and SO, RDY,  
DRDY pins become Hi-Z state.  
(EESEL=”L”)  
This function is not available at EESEL=”H”.  
EESO  
I
EEP  
EEPROM Serial Data Output pin (pulled-down)  
(EESEL=”H”)  
Connect this pin to SO pin of AK6512C / 14C.  
O Hands-Free Status pin  
31  
µC  
HFST  
(EESEL=”L”)  
Normally at “H” but when an error occurs, it switches to “L”  
level.  
O Hands-Free Status pin / EEPROM write status pin  
Normally at “H” but when an error occurs, it switches to “L”.  
Level (SWEE bit = 0 in control register).  
µC /EEP  
HFST  
EEST  
(EESEL=”H”)  
When data read from EEPROM is complete, EEST changes  
from “L” to “H”. The µC input interface is enabled (SWEE bit =  
1 in control register).  
[MS0296-E-00]  
10  
2005/03  
[ASAHI KASEI]  
[AK7750]  
Pin Pin Name  
NO.  
32 RDY  
(EESEL=”L”)  
RDY/EESI  
(EESEL=”H”)  
I/O  
Function  
Pin Classification  
µC  
O Data Write Ready pin for µC Interface (Hi-Z)  
This pin becomes Hi-Z when CS =”H”.  
O Data Write Ready pin for uC interface/  
EEP/µC  
EEPROM Serial Data Input Pin  
Connect this pin to SI pin of AK6512C/14C.  
When data read from EEPROM is complete (EEST changes  
from “L” to “H”), this pin is automatically switched to the RDY  
pin function.  
33 XTO  
34 XTI  
O Oscillator Circuit Output pin  
System Clock  
When a quartz crystal oscillator is used, it is connected  
between XTI pin and XTO pin.  
When an external clock is used, keep this pin open.  
I Oscillator Circuit Output pin  
When a quartz crystal oscillator is used, it is connected  
between XTI pin and XTO pin.  
An external clock should be fed to this pin when no quartz  
crystal oscillator is used.  
35 DVSS  
36 DVDD  
- Digital Ground pin 0 V  
Digital Power Supply  
- Digital Power Supply pin 3.3 V (typ)  
I Request N pin for µC Interface  
37  
RQ  
µC  
µC interface is enabled when RQ =”L”. Read operations  
during RUN mode should be made when RQ =”H”.  
RQ should be kept “H” during the reset operation and when  
an external µC is not used.  
38 SO  
39 SI  
O Serial Data Output pin for µC interface  
µC  
This pin becomes Hi-Z state at CS =”H” when EESEL is at “L”.  
I Serial Data Input/Serial Data Output Control pin for µC µC  
interface  
If no data is input to this pin or it is not used as Serial Data  
Output Control pin, set SI at “L”.  
40 SCLK  
I Serial Data Clock pin for µC interface  
If no clock is used, set SCLK at “H”.  
I Slave / Master Mode Select pin  
SMODE=”L”: Slave mode  
µC  
41 SMODE  
Control  
SMODE=”H”: Master mode  
42 CKSX  
I Master Clock Select pin  
CKSX=”H”:XTI, CKSX=”L”:BITCLK_I  
For normal operation, CKSX is set to “H”.  
- Digital Power Supply pin 3.3 V (typ)  
- Digital Ground pin 0 V  
43 DVDD  
44 DVSS  
45 BVSS  
Digital Power Supply  
Analog Power Supply  
- Ground pin (silicon substrate potential)  
Tie this pin to AVSS.  
[MS0296-E-00]  
11  
2005/03  
[ASAHI KASEI]  
[AK7750]  
Pin Pin Name  
NO.  
46 CKS1  
47 CKS0  
48 TESTI1  
I/O  
Function  
Pin Classification  
Control  
I Master Clock Set pin (pulled-down)  
I Master Clock Set pin (pulled-down)  
I Test pin (pulled-down)  
Test  
Tie this pin to DVSS.  
49 LFLT  
- PLL RC component connect pin  
Analog Block  
A serially connected resistor (R=22k) and capacitor  
(C=1.5nF) pair is connected to this pin (when PLL is not used  
at all, tie this pin to AVSS).  
50 AVDD  
51 AVSS  
52 AVSS  
53 AOUTR  
54 AOUTL  
55 AVDD  
56 AVDD  
57 VREFH  
- Analog Power Supply pin 3.3 V ( typ ).  
- Analog Ground pin 0 V (silicon substrate potential)  
- Analog Ground pin 0 V (silicon substrate potential)  
O DAC R-ch Analog Output pin  
O DAC L-ch Analog Output pin  
- Analog Power Supply pin 3.3 V (typ).  
- Analog Power Supply pin 3.3 V (typ).  
I Analog Reference Voltage Input pin  
This pin is normally tied to AVDD. Connect Capacitors of 0.1  
uF and 10 uF between this pin and VSS.  
58 VCOM  
O Analog Common Voltage Output pin  
Connect Capacitors of 0.1 uF and 10 uF between this pin and  
VSS. No external circuits should be connected to this pin.  
I Analog Reference Voltage Input pin  
59 VREFL  
Tie this pin to AVSS for normal operation.  
60 AVSS  
61 AINR-  
62 AINR+  
63 AINL-  
64 AINL+  
- Analog Ground pin 0 V (silicon substrate potential)  
I ADC R-ch Analog Inverted Input pin  
I ADC R-ch Analog Non-Inverted Input pin  
I ADC L-ch Analog Inverted Input pin  
I ADC L-ch Analog Non-Inverted Input pin  
Note) Digital input pins should not be kept open, except for pulled-down pins and BITCLK-I and LRCLK-I  
(EESEL=”L”) pins in master mode (pulled-down pins are kept open or connected to DVSS when they are  
not used).  
[MS0296-E-00]  
12  
2005/03  
[ASAHI KASEI]  
[AK7750]  
Absolute maximum rating  
(AVSS, BVSS, DVSS = 0 V: All voltages indicated are relative to the ground.)  
Item  
Symbol  
Min  
Max  
Units  
Power supply voltage  
Analog (AVDD)  
VA  
VD  
-0.3  
-0.3  
4.6  
4.6  
0.3  
V
V
Digital (DVDD)  
|AVSS(BVSS) – DVSS|  
Input current  
Note1  
V
GND  
IIN  
-
mA  
±10  
(Except for power supply pin)  
Analog input voltage  
VINA  
V
AINL+, AINL-, AINR+, AINR-,  
VRADH, VRADL, VRDAH, VRDAL  
Digital input voltage  
-0.3  
VA+0.3  
VIND  
Ta  
-0.3  
-40  
-65  
VA+0.3  
85  
V
°C  
°C  
Operating ambient temperature  
Storage temperature  
Tstg  
150  
Note1) AVSS, BVSS, and DVSS must be same potential.  
WARNING: Operation at or beyond these limits may result in permanent damage of the device. Normal  
operations are not guaranteed under these critical conditions in principle.  
Recommended operating conditions  
(AVSS, BVSS, DVSS = 0 V: All voltages indicated are relative to the ground.)  
Items  
Min  
Typ  
Max  
Units  
Power supply voltage  
AVDD  
VA  
VD  
3.0  
3.3  
3.6  
V
V
DVDD  
3.0  
3.3  
3.6  
Reference voltage (VREF)  
VREFH Note 1)  
VRH  
VRL  
VA  
0.0  
V
V
VREFL Note 2)  
Note 1) VREFH normally connect with AVDD.  
Note 2) VREFLnormally connect with AVSS.  
Note: The analog input voltage and output voltage are proportional to the VREFL and VREFH voltages.  
*) AKM assumes no responsibility for the usage beyond the conditions in this data sheet.  
[MS0296-E-00]  
13  
2005/03  
[ASAHI KASEI]  
[AK7750]  
Electric characteristics  
(1) Analog characteristics  
(Unless otherwise specified, Ta = 25°C; AVDD, DVDD = 3.3V; VREF=AVDD, VREFL=AVSS,  
BITCLK = 64 fs; Signal frequency 1 kHz; measuring frequency = 20 Hz to 20 kHz @48kHz;  
ADC with all differential inputs XTI=12.288MHz; CKSX=”H”; SMODE=”H”);  
Parameter  
Min  
Typ  
Max  
Units  
ADC  
Resolution  
24  
Bits  
Section  
Dynamic characteristics  
S/(N+D) fs = 48kHz (-1dBFS)  
Dynamic range  
(note1)  
(note2)  
80  
91  
dB  
fs = 48kHz (A filter)  
90  
90  
90  
98  
98  
105  
dB  
dB  
dB  
S/N  
fs = 48kHz (A filter)  
Inter-channel isolation (f =1 kHz) (note3)  
DC accuracy  
Inter-channel gain mismatching  
Analog input  
0.1  
0.3  
±1.42  
24  
dB  
Input voltage  
(Note 4)  
(Note 5)  
Vp-p  
kΩ  
Bits  
±1.22  
±1.32  
95  
Input impedance  
Resolution  
DAC  
section  
Dynamic characteristics  
S/(N+D)  
fs = 48kHz (0 dB)  
fs = 48kHz(-60 dB)  
78  
90  
86  
98  
dB  
dB  
Dynamic range  
(A filter)  
(Note 2)  
S/N  
fs = 48kHz (A filter)  
90  
98  
105  
dB  
dB  
90  
Inter-channel isolation (f = 1 kHz)  
DC accuracy  
Inter-channel gain mismatching  
Analog output  
0.2  
0.5  
2.15  
50  
dB  
Output voltage  
Load resistance  
Load capacitance  
(Note 6)  
1.85  
10  
2.00  
Vp-p  
kΩ  
pF  
Note: 1. When using single-ended inputs, this value is not guaranteed.  
2. Indicates S/(N+D) when -60 dB signal is applied.  
3. Inter-channel isolation between L-ch and R-ch at –1 dB FS signal input.  
4. The full scale for analog input voltage (AIN = (AIN+) - (AIN-)) can be represented by  
(±FS = ±(VREFH-VREFL) × 0.4).  
5. Impedance is in inverse proportion to fs.  
6. Full scale output voltage at VREFH = AVDD, VREFL = AVSS  
[MS0296-E-00]  
14  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(2) DC characteristics  
(VDD=AVDD=DVDD=3.0~3.6V,Ta=-40°C~85°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
High level input voltage  
VIH  
VIL  
80%VDD  
V
V
V
V
Low level input voltage  
20%VDD  
VOH  
VDD-0.5  
High level output voltage Iout=-100µA  
Low level output voltage Iout=100µA  
VOL  
0.5  
±10  
Input leak current  
Note 1)  
Iin  
Iid  
Iix  
µA  
µA  
µA  
Input leak current(Pull down pin) Note 1)  
22  
50  
Input leak current  
Note:  
XTI pin  
1. The pull down pins and XTI are not included.  
2. The pull down pins (typ. 150k) is as follows: 1, 2, 18, 19, 20, 21, 22, 30, 46, 47, and 48.  
Note: Regarding the input/output levels in the text, the low level will be represented as "L" or 0, and the  
high level as "H" or 1.  
In principle, "0" and "1" will be used to represent the bus functions (serial/parallel) such as registers.  
(3) Current consumption  
(AVDD=DVDD=3.0~3.6V, Ta=25°C; master clock (XTI)=12.288MHz=256fs[fs=48kHz],with PLL mode;  
Power supply  
Parameter  
Min  
Typ  
Max  
Units  
Power supply current  
note 1)  
Normal Speed  
a) AVDD  
25  
85  
40  
mA  
mA  
b) DVDD  
100  
note 1) DVDD current value may change, depending on the content of DSP program executed and clock  
frequency.  
[MS0296-E-00]  
15  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(4) Digital filter characteristics  
Listed values are copied as reference data from the designed values and are not the guaranteed values.  
They are guaranteed-by-design after passing the IC tester’s digital functional test..  
4-1) ADC Section :  
(Ta=25°C; AVDD,DVDD =3.0~3.6V; fs=48kHz; HPF=off  
Note 1)  
parameter  
Min  
Typ  
Max  
21.5  
-
Units  
kHz  
kHz  
kHz  
kHz  
dB  
PB  
0
-
Pass band  
(±0.005dB) note2)  
24.0  
(-6dB)  
Stop band  
SB  
PR  
26.5  
80  
Pass band ripple Note 2)  
Stop band attenuation Note 3, 4)  
Group delay distortion  
±0.005  
SA  
dB  
0
GD  
GD  
µs  
Ts  
Group delay (Ts=1/fs)  
29.3  
Note:  
1. These frequencies scale with sampling frequency (fs). Not include HPF response.  
2. The pass band is from DC to 21.5kHz when fs = 48kHz.  
3. The stop band is from 26.5kHz to 3.0455MHz when fs = 48kHz.  
4. When fs = 48kHz, the analog modulator samples analog input at 3.072MHz.  
The digital filter does not attenuate the input signal in the multiple bands (n x 3.072MHz ± 21.99kHz;  
n=0, 1, 2, 3...) of the sampling frequency.  
[MS0296-E-00]  
16  
2005/03  
[ASAHI KASEI]  
[AK7750]  
4-2) DAC section  
a) DAF bit = ‘0’ (CONT6 D6)  
(Ta=25°C; AVDD,DVDD =3.0~3.6V; fs=48kHz)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Digital filter  
PB  
0
21.2  
kHz  
kHz  
kHz  
kHz  
dB  
dB  
Ts  
Pass band ±0.08dB  
(-0.28dB)  
-
-
21.7  
24.0  
-
-
(Note 1)  
(Note 1)  
(-6.0dB)  
Stop band  
SB  
PR  
SA  
GD  
26.5  
Pass band ripple  
Stop band attenuation  
±0.04  
47  
-
Group delay (Ts=1/fs) (Note 2)  
Digital filter+SCF  
15  
Amplitude characteristics  
0 to 20.0kHz  
dB  
±0.5  
Note:  
1. The pass band and stop band frequencies are proportional to "fs" (system sampling rate), and  
represents PB=0.4535fs(@-0.06dB) and SB=0.546fs, respectively.  
2. The digital filter’s delay is calculated as the time from setting 24 Bit data into the input register until an  
analog signal is output.  
b) DAF bit = ‘1’ (CONT6 D6)  
(Ta=25°C; AVDD,DVDD =3.0~3.6V; fs=48kHz)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Digital filter  
PB  
0
20.6  
kHz  
kHz  
kHz  
kHz  
dB  
dB  
Ts  
Pass band ±0.02dB  
(-0.48dB)  
-
-
21.7  
24.0  
-
-
(Note 1)  
(Note 1)  
(-6.0dB)  
Stop band  
SB  
PR  
SA  
GD  
27.4  
Pass band ripple  
Stop band attenuation  
±0.01  
59  
-
Group delay (Ts=1/fs) (Note 2)  
Digital filter+SCF  
15  
Amplitude characteristics  
0 to 20.0kHz  
dB  
±0.5  
Note:  
1. The pass band and stop band frequencies are proportional to "fs" (system sampling rate), and  
represents PB=0.4292fs(@-0.06dB) and SB=0.571fs, respectively.  
2. The digital filter’s delay is calculated as the time from setting 24 Bit data into the input register until an  
analog signal is output.  
[MS0296-E-00]  
17  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(5) Switching characteristics  
1) System clock  
(AVDD=DVDD=3.0 to 3.6V,Ta= -40°C to 85°C)  
Parameter  
Maser clock(XTI) @CKSX=”H”  
a) when a crystal oscillator is used  
(note 1)  
Symbol  
min  
typ  
max  
Units  
CKS[1:0]=0h  
fXTI  
fXTI  
fXTI  
-
-
-
11.2896  
12.288  
16.9344  
18.432  
22.5792  
24.576  
-
-
-
MHz  
MHz  
MHz  
CKS[1:0]=1h  
CKS[1:0]=2h  
b)when an external clock is used  
(note 1)  
40  
45  
11.0  
16.5  
22.0  
33.0  
50  
50  
60  
55  
12.33  
18.6  
24.66  
37.0  
%
%
MHz  
MHz  
MHz  
MHz  
Duty factor (18.5MHz)  
(>18.5MHz)  
CKS[1:0]=0h (PLL operation range)  
fXTI  
fXTI  
fXTI  
fXTI  
CKS[1:0]=1h (PLL operation range)  
CKS[1:0]=2h (PLL operation range)  
CKS[1:0]=3h (PLL is not used)  
Clock rise time  
tCR  
6
ns  
Clock fall time  
tCF  
6
ns  
LRCLK_I,LRCLK frequency note2) fs  
8
48  
192  
kHz  
Slave mode: Clock rise time  
tLR  
6
ns  
Slave mode: Clock fall time  
tLF  
6
ns  
BITCLK_I ,BITCLK frequency  
fBCLK  
48  
64  
fs  
(@CKSX=”H”)  
(note3)  
Slave mode: high level width  
Slave mode: high level width  
Slave mode: clock rise time  
Slave mode: clock fall time  
BITCLK_I,BITCLK frequency  
(@CKSX=”L”,SMODE=”L”) (note 4)  
Duty factor  
tBCLKH  
tBCLKL  
tBR  
34  
34  
ns  
ns  
ns  
ns  
fs  
6
6
-
tBF  
fBCLK  
-
64  
50  
40  
34  
34  
60  
%
ns  
ns  
ns  
ns  
Slave mode: high level width  
Slave mode: high level width  
Slave mode: clock rise time  
Slave mode: clock fall time  
note1) CKS1=CKS[1].CKS[0]=CKS0  
tBCLKH  
tBCLKL  
tBR  
6
6
tBF  
note2) LRCLK and sampling rate ( fs ) must be identical.  
note3) 48 fs is used for slave mode ( only 64 fs is available for hands-free mode )  
note4) BITCLK-I or BITCLK is used as clock input. BITCLK must be precisely divided into 64 clocks  
in 1 fs time.  
[MS0296-E-00]  
18  
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) Reset  
(AVDD=DVDD=3.0 to 3.6V,Ta=-40°C to 85°C)  
Parameter  
INIT_RESET  
Symbol  
min  
400  
typ  
max  
Units  
ns  
tRST  
note 1)  
tRST  
tRST  
400  
400  
ns  
ns  
CK_RESET  
S_RESET  
note1) At the power-on, it is OK to keep this pin to “L”. “H” transition must be made after the power-on and  
master clock is full running.  
3) Audio Interface  
(AVDD=DVDD=3.0 to 3.6V,Ta= Ta=-40°C to 85°C, CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Slave mode  
fBCLK  
tBLRD  
tLRBD  
tLRD  
48  
40  
40  
64  
64  
fs  
BITCLK frequency  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time from BITCLK"“ to LRCLK note1)  
Delay time from LRCLK to BITCLK"" note1)  
Delay time from LRCLK to serial data output  
Delay time from BITCLK to serial data output  
Serial data input latch hold time  
80  
80  
tBSOD  
tBSIDS  
tBSIDH  
40  
40  
Serial data input latch setup time  
Master mode  
BITCLK frequency  
fBCLK  
64  
50  
fs  
BITCLK duty factor  
%
tBLRD  
tLRBD  
tLRD  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time from BITCLK"" to LRCLK note1)  
Delay time from LRCLK to BITCLK"" note1)  
Delay time from LRCLK to serial data output  
Delay time from BITCLK to serial data output  
Serial data input latch hold time  
Serial data input latch setup time  
PCM Interface mode (SF/LF)  
LRCLK frequency  
80  
80  
tBSOD  
tBSIDS  
tBSIDH  
40  
40  
fLRCK  
fBCLK  
8
48  
kHz  
fs  
%
64  
50  
BITCLK frequency  
BITCLK duty factor  
tBLRD  
tLRBD  
tLRD  
tBSOD  
tBSIDS  
tBSIDH  
tLCKKH  
tLCLKH  
tLCLKL  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
fs  
Delay time from BITCLK"" to LRCLK note1)  
Delay time from LRCLK to BITCLK"" note1)  
Delay time from LRCLK to serial data output  
Delay time from BITCLK to serial data output  
Serial data input latch hold time  
Serial data input latch setup time  
LRCLK high level width (SF)  
80  
80  
40  
40  
64  
300  
ns  
ns  
LRCLK high level width (LF)  
LRCLK low level width (LF)  
1200  
Note 1) this value is specified such that LRCLK edge and rising edge of BITCLK never overlap  
[MS0296-E-00]  
19  
2005/03  
[ASAHI KASEI]  
[AK7750]  
4) Microprocessor Interface  
(AVDD=DVDD=3.0 to 3.6V,Ta= Ta=-40°C to 85°C, CL=20pF)  
Parameter  
symbol  
min  
typ  
max  
Units  
µC I/F signal  
RQ fall time  
tWRF  
8
ns  
RQ rise time  
SCLK fall time  
SCLK rise time  
SCLK low level width  
SCLK high level width  
tWRR  
tSF  
8
8
8
ns  
ns  
ns  
ns  
ns  
tSR  
tSCLKL  
tSCLKH  
100  
100  
µC AK7750  
S_RESET "" to RQ ""  
RQ "" to S_RESET ""  
RQ high level width  
Time from RQ "" to SCLK""  
Time from SCLK"" to RQ ""  
SI latch setup time  
tREW  
tWRE  
tWRQH  
tWSC  
tSCW  
tSIS  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
note1)  
200  
200  
12×tMCLK  
100  
SI latch hold time  
tSIH  
100  
AK7750 → µC (DBUS output)  
SCLK"" to DRDY""  
Time from SI "" to DRDY""  
SI high level width  
Delay time from SCLK"" to SO output  
Hold time from SCLK "" to SO outout  
tSDR  
3×tMCLK  
3×tMCLK  
ns  
tSIDR  
ns  
ns  
ns  
ns  
tSIH  
3×tMCLK  
tSOS  
tSOH  
100  
100  
AK7750 → µC (RAM DATA read-out)  
SI latch setup time(SI="H")  
tRSISH  
tRSISL  
tRSIH  
tSOD  
30  
30  
30  
ns  
ns  
ns  
ns  
SI latch setup time(SI="L")  
SI latch hold time  
Delay time from SCLK "" to SO output  
AK7750 → µC (CRC result-out)  
Delay time from RQ "" to SO output  
Delay tiem from RQ "" to SO output  
100  
200  
note2)  
note3)  
tRSOC  
tFSOD  
ns  
ns  
50  
CS (EESEL=”L” or open)  
CS fall time  
CS rise time  
Time from S_RESET "" to CS ""  
Time from CS "" to S_RESET ""  
CS high level width  
Time from CS "" to RQ ""  
Time from RQ "" to CS ""  
tCSF  
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCSR  
tWRCS  
tWCSR  
tWCSH  
tWCSRQ  
tWRQCS  
tCSHR  
tCSHS  
400  
400  
800  
400  
400  
CS "" to SO,RDY,DRDY Hi-Z release (RL=10k)  
CS "" to SO,RDY,DRDY Hi-Z (RL=10k)  
600  
600  
EEPROM AK7750(EESEL=”H”)  
EESO latch setup time  
EESO latch hold time  
tEESOS  
tEESOH  
100  
100  
ns  
ns  
Note1: Excluding an external conditional jump at reset.  
Note2: This is a case where the remainder of serial data D( x) ,divided by the Generator Polynomial G (x) is  
equal to R (x). SO becomes “H”.  
Note3: This means that data must be taken into the microprocessor 50 ns earlier than the falling edge of  
RQ (this applies when no read-out is made during RUN).  
[MS0296-E-00]  
20  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(6) Timing waveform  
6-1) System clock  
1/fXTI  
1/fXTI  
tXTI=1/fXTI  
tCF  
XTI  
VIH  
VIL  
tCR  
tLR  
1/fs  
1/fs  
LRCLK  
VIH  
VIL  
tLF  
1/fBCLK  
1/fBCLK  
tBCLK=1/fBCLK  
VIH  
VIL  
BITCLK  
tBR  
tBF  
tBCLKH  
tBCLKL  
6-2) Reset  
INIT RESET  
INIT_RESET  
tRST  
VIL  
CK_RESET  
[MS0296-E-00]  
21  
2005/03  
[ASAHI KASEI]  
[AK7750]  
6-3) Audio Interface  
a) Standard/I2S Compatible Format  
LRCLK  
50%DVDD  
tLRBD  
tBLRD  
50%DVDD  
50%DVDD  
50%DVDD  
BITCLK  
tLRD  
tBSOD  
SDOUT *  
tBSIDS  
tBSIDH  
SDIN *  
SDIN *=SDIN1,SDIN2,SDIN3,SDIN4,SDIN5A  
SDOUT *=SDOUT1,SDOUT2,SDOUT3,SDOUT4  
b) PCM Format  
LRCLK  
tLCLK  
50%DVDD  
tLCLKH  
tLCLKH  
50%DVDD  
50%DVDD  
LRCLK  
BITCLK  
tBLRD  
tLRD  
tLRBD  
tBSOD  
50%DVDD  
50%DVDD  
SDOUT  
SDIN ∗  
tBSIDS  
tBSIDH  
SDIN =SDIN1,SDIN2,SDIN3,SDIN4,SDIN5A  
SDOUT=SDOUT1,SDOUT2,SDOUT3,SDOUT4A  
[MS0296-E-00]  
22  
2005/03  
[ASAHI KASEI]  
[AK7750]  
6-4) µC Interface  
„ µC interface signal  
VIH  
VIL  
RQ  
tWRF  
tSF  
tWRR  
tSR  
VIH  
VIL  
SCLK  
tSCLKL  
tSCLKH  
„ µC AK7750  
tREW  
tWRE  
50%DVDD  
S_RESET  
RQ  
50%DVDD  
50%DVDD  
50%DVDD  
tWRQH  
SCLK  
SI  
tWSC  
tSCW  
tWSC  
tSCW  
tSIS  
tSIH  
Note: Timing is identical in RUN mode except that S_RESET becomes “H.  
[MS0296-E-00]  
23  
2005/03  
[ASAHI KASEI]  
[AK7750]  
„ AK7750 → µC(DBUS output)  
1) DBUS  
24bit output  
DVDD  
50%DVDD  
DVSS  
S_RESET  
DVDD  
RQ  
SI  
50%DVDD  
DVSS  
50%DVDD  
DVSS  
50%DVDD  
tSDR  
tSOH  
DRDY  
SCLK  
SO  
50%DVDD  
50%DVDD  
tSOS  
2) DBUS under 24 Bit output ( SI is used )  
DVDD  
50%DVDD  
DVSS  
S_RESET  
RQ  
DVDD  
50%DVDD  
DVSS  
SI  
50%DVDD  
50%DVDD  
tSIH  
DRDY  
SCLK  
tSIDR  
50%DVDD  
50%DVDD  
tSOS  
SO  
[MS0296-E-00]  
24  
2005/03  
[ASAHI KASEI]  
[AK7750]  
„ AK7750 → µC(RAM DATA read-out)  
50%DVDD  
DVSS  
S_RESET  
50%DVDD  
DVSS  
RQ  
tRSIH  
tRSISL  
50%DVDD  
SI  
tRSISH  
tRSIH  
tRSISL  
SCLK  
SO  
50%DVDD  
50%DVDD  
tSOD  
„ AK7750 → µC(CRC check: remainder of D (x) / G (x) ) = R (x))  
50%DVDD  
50%DVDD  
RQ  
tRSOC  
tFSOC  
SO  
[MS0296-E-00]  
25  
2005/03  
[ASAHI KASEI]  
[AK7750]  
„ CS (EESEL=”L” or OPEN)  
tWRCS  
tWCSR  
50%DVDD  
S_RESET  
CS  
50%DVDD  
50%DVDD  
tWCSH  
RQ  
tWRQCS  
tWCSRQ  
tCSF  
tCSR  
VIH  
50%DVDD  
VIL  
CS  
tCSHR  
tCSHS  
90%DVDD  
50%DVDD  
10%DVDD  
SO,RDY,DRDY  
DVDD  
Measurement  
Circuit  
RL  
SO,RDY,DRDY  
RL  
CL  
„ EEPROM AK7750  
50%DVDD  
50%DVDD  
EECK  
EESO  
tEESOS  
tEESOH  
[MS0296-E-00]  
26  
2005/03  
[ASAHI KASEI]  
[AK7750]  
Functional Description  
( 1 ) Various Pin Setting  
1) CKS1,CKS0 : Master Clock ( MCLK ) Set pin  
CKSX : Master Clock Select pin  
The AK7750 usually operates using a 36.864 MHz Master Clock (MCLK) (or 33.8688 MHz). When CKSX =  
“H”, the XTI input clock is selected by the CKS1 and CKS0 pins.  
In addition to the normal use described above, the AK7750 can also operate using BITCLK-I or BITCLK as  
a master clock input during slave mode operation (SMODE = “L”) by setting CKSX = “L”.  
Since the AK7750 is running in slave mode instead of master mode, certain modes may not be available  
since the AK7750 modes are restricted by the incoming audio clock.  
„ Mode setting by CKSX, CKS1, CKS0 pins  
a ) XTI selection at CKSX = “H”  
fs: sampling frequency  
XTI  
CKS  
XTI  
Internal  
mode [1:0]  
XTI  
Fs:48kHz series  
12.288MHz  
18.432MHz  
24.576MHz  
36.864MHz  
fs:44.1kHzseries  
11.2896MHz  
16.9344MHz  
22.5792MHz  
33.8688MHz  
PLL  
0
1
2
3
0h  
1h  
2h  
3h  
MCLK/3  
MCLK/2  
MCLK*(2/3)  
MCLK  
use  
use  
use  
not use  
note) CKS1 = CKS[1],CKS0 = CKS[0]  
A crystal oscillator cannot be used in XTI mode 3.  
For hands-free mode, use fs = 48 KHz.  
Sample-rate setting is performed using the (CONT0) control register.  
Usually XTI modes 0 and 1 are used (XTI mode 0 is selected when CKS1 and CKS0 pins are left open).  
XTI mode 2 is only used when a 512 fs clock is available externally. XTI mode 3 is used when the PLL is  
not used.  
To change clock settings after power on (CKS1, CKS0 and CKSX),an initial reset ( INIT_RESET = “L”,  
S_RESET = “L”), or during a clock reset ( CK_RESET = “L”, S_RESET = “L”) should be performed.  
Since the PLL circuit and internal clocks are controlled by CKS1, CKS0 and CKSX pins, an erroneous  
operation may occur if any pin setting changes occur under any conditions other than those described  
above (same conditions apply when changing the input for XTI).  
A reset can be performed using either the pin CK_RESET or the CKRST bit (CONT0:D1) in control  
register. When using the register RESET, the CK_RESET pin should be set to “H” or should be linked  
together with INIT_RESET pin.  
CK_RESET (pin)  
CKRST(reg.)  
CK_RESET  
(H:RESET)  
CK_RESET (pin) and CKRST(reg.) relation  
[MS0296-E-00]  
27  
2005/03  
[ASAHI KASEI]  
[AK7750]  
b) BITCLK(_I ) Selection at CKSX = “L” ( SMODE = “L” )  
EESEL=”L”  
BCK CKS  
mode [1:0] BITCLK_I  
fs: sampling frequency  
BITCLK_I (64fs)  
@SMODE=”L”  
Internal  
sample rate  
standard speed  
double speed  
4X speed  
fs:48kHz series fs:44.1kHz series  
PLL  
use  
use  
use  
use  
0
1
2
3
0h MCLK/12  
1h MCLK/6  
2h MCLK/3  
3h MCLK/72  
3.072MHz  
6.144MHz  
12.288MHz  
512kHz  
2.8224MHz  
5.6448MHz  
11.2896MHz  
-
fs=8kHz  
EESEL=”H”  
BCK CKS  
mode [1:0] BITCLK  
BITCLK  
(64fs)  
@SMODE=”L”  
fs:48kHz series fs:44.1kHz series  
Internal  
sample rate  
standard speed  
double speed  
4x speed  
PLL  
use  
use  
use  
use  
0
1
2
3
0h MCLK/12  
1h MCLK/6  
2h MCLK/3  
3h MCLK/72  
3.072MHz  
6.144MHz  
12.288MHz  
512kHz  
2.8224MHz  
5.6448MHz  
11.2896MHz  
-
fs=8kHz  
note1) CKS1 = CKS[1],CKS0 = CKS[0]  
note2)BITCLK_I clock is selected at EESEL = “L” and BITCLK clock is selected at EESEL = “H”.  
note3) Hands-free mode is available only when BCK mode 3 is selected.  
BCK modes are also used to generate internal master clock other than used as a primary bit clock.  
Therefore some limitations exist when to use BITCLK (_I) (for details, please refer to item b) of the Clock  
Source description).  
BCK mode is not available when the device operates at master mode.  
The sampling rate is fixed by BCK mode that is not affected by the speed setting (standard speed,  
double speed, and 4x speed) of the control register.  
Both of internal ADC and DAC are not available when BCK mode 1or 2 is selected. PSAD(D7) bit in  
CONT2 register and PSCODEC(D7) bit in the CONT6 register should be set to “1”.  
Please set XTI = “L” when XTI is not used at all.  
When to switch setting of CKS1, CKS0 and CKSX after the power-on, it should be done either during the  
initial reset ( INIT_RESET = “L”, S_RESET = “L” ) or during the clock reset ( CK_RESET = “L”,  
S_RESET = “L” ). Since PLL circuit and internal clocks are controlled by CKS1, CKS0 and CKSX pins,  
an erroneous operation may occur if any pin set change is taken place under any conditions other than  
those described above (same conditions apply when to change input BITCLK(_I)).  
Instead of CK_RESET , D1 bit in control register (CONT0: D1 ) can be used. In this case, CK_RESET  
pin should be set to “H” or should be linked together with INIT_RESET pin.  
CK_RESET (pin)  
CK_RESET  
(H:RESET)  
CKRST(reg.)  
CK_RESET (pin) and CKRST(reg.) relation  
[MS0296-E-00]  
28  
2005/03  
[ASAHI KASEI]  
[AK7750]  
„ Clock Sources  
a ) XTI selection at CKSX = “H”.  
Clocks can be supplied to the AK7750’s XTI pin as follows:  
When one of the XTI Modes 0,1 and 2 is used, either connect a proper crystal oscillator between XTI and  
XTO pins or feed a clock of proper frequency to the XTI pin.  
XTI  
XTO  
AK7750  
When a crystal oscillator is used: XTI Modes 0,1,2  
When XTI Mode 3 is used, feed a clock of proper frequency to the XTI pin.  
XTI  
External Clock  
XTO  
AK7750  
When an external clock is used : XTI Mode 3  
[MS0296-E-00]  
29  
2005/03  
[ASAHI KASEI]  
[AK7750]  
b) BITCLK(_I) Selection at CKSX = “L” (`SMODE=”L”)  
BCK Modes 0,1,2 are used when bit clock ( BITCLK_I,BITCLK ) is used instead of XTI. A clock fed on the  
BITCLK-I pin is directly frequency-multiplied by the PLL and a master clock (MCLK) is generated.  
XTI  
0
1
Divider  
PLL  
XTO  
BITCLK_I  
0
1
BITCLK  
Cloc  
MCLK  
BITCLK  
EESEL  
SMODE  
CKSX  
AK7750  
Internal connection image diagram  
Input on BITCLK(_I) pin a divided-by-64 clock of the LRCLK(_I) ( 64fs ).  
( BITCLK( _I) must be in synchronized with LRCLK (_I)).  
LR C LK _I  
Left ch  
R ight ch  
LR C LK  
B ITC LK _I  
B ITC LK  
32×B IT C LK _I(B IT C LK )  
32×B IT C LK _I(B IT C LK )  
Figure BITCLK ( -I ) and LRCLK ( -I ) relation ( BITCLK ( -I ) = LRCLK ( -I ) / 64 )  
[MS0296-E-00]  
30  
2005/03  
[ASAHI KASEI]  
[AK7750]  
„ Modes vs. PLL Relation  
a) XTI Selection at CKSX = “H”  
In the AK7750, the internal master clock MCLK usually runs at 36.864 MHz max. as shown below.  
XTI mode0  
XTI mode1  
XTImode2  
XTI  
12.288MHz/11.2896MHz  
Divider  
&
XTI  
18.432MHz/16.9344MHZ  
PLL  
MCLK  
XTI  
24.576MHz/22.5792MHz  
36.864MHz/33.8688MHz  
XTImode3  
XTI  
MCLK  
36.864MHz/33.8688MHz 36.864MHz/33.8688MHz  
Figure Mode Set vs. MCLK (internal master clock) relation  
b) BITCLK( _I) Selection at CKSX = “L” ( @SMODE = “L” )  
In the AK7750, the internal master clock MCLK usually runs at 38.864 MHz max. as shown below.  
BCK mode0  
BCK mode1  
BCK mode2  
BITCLK I  
(fs=48kHz/44.1kHz only)  
(fs=96kHz/88.2kHz only)  
(fs=192kHz/172.4kHz only)  
3.072MHz/2.8224MHz  
Divider  
&
BITCLK I  
6.144MHz/5.6448MHz  
PLL  
MCLK  
BITCLK I  
12.288MHz/11.2896MHz  
36.864MHz/33.8688MHz  
Figure Mode Set vs. MCLK ( internal master clock ) relation  
[MS0296-E-00]  
31  
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) SMODE: Slave, Master Mode Select pin  
Set the input /output of LRCLK and BITCLK.  
a) Slave Mode : SMODE = “L “  
EESEL = “ L “  
LRCLK_I (1fs) & BITCLK_I (64fs) become inputs.  
LRCLK_I,BITCLK_I are directly output on LRCLK_O and BITCLK_O respectively. Output can be set via  
a control register.  
Note) 48fs can be input on BITCLK_I pin for modes other than hands-free mode or when CKSX = “L”  
(64fs corresponds to hands-free mode and CKSX = “L”).  
CD etc  
(Master Equip.)  
XTI  
LRCLK_I  
Clk Gen.  
BITCLK_I  
SMODE  
LRCLK_O  
BITCLK_O  
DAC etc.  
CLKO  
(Slave Equip.)  
AK7750  
At CKSX = “H”, XTI and LRCLK_I must be synchronized, but need not be in phase.  
At CKSX = “L”, BITCLK_I and LRCLK_I must be synchronized.  
EESEL = “H”  
LRCLK (1fs) and BITCLK (64fs) become inputs.  
At CKSX = “H”, XTI and LRCLK must be synchronized, but need not be in phase.  
At CKSX = “L”, BITCLK and LRCLK must be synchronized.  
Note) 48fs can be input on BITCLK pin except in hands-free mode (64fs corresponds to hands-free  
mode).  
[MS0296-E-00]  
32  
2005/03  
[ASAHI KASEI]  
[AK7750]  
b) Master Mode: SMODE = “H”  
Master mode requires a clock input to XTI.  
When a clock is applied to the XTI input, LRCLK (LRCLK_O) and BITCLK (BITCLK_O) are automatically  
generated by an XTI-synchronized internal counter.  
No output is available on LRCLK (LRCLK_O) and BITCLK (BITCLK_O) pins during an initial reset  
( INIT_RESET = “L” ) or a system reset ( INIT_RESET = “H” and S_RESET = “L” ).  
EESEL = “L”  
LRCLK_O(1fs ) and BITCLK_O( 64fs ) are output.  
When LRCLK_I and BITCLK_I pins are not connected to any external circuit, these pins should be tied  
low ( “L” level, (DVSS)).  
When the AK7750 is used in Analog-to-Analog fashion and when LRCLK_O and BITCLK_O are not  
required (SDIN and SDOUT pins are not used), BITCLK_O and LRCLK_O can be programmed by  
setting a control register.  
EESEL = “H”  
LRCLK ( 1fs ) and BITCLK ( 64fs ) are output.  
When the AK7750 is used in Analog-to-Analog fashion and when LRCLK and BITCLK are not required  
(SDIN and SDOUT pins are not used), BITCLK_O and LRCLK_O can be programmed by setting a  
control register.  
c) SMODE Pin Switching  
Setting the SMODE pin function after power-on should be performed either during an initial reset  
( INIT_RESET = “L” and S_RESET = “L”), or during a clock reset ( CK_RESET = “L” and S_RESET  
= “L” ).  
Since switching between Slave and Master modes is controlled by the SMODE pin, an erroneous  
operation may occur if pin set changes take place under any conditions other than those described  
above.  
In Slave mode operation, internal clock phase-synchronization is performed at the release of system  
reset (from S_RESET = “L” to “H” ). It should be noted that switching to Slave mode in the middle of an  
operation may cause an erroneous results.  
d) Corresponding Table of SMODE, CKSX and EESEL pins  
CKSX  
“H”  
“H”  
“H”  
“H”  
“L”  
SMODE  
“L”  
EESEL  
“L”  
selected CLK  
XTI  
note  
“H”  
“L”  
XTI  
“L”  
“H”  
“H”  
“L”  
XTI  
“H”  
XTI  
“L”  
BITCLK_I  
BITCLK  
N/A  
“L”  
“L”  
“H”  
“L”  
“L”  
“H”  
not available  
not available  
“L”  
“H”  
“H”  
N/A  
[MS0296-E-00]  
33  
2005/03  
[ASAHI KASEI]  
[AK7750]  
( 2 ) Control Register Settings  
In the AK7750, control registers are programmed via the microprocessor interface. There are 8 registers in  
total. Each register is configured with 7 bits, but SCLK always requires 16 bit data clocks (8 bits for  
Command Code and 8 bits for DATA ).  
The Register configuration is listed below. Each control register value is set when D0 is written.  
Control register writes are performed during a system reset ( S_RESET = “L” ), but reads can be  
performed at any time during normal chip operation.  
Control registers are initialized by an INIT_RESET = “L”. They are not initialized by a system reset  
( S_RESET = “L” ).  
TEST: for testing purpose (set to “0” )  
X: The value “0” must be set with a write operation. Failure to do say will result in an unknown value during  
a read operation.  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 Default  
W
R
60h  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
70h  
CONT0 DFS2  
CONT1 DATARAM  
CONT2 PSAD  
CONT3 SWJX2  
CONT4 TEST  
CONT5 HF_RST_N  
CONT6 PSCODEC  
DFS1]  
RM  
DFS0  
BANK1  
DIF2  
BANK0  
DIF1  
CMP_N  
DIF0  
SS1  
TEST  
SWQD  
OUT4E TEST  
CKRST  
SS0  
TEST  
SWEE  
X
X
X
X
X
X
X
0000_000x  
72h  
74h  
76h  
78h  
7Ah  
7Ch  
0000_000x  
0000_000x  
0000_000x  
0000_000x  
0000_000x  
0000_000x  
OUT3E_N OUT2E_N OUT1E_N NRDY  
SWJX1  
CLKS1  
HF  
SWJX0_N SWQ4  
CLKS0  
PID  
SWIA  
CLKE_N  
SSDIN4  
SF0  
BLCKE_N  
SSDIN3  
SMUTE  
OP1  
TEST  
OP0  
TEST  
DAF  
SF1  
(PLLSTBY)  
-
DCh CONT7 SRRQ  
CRCL  
TEST  
TEST  
TEST  
TEST  
TEST  
X
0000_000x  
Note) Do not write other data values or addresses.  
1. In order to prevent erroneous operation, write to the CONT0 and CONT5 registers only during a system  
reset ( S_RESET = “L”).  
2. It is recommended that CONT1 ~ CONT4, CONT6 ~ CONT7 registers are also only written to at a  
system reset ( S_RESET =”L”).  
3. TEST means for testing, and 0 should be written.  
4. Default means an initialized value, to which register is initialized by INIT_RESET = “L”.  
[MS0296-E-00]  
34  
2005/03  
[ASAHI KASEI]  
[AK7750]  
1) CONT0 : Sampling Rate Selection and Interface Types  
writing is possible only at a system reset ( S_RESET = “L”).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
Write  
Read  
60h  
70h  
CONT0  
DFS2  
DFS1  
DFS0  
DIF2  
DIF1  
DIF0  
CKRST  
0000_000x  
c D7, D6, D5: DFS [2:0] Sampling Rate Set  
fs: sampling frequency  
DA  
DFS  
DFS  
[2:0]  
fs(kHz)  
DSP  
AD  
mode  
STEP  
operation  
operation  
0
1
2
3
4
0h  
48(,44.1)  
768  
{
{
1h  
2h  
3h  
7h  
96(,88.2)  
192(,176.4)  
32(,29.4)  
8
384  
192  
×
×
×
×
1152  
4608  
{
{
{
{
note1) mode and sampling rate selection are only valid in modes 0 ~ 4.  
note2) when selecting modes 1 or 2, “1” must be set at PSAD (D7) bit of CONT2 register and at PSCODEC  
(D7) bit of CONT6 register. When CKSK is set to “L”, operation follows the CSK0 and CSK1 setting.  
d D4, D3, D2: DIF [2:0] Input Mode Selection of SDIN1, SDIN2, SDIN3H, SDIN4, SDIN5A  
DIF mode SMODE  
DIF[2]  
DIF[1]  
DIF[0]  
0
1
2
3
4
“L”,”H”  
“L”,”H”  
“L”,”H”  
“L”,”H”  
“L”,”H”  
“L”  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
MSB-justified format(24bit)  
LSB-justified format(24bit  
LSB-justified format(20bit)  
LSB-justified format(16bit)  
I2S format(24bit)  
PCM1 SF(64fs only)  
“L”  
PCM2 LF(64fs only)  
e D1:CKRST  
0: operating condition  
1: internal clock reset  
When CKS2, CKS1, CKS0 and SMODE pins are switched or when the XTI input clock is changed, the new  
settings will take effect after toggling the CKRST from “1” to “0” (similar to CK_RESET pin).  
f D1: Set “0”  
note) under-lined values in c ~ e above indicate the default values  
[MS0296-E-00]  
35  
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) CONT1: RAM control  
This register should be changed only during a system reset ( S_RESET =”L”).  
Command Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
Write  
Read  
62h  
72h  
CONT1  
DATARAM  
RM  
BANK1  
BANK0  
CMP_N  
SS1  
SS0  
0000_000x  
c D7:DATARAM DATARAM addressing mode selector  
0: Ring addressing mode  
1: Linear addressing mode  
DATARAM is 256-words x 24-bits and has 2 addressing pointers (DP0, DP1).  
Ring addressing mode: The starting address increments by 1 every sample period.  
Linear addressing mode: The starting address is always the same, DP0 = 00h and DP1 = 80h.  
d D6:RM: Decompress bit mode  
0: SIGN bit  
1: Random data  
When either Data Compression or Data Expansion mode is selected (CMP-N (D3) = “0”), data for the  
lower bits where no data exists at the data expansion is selectable. When it is “0”, the sign bit is filled  
in and when it is “0”, the M-series random number is filled in.  
e D5,D4:BANK[1:0] DLRAM Setting  
Mode  
BANK1  
BANK0  
Memory  
24bit 1kword(RAM A)  
0
1
2
3
0
0
1
1
0
1
0
1
16bit 2kword(RAM A),24bit 1kword(RAM B)  
24bit 1kword(RAM A),16bit 2kword(RAM B)  
16bit 4kword(RAM A)  
note) When a hands-free function is used, set the DLRAM at mode0, which allocates the memory for  
hands-free processing.  
At DLRAM mode3, both Pointers 0 & 1 can be used. With DLRAM modes0, 1 and 2, Pointer 0 is  
allocated to RAM A and Pointer 1 is allocated to RAM B.  
f D3:CMP_N 16bitDLRAM Compress & Decompress selector  
When mode 1,2 or 3 is selected, this register can turn ON or OFF the compress/decompress function.  
0 : Compression / Expansion ON  
1 : Compression / Expansion OFF  
When both compression and expansion are enabled (ON), the upper 23 bit data on DBUS is  
compressed to 15 bit data and it is written into DLRAM.  
In read mode, the 15 bit data is expanded and the resulting data is output on DBUS.  
Lower bit setting during data expansion follows as is set by D6 : RM.  
With this data compression, 23 bit equivalent Dynamic Range and 15 bit equivalent S/N + D are  
obtained.  
When both compression and expansion are disabled (OFF), the upper 16 bit data on DBUS is directly  
written into or read out of DLRAM. During the read operation, the lower 16 bit returns to DBUS a value  
of 0000h.  
g D2,D1:SS[1:0] DLRAM setting of sampling timing (only for RAM A)  
Mode  
SS1  
0
SS0  
0
RAM A mode selected by BANK[1:0]  
Update every sampling time  
0
1
2
3
0
1
Update every 2 sampling time  
Update every 4 sampling time  
Update every 8 sampling time  
1
0
1
1
Note) When modes 1,2 or 3 are selected, aliasing will occur.  
h D0: set to “0”  
Note) Underlines “_” mean default setting.  
[MS0296-E-00]  
36  
2005/03  
[ASAHI KASEI]  
[AK7750]  
3) CONT2: ADC control, Serial output set and others  
Change this register only during a system reset state ( S_RESET =”L”).  
Command  
Code  
Write Read  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
64h  
74h  
CONT2  
PSAD OUT3E_N OUT2E_N OUT1E_N  
TEST  
TEST  
TEST  
0000_000x  
c
D7:PSAD  
0:Normal operation  
1:ADC power save  
When the ADC is not used, it is put into power-save mode by setting D7 = 1 (SDATA digital output of  
ADC becomes 00 0000h). In a double or 4X speed mode, set this bit to “1”. When returning to  
normal mode, write “0” to this bit during a system reset.  
d
e
f
g
h
i
j
D6: OUT3E_N  
0 : SDOUT3 output enable  
1 : SDOUT3 = “L”  
D5: OUT2E_N  
0 : SDOUT2 output enable  
1 : SDOUT2 = “L”  
D4: OUT2E_N  
0 : SDOUT1 output enable  
1 : SDOUT1 = “L”  
D3:TEST  
0:Normal operation  
1:Test mode (Do NOT use this mode)  
D2:TEST  
0:Normal operation  
1:Test mode (Do NOT use this mode)  
D1:TEST  
0:Normal operation  
1:Test mode (Do NOT use this mode)  
D0: set “0”  
Note): Underlines “_” mean default setting.  
[MS0296-E-00]  
37  
2005/03  
[ASAHI KASEI]  
[AK7750]  
4) CONT3 : Internal Path Select ( refer to (2) Total Block Diagram )  
Writing during the system reset ( S_RESET = “L” ) is recommended.  
Command Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
0000_000x  
Write  
Read  
66h  
76h  
CONT3  
SWJX2  
SWJX1  
SWJX0_N SWQ4  
SWIA  
SWQD  
SWEE  
c D7:SWJX2  
0: SDIN3 / JX2 pin is used as SDIN3 pin (JX2 = 0).  
1: SDIN3 / JX2 pin is used as JX2 pin.  
d D6:SWJX1  
0: SDIN4 / JX1 pin is used as SDIN4 pin (JX1 = 0).  
1: SDIN4 / JX1 pin is used as JX1 pin.  
e D5:SWJX0_N  
0: JX0 / SDIN5A pin is used as JX0 pin.  
1: JX0 / SDIN5A pin is used as SDIN5A pin (JX0 =0).  
f D4:SWQ4  
0: DSP SDOUT4 is selected.  
1: ADC SDATA-AD is selected.  
g D3:SWIA  
0: ADC SDATA-AD is selected.  
1: JX0 / SDIN5A pin is selected.  
h D2:SWQD  
0: DSP SDOUT4 is output  
1: Data selected by SWIA is output.  
i D1:SWEE Status Information Select ( EESEL = “H” )  
0: HFST N is selected.  
1: EEST is selected.  
j D0 : set “0”  
note) Under-lined set values in c ~i above indicate the default values.  
[MS0296-E-00]  
38  
2005/03  
[ASAHI KASEI]  
[AK7750]  
5) CONT4 : CLKO and Other Setting  
Writing during the system reset ( S_RESET = “L”) is recommended.  
Command Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
Write  
Read  
78h  
CONT4  
TEST  
CLKS1  
CLKS0  
CLKE_N  
BLCKE_N  
OUT4E  
TEST  
0000_000x  
c68hD7:TEST  
0: normal operation  
1: Test mode (do not use)  
d D6,D5:CLKS1,CLKS0 CLKO Output Clock Select  
CLKO outputs “L” level during the system reset. After the release of the system reset, selected value is  
output by CLKS1 and CLKS0.  
CLKS mode CLKS1  
CLKS0  
CLKO  
see the following table  
MCLK/3  
0
1
2
3
0
0
1
1
0
1
0
1
MCLK/2  
N/A  
1) in CLKS mode 0, at CKSX = “1” or ( CKSX = “L” & SMODE = “H” )  
fs: sampling frequency  
DFS  
DFS  
fs(kHz)  
CLKO output  
mode  
[2:0]  
0
1
2
3
4
0h  
48(,44.1)  
256fs  
N/A  
1h  
2h  
3h  
7h  
96(,88.2)  
192(,176.4)  
32(,29.4)  
8
N/A  
256fs  
1024fs  
2) in CLKS mode 0,at CKSX = “L” & SMODE = “L”  
fs: sampling frequency  
BCK  
CKS pin  
fs(kHz)  
CLKO  
mode  
[1:0]  
output  
0
1
2
3
0h  
1h  
2h  
3h  
48(,44.1)  
256fs  
96(,88.2)  
192(,176.4)  
8
N/A  
N/A  
1024fs  
e D4:CLKE_N CLKO Output Control pin  
0: CLKO output select  
1: CLKO output is set to “L”.  
f D3:BITCLKE_N BITCLK, LRCLK Output Control pin  
0: enables outputs of BITCLK,LRCLK(@EESEL=“H”,SMODE=“H”),BITCLK_O,LRCLK_O  
1: sets BITCLK, LRCLK(@EESEL = “H”, SMODE = “H” ),BITCLK_O,LRCLK_O outputs to either “L” or  
“H” .  
g D2:OUT4E  
0: SDOUT4A = “L”  
1: SDOUT4A output enable  
h D1:TEST  
0: normal operation  
1: Test mode (do not use)  
i D0 : set “0”.  
note) Under-lined set values in c ~h above indicate the default values.  
[MS0296-E-00]  
39  
2005/03  
[ASAHI KASEI]  
[AK7750]  
6) CONT5 : HF Set & Instruction Set  
The setting is enabled only during the system reset ( S_RESET = “L” ).  
Command  
Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
Write  
Read  
6Ah  
7Ah  
CONT5  
HF_RST_N  
HF  
PID  
SSDIN4 SSDIN3 OP1  
OP0  
0000_000x  
c D7: HF_RST_N  
0: reset the ARM for hands-free use.  
1: release the reset of the ARM for HF use.  
Set HF-RST-N = 1 and after the system reset is released, it is put into hands-free mode.  
In order to return from the hands-free mode to normal DSP mode, set HF-RST-N = 0.  
d D6: HF  
0: normal mode set  
1: hands-free mode set  
DSP_SDIN3 and DSP_SDOUT3 are switched to the ARM interface.  
SDIN3 cannot be used (can be used as JX1). Output of PIN-SDOUT3 becomes “L”.  
e D5: PID Selection of hands-free parameters sets  
0 : ROM data is used (Default set of hands-free parameters)  
1 : Param Register RAM is used  
Noise canceller uses the customized parameter set which is allocated in RAM area. The  
procedure for getting the optimized hands-free parameters is described in the page <TBD>.  
f D4: SSDIN4 Selection of DSP instrcution  
0 : ODRB*,MSRG*  
1 : INL4*, INR4*(SDIN4 Digital Input)  
This bit switches the source of DBUS from ODRB*, MSRG* to INL4*, INR4*.  
(*: ODRB, MSRG, INL4, INR4 are assembler code. Please see other document for the detail)  
g D3: SSDIN3 Selection of DSP instruction  
0 : TDR2*, TDR3* (DR2, DR3 Through Output)  
1 : INL3*, INR3* (SDIN3 Digital Input)  
This bit switches the source of DBUS from TDR2*, TDR3* to INL3*, INR3*.  
(*: TDR2, TDR3, INL3, INR3 are assembler code. Please see other document for the detail)  
h D2, D1 : OP1, OP0  
Offset- RAM- Pointer Mode Select  
mode  
OP1  
OP0  
Pointer 1  
Pointer 0  
0
1
2
3
0
0
1
1
0
1
0
1
DBUS immediate pointer  
OFFSET indirect pointer  
DBUS immediate pointer  
N/A  
OFFSET indirect pointer  
OFFSET indirect pointer  
DBUS immediate pointer  
N/A  
note) Even when DLC* is issued in mode 1, the offset address (location) is valid.  
(*: DLC is assembler code. Please see other document for the detail)  
i D0 : set “0”.  
note) Under-lined set values in c ~h above indicate the default values.  
[MS0296-E-00]  
40  
2005/03  
[ASAHI KASEI]  
[AK7750]  
7) CONT6 : DAC Setting etc  
Command Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
Write  
Read  
6Ch  
7Ch  
CONT6  
PS  
DAF  
SF1  
SF0  
SMUTE TEST  
TEST  
0000_000x  
CODEC  
c D7:PSCODEC ADC, DAC power-down  
0: normal operation  
1: power –down ADC, and DAC  
Note1) PDAD bit in the CONT2 register must be set to “1” when this bit is set to “1”.  
Note 2) In a double or 4X speed mode, this bit, and PSAD bit must be set to “1”.  
d D6: DAF  
Selection of DAC digital filter  
0: DAC digital filter characteristics a) in page 17  
1: DAC digital filter characteristics b) in page 17  
The change must be set at system reset.  
When the sample rate is set to 8kHz, DAF=”1” is recommended  
e D5, D4: SF1, SF0  
Selection of DAC soft mute cycle time  
SF mode  
SF1  
0
SF0  
0
0
1
2
3
1008 LRCLK cycle  
4032 LRCLK cycle  
504 LRCLK cycle  
2016 LRCLK cycle  
0
1
1
1
0
1
f D3: SMUTE  
Soft Mute Selection  
0 : normal operation  
1 : DAC soft mute enable  
g D2:TEST(SEL_MCLK)  
0 : normal operation  
1 : Test mode (do not use).  
h D1:TEST(PLLSTBY)  
0 : normal operation  
1 : Test mode (do not use).  
i D0 : set “0”.  
note) Under-lined set values in c ~ h above indicate the default values.  
[MS0296-E-00]  
41  
2005/03  
[ASAHI KASEI]  
[AK7750]  
8) CONT7 : Hands-Free Status / Request  
Command Code  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
Default  
0000_000x  
Write  
Read  
X
DCh  
CONT7  
SRRQ  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
*) This register, together with HFST pin, is used to inform the host microcontroller that the hands-free  
operation is enabled. HFST pin is usually at “H” but when an exception/interrupt occurs, this pin notifies  
the host(this pin becomes “L”, and SRRQ goes to “1”).  
Upon receipt of HFST = “L”, the host is expected to read and process the CONT7 register, depending on  
the register content. This register is cleared by setting S_RESET pin to “L”, and HFST pin returns to “H”.  
Reading should be made during S_RESET = “H” (during RUN ).  
c D7:SRRQ  
0: normal operation  
1: requests that the host enable S-RESET.  
This bit Indicates that a hardware-related error has occurred in hands-free mode.  
If same error occurs again , initialize the AK7750 by issuing S_RESET = “L”.  
d D6,D5,D4,D3,D2,D1,D0:TEST_MON  
Monitor pin for test.  
[MS0296-E-00]  
42  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(3) Power-ON Sequence  
Power-On while holding INIT_RESET = “L” and S_RESET = “L”.  
Control registers are initialized during INIT_RESET = “L” ( see note 1 and note 2 ).  
After power is applied, INIT_RESET = “H” and REF generating circuit ( Analog Reference Voltage  
source ) and PLL are turned on, and master clock is generated by the PLL.  
Communication with the AK7750 should be made after the PLL oscillation is stabilized (50ms@ XTI mode,  
and BCK mode 0/1/2; 175ms@BCK mode 3).  
An initialization by INIT_RESET is usually required only for power- on.  
The power should be turned on when CK_RESET pin is linked with INIT_RESET or while it is fixed to  
“H”.  
Note1) to assure proper initialization, it is necessary that power is turned on and then the master clock  
(XTI) is supplied.  
Note2) when a crystal oscillator is used, INIT_RESET should be set to “H” after the oscillation is  
stabilized. Stabilization time of the oscillation varies depending upon types of crystal oscillators and  
external circuits used.  
Note) Do not stop the system clocks (Slave Mode: XTI, LRCLK, BITCLK and Master Mode : XTI ) except  
during the initial reset ( INIT_RESET = “L” and S_RESET = “L” ) or at a system reset ( S_RESET = “L” )  
or at a Clock reset ( CK_RESET = “L” ).  
If these clocks are not applied, there is a possibility that an excess current will flow, causing erratic  
operation.  
AVDD  
DVDD  
INIT_RESET  
( CK_RESET )  
S_RESET  
XTI  
(internal PLLCLK)  
CLKO  
INIT_RESET =”H”  
after crystal startup  
PLL startup time  
command code  
Power Off  
Inhibit of command  
50 ms@ XTI mode  
loading of DSP program  
(no time-constraint)  
50ms@BCK mode 0/1/2  
175ms@BCK mode 3  
start CLKO output  
Figure Power-up Sequence  
[MS0296-E-00]  
43  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(4) About Reset  
The AK7750 has 3 reset pins, INIT_RESET , S_RESET and CK_RESET .  
There are 2 reset bits in control registers HF_RESET_N (CONT5 D7) and CKRST (CONT0 D1).  
A clock reset CK_RESET (CKRST) will be described in section (5) , “Switching Clocks”.  
When the CK_RESET pin is not used, either connect it to the INIT_RESET pin or set it to “H”.  
HF_RESET_N is described in section (2) “Control Register Settings”.  
INIT_RESET is used to initialize the AK7750 as is described in the Power-on Sequence description.  
When changing CKS1, CKS0, CKSX or SMODE, or when changing the XTI pin’s input clock frequency, it is  
recommended to execute it during the initial reset ( INIT_RESET = “L”, S_RESET = “L” ). A change can  
be made during a clock reset ( CK_RESET , CKRST) if audio interruption is acceptable and no other  
setting changes are made.  
Since the CKS1, CKS0, CKSX, SMODE and XTI pins are involved in PLL and internal clock control,  
erroneous operation may occur if any changes are made other than during initial reset or clock reset.  
With INIT_RESET = “H” & S_RESET = “L”, the device is put into system reset condition (“ reset  
“implies a system reset ).  
Usually program and RAM data is written during a system reset (excluding write during RUN).  
During a system reset, both the ADC and DAC are reset. The REF generating circuit remains in operation.  
CLKO output and LRCLK, BITCLK in Master mode are stopped during a system reset.  
System reset is released by rising S_RESET to “H”, which starts the internal counters.  
In Master mode, LRCLK and BITCLK are generated by the AK7750’s counters, which may generate a  
clock conflict if other devices are not properly initialized. In Slave mode, when a system reset is released,  
internal timing starts to operate in sync with the rising edge of LRCLK ( in standard input format ).  
Timing adjustment between an external clock and internal timing is made during this time. During the  
operation, if the phase-difference (both at the rising edge and at the falling edge) between LRCLK and  
internal timing is within 2 clock pulses of BITCLK (64fs), operation continues.  
When the phase-difference becomes larger than the above range, a phase adjustment is made in sync with  
the rising edge of LRCLK ( in standard input format ).  
This circuit protects the AK7750 from becoming out of sync with external circuits due to noise etc. Correct  
data is not output for a while even after out-of-sync condition returns to normal.  
In the ADC, data output is available 516 LRCLK clocks after the internal counters start to operate (internal  
counters start to operate right after the release of system reset in Master mode, or in Slave mode  
approximately 2 LRCLK clocks after the release of system reset).  
The AK7750 returns to normal operation at the rising edge of S_RESET .  
The AK7750 goes from normal state to system reset state by the falling edge of S_RESET . Please do  
not stop the input clock for 3 MCLK times period after the falling edge of S_RESET .  
[MS0296-E-00]  
44  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(5) About Clock Changes  
Changes to CKS1, CKS0, CKSX or SMODE are made during the system reset ( S_RESET = “L”,  
INIT_RESET = “H”), or when an input clock is switched ( XTI @ CKSX= “H” or BITCLK (_I ) @ ( CKSX =  
“L” & SMODE = “L”)). A clock reset is made using either the CK_RESET pin or by using CKRST control  
register bit. After a reset, the internal Master clock, MCLK, is stopped and it is safe to change settings  
(MCLK = 36.864 MHz or 33.8688 MHz) during the system reset.  
After executing a system reset, clock reset is performed by changing the CK_RESET pin from “H” to “L”,  
and by continuously supplying a clock- for a duration of longer than 120 / MCLK [us] from the falling edge  
of CK_RESET ( S_RESET and CK_RESET pins can be simultaneously set to low ). When the CKRS  
control register is used, the duration is 120 / MCLK [us] from the rising edge of 16th clock of CONT0.  
Pin setting and input clock changes (XTI @ CKSX = “H” or BITCLK (_I) @ (CKSX = “L” & SMODE = “L”)  
should be done after MCLK is stopped.  
After changes are made and after the input clock is stabilized to the new value, release CK_RESET from  
“L” to “H” and PLL is restarted.  
Do not transmit the DSP program and coefficient data from the microprocessor until the PLL reaches stable  
oscillation (about 25ms). Control register read/write operations are allowed after the input clock is stabilized  
to the new value.  
The AK7750 returns to normal operating condition by rising S_RESET to “H” after the DSP program  
and coefficient data are transmitted. When pin-set- and clock input switches are made and µC interface is  
not used, it is possible to raise both the CK_RESET and S_RESET pins simultaneously to return the  
AK7750 to normal operation. However an internal circuit reset cannot be released until the PLL reaches its  
stable oscillation (about 25ms) even if S_RESET is released.  
S_RESET  
CK_RESET  
XTI  
tCKFCK  
new input  
PLLis stable  
(about 25ms)  
download  
clock is stable  
DSP program  
pin setting  
clock change  
read/write control register  
Figure CK_RESET Sequence  
tCKFCK table(XTI mode)  
CKS  
XTI  
tCKFCK(min)  
mode [1:0]  
XTI  
XTI cycles  
fs:48kHz series  
3.3µs  
fs:44.1kHz series  
0
1
2
3
0h  
1h  
2h  
3h  
MCLK/3  
MCLK/2  
MCLK*(2/3)  
MCLK  
40  
60  
80  
10  
3.6µs  
3.6µs  
3.6µs  
0.3µs  
3.3µs  
3. 3µs  
0.3µs  
tCKFCK table(BCK mode)  
CKS  
BCK  
tCKFCK(min)  
mode [1:0]  
BITCLK  
MCLK/12  
MCLK/6  
MCLK/3  
MCLK/72  
BITCLK cycles  
fs:48kHz series  
3.3µs  
fs:44.1kHz series  
0
1
2
3
0h  
1h  
2h  
3h  
10  
20  
40  
10  
3.6µs  
3.6µs  
3.6µs  
NA  
3.3µs  
3.3µs  
19.5µs  
[MS0296-E-00]  
45  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(6) Audio Data Interface  
Serial Audio Data pins, SDIN1, SDIN2, SDIN3, SDIN4, SDIN5A, SDOUT1, SDOUT2, SDOUT3, SDOUT4A  
interface with external systems using LRCLK and BITCLK.  
Proper control register settings are required. Please refer to the Total Block Diagram and the Control  
Register Setting section.  
Data Format is in 2’s complement with MSB first.  
Supported Input and Output Formats are AKM’s standard format plus I2S compatible mode. In this mode,  
interface of all input and output audio data pins are also I2S compatible.  
The default setting is MSB-justified 24 bit format, but by properly setting the control register CONT0  
DIF1(D3), DIF0 (D2), other formats such as LSB-justified 24-bit, LSB-justified 20-bit and LSB-justified 16-  
bit are also supported (note : CONT0 DIFS (D4) = 0 ). However, SDIN1, SDIN2, SDIN3, SDIN4 and  
SDIN5A must all be set to the same format, and cannot be independently set to support different formats.  
Outputs SDOUT1, SDOUT2, SDOUT3 and SDOUT4A are in MSB-justified, fixed-24 bit data.  
1) Standard Input Format ( DIF[2] = 0 : default value )  
a) DIF mode 0 ( DIF[2:0] = 0h : default value )  
Left ch  
Right ch  
LRCLK  
BITCLK  
31 30 29 28 27  
M 22 21 20 19  
10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1 0  
SDIN1 5A  
2 1  
L
M 22 21 20 19  
2 1 L  
M: MSB, L: LSB  
When MSB-justified 20-bit data is input to SDIN1, 2, 3, 4A, fill 4 zeros (“0”) in sequence, starting at the LSB  
of each data.  
b) DIF mode 1,2,3  
SDIN1, 2, 3, 4, 5A  
SDIN1, 2, 3, 4, 5A  
SDIN1, 2, 3, 4, 5A  
mode 1: (DIF[2:0] = 1h  
mode 2: (DIF[2:0] = 2h  
mode 3: (DIF[2:0] = 3h  
LSB-justified 24 bit)  
LSB-justified 20 bit)  
LSB-justified 16 bit)  
Left ch  
Right ch  
LRCLK  
BITCLK  
31 30  
23 22 21 20 19 18 17 16 15 14  
1
1
0 31 30  
23 22 21 20 19 18 17 16 15 14  
1
1
0
SDIN15A  
DIF mode 1  
Don’t care M 22 21 20 19 18 17 16 15 14  
L Don’t care M 22 21 20 19 18 17 16 15 14  
L
SDIN15A  
Don’t care  
Don’t care  
M 18 17 16 15 14  
1
L Don’t care  
M 18 17 16 15 14  
M 14  
1
1
L
L
DIF mode 2  
SDIN15A  
DIF mode 3  
M 14  
1
L Don’t care  
M: MSB, LSB: LSB  
[MS0296-E-00]  
46  
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) I2S Compatible Input Format (DIF[2:0] = 4h)  
Left ch  
Right ch  
LRCLK  
BITCLK  
31 30 29 28 27  
M 22 21 20  
10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27  
3 2 1 L M 22 21 20  
10 9 8 7 6 5 4 3 2 1  
3 2 1 L  
0
SDIN15A  
M: MSB, L: LSB  
3) Standard Output Format (DIF[2:0] = 0h, 1h, 2h, 3h)  
Left ch  
Right ch  
LRCLK  
BITCLK  
31 30 29 28 27  
M 22 21 20 19  
10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27  
2 1 M 22 21 20 19  
M: MSB, L: LSB  
10 9 8 7 6 5 4 3 2 1 0  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4A  
L
2 1 L  
4) I2S Compatible Output Format (DIF[2:0] = 4h)  
Left ch  
Right ch  
LRCLK  
BITCLK  
31 30 29 28 27  
M 22 21 20  
10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27  
3 2 1 M 22 21 20  
10 9 8 7 6 5 4 3 2 1 0  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4A  
L
3 2 1  
L
M:LSB, L: LSB  
[MS0296-E-00]  
47  
2005/03  
[ASAHI KASEI]  
[AK7750]  
5) PCM mode (DIF[2:0]=5h, 6h)  
i) PCM1 SF(Short Frame) mode (BITCLK(_I)=64fs : fs=8kHz 48kHz)  
FS  
LRCLK(_I)  
BITCLK(_I)  
63 62 61 60 59  
M 22 21 20 19  
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1 0  
SDIN15A  
2 1  
2 1  
L
L
M 22 21 20 19  
M 22 21 20 19  
2 1  
2 1  
L
L
SDOUT14A  
M:MSB,L:LSB  
M 22 21 20 19  
Right ch  
LRCLK_O  
BITCLK_O  
Left ch  
ii) PCM2 LF(Long Frame) mode (BITCLK(_I)=64fs : fs=8kHz 48kHz)  
FS  
LRCLK(_I)  
BITCLK(_I)  
63 62 61 60 59  
M 22 21 20 19  
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27  
10 9 8 7 6 5 4 3 2 1 0  
SDIN15A  
2 1  
2 1  
L
L
M 22 21 20 19  
M 22 21 20 19  
2 1  
2 1  
L
L
SDOUT1
4A  
M:MSB,L:LSB  
M 22 21 20 19  
Right ch  
LRCLK_O  
BITCLK_O  
Left ch  
[MS0296-E-00]  
48  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(7) Microprocessor Interface  
The microprocessor interface uses 6 control signals, RQ ( ReQuest Bar ), SCLK ( Serial data input  
Clock ), SI ( Serial data Input ), SO ( Serial data Output ), RDY ( ReaDY ), DRDY ( Data ReaDY ).  
The AK7750 has 2 types of write and read operations – write / read during reset (usually refers to system  
reset) and, write / read during normal operation.  
During reset, it is possible to write data into the control registers, program RAM, coefficient RAM, offset  
RAM and to write external conditional jump codes. It is possible to read data from the control registers,  
program RAM, coefficient RAM and offset RAM.  
During normal operation, it is possible to write data into coefficient RAM, offset RAM, and to write external  
conditional jump codes. It is also possible to read data on the DBUS ( Data Bus ) via SO and to read data  
from control registers. Data is input or output in serial form with MSB first.  
The interface between the microprocessor and the AK7750 (except for DBUS read operations) is enabled  
by setting RQ to “L” of. Data is taken at the rising edge of SCLK and data is output at the falling edge of  
SCLK. As for the data format, command code is input first, then address and coefficient data is input or  
output. Since a single command is completed by setting RQ to “H”, in order to write a new command, it  
is necessary to set RQ to low again after setting RQ to “H”.  
Contrarily, DBUS data reads are of accomplished by setting RQ to “H” (no command code input ).  
There is a case where SI is used as control signal, depending upon the application. In this case, this pin  
should be protected spurious noise, as is the case of a normal clock signal..  
Command Code table is listed below.  
Conditions Code name  
for use  
Command code  
Remark  
WRITE  
60h  
62h  
64h  
66h  
68h  
6Ah  
6Ch  
-
READ  
70h  
72h  
74h  
76h  
78h  
7Ah  
7Ch  
DCh  
C1h  
A1h  
91h  
-
RESET  
Phase  
CONT0  
For the function of each bit,  
See the description of Control  
Registers  
CONT1  
CONT2  
CONT3  
CONT4  
CONT5  
CONT6  
CONT7  
PRAM  
C0h  
A0h  
90h  
C4h  
B6h  
E0h  
NA  
CRAM  
OFRAM  
External condition jump  
CRC check (R(x))  
Hands free parameter  
CONT0CONT7  
D6h  
E1h  
above  
address  
-
RUN  
Read available, same as RESET code.  
It needs to do before CRAM rewrite  
It needs to do before OFRAM rewrite  
phase  
CRAM rewrite preparation  
CRAM rewrite  
A8h  
A4h  
-
OFRAM rewrite preparation 98h  
-
OFRAM rewrite  
94h  
C4h  
B6h  
-
External condition jump  
CRC check (R(x))  
-
Same code as RESET  
Same code as RESET  
D6h  
note: As there are some duplicated codes in use, command codes other than those listed above should not  
be accessed, as erroneous operation may result. If no communication exists with a microprocessor, set  
SCLK to “H” and SI to “L”.  
[MS0296-E-00]  
49  
2005/03  
[ASAHI KASEI]  
[AK7750]  
1) Write during reset phase  
a) Control register write (during reset phase)  
The data consists of 2 bytes used to perform control register write operations (during reset phase). When  
all data has been entered, the new data is stored in the register at the rising edge of the 16th count of  
SCLK.  
Data transfer procedure  
c Command code  
d Control data  
60h, 62h, 64h, 68h, 6Ah, 6Ch, B8h  
(D7 D6 D5 D4 D3 D2 D1 D0)  
note) 40h, 44h and 48h are for testing and cannot be used.  
For the function of each bit, see the description of Control registers, (section 2).  
S_RESET  
RQ  
SCLK  
60h  
64h  
D7 ***D1 D0  
D7 ***D1 D0  
SI  
SO  
Note) It must be set always 0 to D0.  
Control Registers write operation  
[MS0296-E-00]  
50  
2005/03  
[ASAHI KASEI]  
[AK7750]  
b) Program RAM writes (during reset phase)  
Program RAM write operations are performed during the reset phase using 7-bytes of data. When all data  
has been transferred, the RDY terminal is set to "L". Upon completion of writing into the PRAM, RDY  
returns “H” to allow the next data bit input. When writing to sequential addresses, input the data without a  
command code or address. To write discontinuous data, shift the RQ terminal from "H" to "L" again and  
then input the command code, address and data in that order.  
Note) “L” period of RDY is shorter than 1 master clock (20ns) under typical condition  
Data transfer procedure  
c Command code  
d Address upper  
e Address lower  
f Data  
C0h (1 1 0 0 0 0 0 0)  
(0 0 0 0 0 0 A9 A8)  
(A7 . . . . . . . A0)  
(D31  
(D23  
(D15  
(D7  
. . . . . . D24)  
. . . . . . D16)  
. . . . . . D8)  
g Data  
h Data  
i Data  
.
. . . . . D0)  
S_RESET  
RQ  
SCLK  
A7 ****A1A0  
11000000  
000000A9A8  
D31***** D0  
D31***** D0  
SI  
RDY  
SO  
Input of continuous address data into PRAM  
S_RESET  
RQ  
SCLK  
11000000  
000000A9A8 A7**A1A0  
11000000  
000000A9A8 A7**A1A0  
D31***D0  
SI  
RDY  
SO  
Input of discontinuous address data into PRAM  
[MS0296-E-00]  
51  
2005/03  
[ASAHI KASEI]  
[AK7750]  
c) Coefficient RAM write (during reset phase)  
5 bytes of data are used to perform coefficient RAM write operations (during the reset phase). When all  
data has been transferred, the RDY terminal goes to "L". Upon completing the CRAM write, RDY goes to  
"H" to allow the next data to be input. When writing to sequential addresses, input the data as shown below.  
To write discontinuous data, transition the RQ terminal from "H" to "L" and then input the command code,  
address and data.  
Note) “L” period of RDY is shorter than 1 master clock (20ns) under typical condition  
Data transfer procedure  
c Command code  
d Address upper  
e Address lower  
f Data  
A0h  
(1 0 1 0 0 0 0 0 )  
(0 0 0 0 0 0 A9 A8)  
(A7 . . . . . . . A0)  
(D15 .  
(D7  
.
.
.
.
. D8)  
. . D0)  
g Data  
. .  
.
.
S_RESET  
RQ  
SCLK  
SI  
10100000 000000A9A8  
A7****A1A0  
D15****D0  
D15****D0  
RDY  
SO  
Input of continuous address data into CRAM  
S_RESET  
RQ  
SCLK  
10100000 000000A9A A7***A1A0 D15****D0  
D15**  
A7***A1A0  
10100000  
SI  
RDY  
SO  
Input of discontinuous address data into CRAM  
[MS0296-E-00]  
52  
2005/03  
[ASAHI KASEI]  
[AK7750]  
d) Offset RAM write (during reset phase)  
Offset RAM Writes (at reset) are done by writing a command code first, then address and 3 bytes/set data.  
After the data is transferred, the RDY pin becomes “L” and after writing Offset RAM is completed, it  
becomes “H” and next data can be ready to input.  
Data transfer procedure  
c Command code  
d Address  
e Data  
90h  
(1  
0
0 1  
0
0
.
0
0 )  
A0 )  
0 )  
(0  
0
A5 A4 ..  
.
(0  
(0  
0
0
0
0
.
0
0
0
0
f Data  
0 D11 .  
.
D8 )  
D0 )  
g Data  
(D7 .  
.
.
.
.
S_RESET  
RQ  
SCLK  
SI  
10010000  
00A5****A0  
00000000  
D7****D1D0  
000D12**** D8  
RDY  
SO  
Input of data into OFRAM  
[MS0296-E-00]  
53  
2005/03  
[ASAHI KASEI]  
[AK7750]  
e) External conditional jump code write (during reset phase)  
External conditional jump code writes are made after all necessary operations, such as program downloads,  
etc. are executed. Code writes are done in 2 bytes/set data. It is possible to input during both reset and in  
normal operation mode. Input data is set at each assigned register at the rising edge of LCRLK. RDY pin  
becomes “L” . After all data is transferred and it becomes “H” when write operation is finished.  
External jump codes are 8-bits long and when any bit among the 11 code bits of JX0, JX1 and JX2 input  
pins and any single bit of “1” in the IFCON field match, the jump instruction is executed.  
When writing data during the reset, it can be executed only before reset is released after completing all  
data transfers.  
Setting RQ from “L” to “H” during reset mode writes should be made more than 2 MCLK clocks after  
reset is released. RDY becomes “H” when the next rising edge of LRCLK is detected.  
Write operations from the microprocessor are inhibited until RDY becomes “H”.  
The IFCON field is an external condition, written in the DSP program.  
This jump code is reset to 00h by setting INIT_RESET to “L”, however, it remains at its previous condition  
even when S_RESET =”L”.  
Note: It should be noted that the LRCLK phase is inverted in the I2S-compatible state.  
7
0
JX0 JX1 JX2  
External condition code  
„
„
„
„
„
„
„
„
†
†
†
Check if any bit of a single “1” bit between the assigned bit by IFCON  
and external jump code  
16  
9
8
7
6
IFCON field  
‹
‹
‹
‹
‹
‹
‹
‹
‹
‹
‹
Data transfer procedure  
c Command code  
d Code data  
C4h ( 1 1 0 0 0 1 0 0)  
(D7  
.
.
.
.
. D0)  
S_RESET  
SCLK  
11000100 D7••••D0  
SI  
SO  
RQ  
L ch  
R ch  
LRCLK  
RDY  
2LRCLK(max)  
External conditional jump write operation timing (during reset phase)  
[MS0296-E-00]  
54  
2005/03  
[ASAHI KASEI]  
[AK7750]  
f) Hands-Free Parameter RAM Write (at reset)  
Hands-Free Parameter RAM Write operations (at reset) are executed in 4 bytes/set data.  
When all data is transferred, the RDY pin becomes “L”. It becomes “H” after writing into Hands-Free  
Parameter RAM is completed and next data can be input.  
When writing data at the consecutive address locations, input data as is. When writing data at the  
discontinuous address locations, input command code first, then address and data in this order after setting  
RQ-N pin from “H” to “L”.  
Data transfer procedure  
c Command code  
d Address  
e Data  
E0h ( 1 1 1 0 0 1 0 0)  
( 0 0 A5 .  
(D15 . .  
.
.
. A0)  
. D8)  
. D0)  
.
.
.
f Data  
(D7 . .  
.
.
.
S_RESET  
RQ  
SCLK  
SI  
11100000  
00A5 A1 A0  
D15yyyyD0  
D15yyyyD0  
RDY  
SO  
Input of continuous address data into Hands-free parameter RAM  
S_RESET  
RQ  
SCLK  
SI  
11100000  
00A5 A1 A0  
D15yyyyD0  
11100000  
00A5 A1 A0  
D15yyyyD0  
RDY  
SO  
Input of discontinuous address data into Hands-free parameter RAM  
[MS0296-E-00]  
55  
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) Read during reset phase  
a) Control register data read (during reset phase)  
Control Register Read operations (at reset) are executed in 16-bit SCLK clocks.  
Control register values D7 ~ D1 are output at the falling edge of SCLK after command code is input. D0  
is invalid, ignore this bit.  
Data transfer procedure  
c Command code  
70h, 72h, 74h, 76h, 78h, 7Ah, 7Ch, D8h, DAh, DCh  
note) 50h,54h,58h are not usable as they are dedicated for testing.  
For each bit function, please refer to section (2) Control Register Settings.  
S_RESET  
RQ  
SCLK  
SI  
70h(example)  
74h(example)  
D7yyyyD1  
SO  
D7yyyyD1  
Reading of control register data  
[MS0296-E-00]  
56  
2005/03  
[ASAHI KASEI]  
[AK7750]  
b) Program RAM read (during reset phase)  
Program RAM reads require inputting a command code and address to be accessed and setting SCLK to  
fall after setting SI to “H”. The output data is synchronized with the falling edge of SCLK (Ignore RDY  
signal). When the requested read addresses are in consecutive locations, repeat the above procedure  
again by setting SI to “H”.  
Data transfer procedure  
cCommand code input  
dRead address input MSB  
eRead address input LSB  
C1h ( 1 1 0 0 0 0 0 1 )  
( 0 0 0 0 0 0 A9 A8)  
(A7 .  
.
. . . . A0)  
S_RESET  
RQ  
SCLK  
SI  
11000001 000000 A9A8 A7yyyy A1 A0  
SO  
D31yyyyD0 D31yyyyD0  
RDY  
CRAM Data Read  
[MS0296-E-00]  
57  
2005/03  
[ASAHI KASEI]  
[AK7750]  
c) Coefficient RAM Read (during reset)  
Coefficient RAM reads require inputting a command code and address to be accessed and setting SCLK to  
fall after setting SI to “H”. Data is output synchronized with the falling edge of SCLK. When the requested  
read addresses are in consecutive locations, repeat the above procedure again by setting SI to “H”.  
Data transfer procedure  
c Command code A1h  
d Address upper  
(1 0 1 0 0 0 0 1 )  
(0 0 0 0 0 0 A9 A8)  
e Address lower  
(A7 .  
.
.
. .  
. A0)  
S_RESET  
RQ  
SCLK  
SI  
10100001 000000 A9A8 A7yyyyA1 A0  
SO  
D15yyyyD0  
D15yyyyD0  
RDY  
CRAM data read  
[MS0296-E-00]  
58  
2005/03  
[ASAHI KASEI]  
[AK7750]  
d) Offset RAM Data Read ( during reset )  
It is possible to read out the stored Offset RAM data during reset.  
Read procedure involves inputting a command code and address to be accessed, and waiting for SCLK to  
fall after setting SI to “H”. The data is then output in sync with the falling edge of SCLK.  
Data transfer procedure  
c Command code  
d Address  
91h ( 1 0 0 1 0 0 0 1 )  
( 0 0 A5 . . . . A0)  
S_RESET  
RQ  
SCLK  
SI  
10010001  
00 A5yyyyA0  
SO  
D12yyyyD1 D0 D12yyyyD1 D0 D12yyyyD1 D0  
RDY  
OFRAM data read  
[MS0296-E-00]  
59  
2005/03  
[ASAHI KASEI]  
[AK7750]  
e) Hands-Free Parameter RAM Read ( during reset )  
Hands-Free program RAM reads require inputting a command code and address to be accessed and  
waiting for SCLK to fall after setting SI to “H”. The data is then output synchronized with the falling edge of  
SCLK.  
When the requested read addresses are in consecutive locations, repeat the above procedure again by  
setting SI to “H”.  
Read hands-free parameter RAM after writing “1” to HF_RST_N bit and HF bit in CONT5 register as shown  
in the page 71  
Data transfer procedure  
c Command code  
d Address  
E1h ( 1 1 1 0 0 0 0 1 )  
( 0 0 A5 . . . . A0)  
S_RESET  
RQ  
SCLK  
SI  
SO  
11100000  
00A5 A1 A0  
D15yyyyyD0  
D15yyyyyD0  
D15yyyyyD0  
RDY  
Hands-Free Parameter RAM Read  
[MS0296-E-00]  
60  
2005/03  
[ASAHI KASEI]  
[AK7750]  
3) Writing During RUN  
a) Coefficient RAM write preparation and write ( under RUN condition )  
This procedure is used to re-write the Coefficient RAM (CRAM) while a program is being executed. After  
inputting a command code, data for up to 16 consecutive addresses can be written.  
Next, input a write command code and a starting address. Rewriting of the RAM contents is executed  
whenever a re-written address is assigned.  
For example, this is how 5 writes are executed, starting at the Coefficient RAM address of “ 10 “:  
Coefficient RAM execution address  
7
8
9 10 11 13 16 11 12 13 14 15  
È È  
È È È  
| | |  
write execution location  
| | Ç  
*) Note that address “ 13 “ is not processed until the data at address “ 12 “ is re-written.  
Data transfer procedure  
* Write preparation  
c Command code A8h (1 0 1 0 1 0 0 0)  
d Data (D15 y y y y y y D8)  
e Data (D7 y y y y y y D0)  
* Write operation  
c Command code A4h (1 0 1 0 0 1 0 0)  
d Address upper (0 0 0 0 0 0 A9 A8)  
e Address lower (A7 y y y y y y A0)  
Note) Be sure to follow the procedure of write preparation first, then write. An erroneous operation occurs  
if write is done without write preparation. “L” period of RDY for the write preparation is shorter than 1  
master clock (20ns) under typical condition  
S_RESET =H  
RQ  
SCLK  
SI  
10101000 D15yyyyD0  
10100100 0yyA9yyA0  
AL  
max 200ns  
RDYLG *)  
RDY  
SO  
Longer of (16-n) x 2 MCLK  
(n: number of data) and AL  
*) RDYLG pulse width is 2 LRCLK clock time maximum if a program is so written to re-  
write a new address within a single sampling time. After this, RDY signal goes high.  
CRAM Write Preparation and Write  
[MS0296-E-00]  
61  
2005/03  
[ASAHI KASEI]  
[AK7750]  
b) Offset RAM Write Preparation and Write ( under RUN condition )  
This procedure is used to re-write Offset RAM (OFRAM) while a program is being executed. After inputting  
a command code, data at up to 16 consecutive addresses to be re-written can be input . Next, input a write  
command and a starting write address, and the re-write is executed whenever re-written address is  
assigned. For example, this is how 5 writes are executed, starting at the Offset RAM address of “ 10 “:  
Offset RAM execution address  
7
8
9 10 11 13 16 11 12 13 14 15  
È È  
È È È  
| | |  
write execution location  
| | Ç  
Be noted that address “ 13 “ is not processed until data at address “ 12 “ is re-written.  
Data transfer procedure  
* Write preparation  
c Command code 98h (1 0 0 1 1 0 0 0)  
d Data (0 0 0 0 0 0 0 0)  
e Data (0 0 0 D12 y y y D8)  
f Data (D12 y y y y y y D8)  
* Write operation  
c Command code 94h (1 0 0 1 0 1 0 0)  
d Address MSB (0 0 A5 y y y y A0)  
Note) Be sure to follow the procedure of write preparation first, then write. An erroneous operation occurs  
if write is done without write preparation. “L” period of RDY for the write preparation is shorter than 1  
master clock (20ns) under typical condition  
S_RESET =H  
RQ  
SCLK  
SI  
10011000 00 D12yD0  
10010100 00 A5yyA0  
AL  
max 200ns  
RDYLG *)  
RDY  
SO  
Longer of (16-n) x 2 MCLK  
(n: number of data) and AL  
*) RDYLG pulse width is 2 LRCLK clock time maximum if a program is so written to  
surely re-write a new address within a single sampling time. After this, RDY signal  
rises to high.  
ORAM Write Preparation and Write  
[MS0296-E-00]  
62  
2005/03  
[ASAHI KASEI]  
[AK7750]  
c) External Conditional Jump Code Write ( under RUN condition )  
External conditional jump code writes are executed in 2 bytes/set data.  
It is possible to input during in both reset and normal operation modes. Input data is set to each assigned  
register at the rising edge of LCRCK.  
RDY pin goes “L” after all data is transferred and it becomes “H” when the write operation is completed.  
External jump code is 8-bits and when any bit of this code and any single bit of “1“ in the IFCON field  
matches, a jump instruction is executed.  
Write from microprocessor is inhibited until RDY becomes “H”.  
Note) please be noted that phase of LRCLK is inverted in case of I2S compatible interface mode.  
Data transfer procedure  
c Command code  
d Code data  
C4h ( 1 1 0 0 0 1 0 0 )  
(D7 D6 . . . . A0)  
.
S_RESET =H  
SCLK  
SI  
11000100 D7yyyyD0  
SO  
RQ  
L ch  
R ch  
LRCLK  
max: 2LRCLK  
RDY  
max: 0.25LRCLK  
External Conditional Jump Write Timing (during RUN)  
[MS0296-E-00]  
63  
2005/03  
[ASAHI KASEI]  
[AK7750]  
4) Read During RUNNING  
a) Control Register read out ( during RUN )  
It is possible to read out Control Registers in RUN mode. D7 ~ D1 control register values are output at the  
falling edge of SCLK after a command code is input. As no register exists at D0 location, “0” is always  
output until the 16th rising edge of SCLK.  
Note) when D0 data is taken at the 16th rising edge of SCLK, it is not necessarily always “0”, so please  
ignore the D0 value (as it is indeterminate after the 16th rising edge of SCLK).  
Data transfer procedure  
c Command code 70h,72h,74h,76h,78h,7Ah,7Ch,D8h,DAh,DCh  
note ) 50h,54h,58h are not used as they are for testing.  
For each Bit function, please refer to section (2) Control Register Settings.  
S_RESET =H  
RQ  
SCLK  
SI  
70h(example)  
74h(example)  
D7yyyyD1  
SO  
D7yyyyD1  
Example of Control Register Read  
[MS0296-E-00]  
64  
2005/03  
[ASAHI KASEI]  
[AK7750]  
b) SO Read Out  
SO can output data that is on the DSP Data Bus (DBUS).  
Data is set using the @ MICR command and specifying a value in the DST field.  
When the data is set, DRDY becomes “H” and data is output in sync with the falling edge of SCLK.  
By setting SI to “H”, DRDY becomes “L” and waits for the next instruction.  
Once DRDY becomes “H”, the @ MICR instruction data that sets DRDY “H” is retained until SI is set to “H”  
or until 24 bits of data are output by SCLK clock (DRDY becomes “L” after outputting 24 data bits), and no  
further @MICR instruction is accepted. Output on SO pins is 24-bits long maximum.  
S_RESET =H  
RQ =H  
SI  
@MICR  
DRDY  
SCLK  
Data1  
Data2  
24SCLK  
less than SCLK24  
D
D
D
D
D
D
2
D
1
D
0
D
D
D
D
D
D
D D  
SO  
23 22 21 20 19  
23 22 21 20 19 18 17 16  
SO Read Out (during RUN)  
[MS0296-E-00]  
65  
2005/03  
[ASAHI KASEI]  
[AK7750]  
5 ) Simplified Write Error Check  
The AK7750 can easily check whether any error exists in the write data, using Cyclic Codes.  
(Note: the main purpose of this is to check erroneous writes due to induced noise etc. caused between  
microprocessor and DSP. As this is a CRC-based (cyclic redundancy check ) check, and as input data is  
checked before it is written into RAM and register, it does not guarantee 100 % write error detection ).  
Here definitions are made as follows :  
y serial data D (x) : SI data being input during the time from RQ to fall to RQ to rise.  
y Generator Polynomial G(x)=x16+x12+x5+1 (default value = 0)  
y remainder R (x), when D(X) is divided by G (x)  
In order to perform a simplified write error check, perform the following:  
1) Transfer serial data D(x) to be checked.  
2) Write the remainder R(x) of serial data D(x) to register, using command code B6h.  
3) Read out R(x) using command code D6h to check if it is correctly written (CRC check function operates  
even when no read is performed).  
4) If the remainder of the serial data D(x) divided by G(x) is equal to R(x), SO outputs “H” at the rising  
edge of RQ until the following rising edge of RQ occurs for next serial data-write. When the SO  
output is used, as in the case of a read in RUN mode, there is a conflict. Therefore when a CRC check  
is done, do not execute read operation in RUN mode until the check is completed). If it is not equal to  
R(x), “L” is output.  
5) If other serial data is to be checked, repeat 1 ) ~ 4 ) above.  
„ Details of Data Transfer Procedure  
1) Write the register  
Writing remainder data R(x) is executed in 3 bytes/set data (24-bit).  
Data translate order.  
cCommand code  
B6h  
dUpper 8bit of R(x) (D15 * * * * * * D8)  
eLower 8bit of R(x) ( D7 * * * * * * D0)  
2) Read out the register  
Reading remainder data R(x) is executed in 3 bytes/set data (24-bit).  
Data translate order  
cCommand code  
D6h  
dUpper 8bit of R(x) (D15 * * * * * * D8)  
eLower 8bit of R(x) ( D7 * * * * * * D0)  
R(x)  
RQ  
SCLK  
SI  
B6h  
D15 *** D  
D6h  
D15 *** D  
SO  
Example: Control register writing, reading  
66  
[MS0296-E-00]  
2005/03  
[ASAHI KASEI]  
[AK7750]  
3) CRC Check  
D(x)  
Rest of D(x)/G(x)  
RQ  
SCLK  
1010000 000000A9 A7***A1 A0 D15*** D0  
B6h  
R(x)  
SI  
SO  
The rest (D(x)/G(x))=R(x)  
The rest of D(x)/G(x)=R(x) CRC Check example.  
4) Example of the R(x) made from D(x).  
Examples  
D(X)  
R(X)  
1
2
3
D6ABCDh  
1E51h  
0C30h  
2297h  
D2A5A5h  
A855557777AAAA0000FFFFh  
(8) ADC high-pass filter  
The AK7750 incorporates a digital high-pass filter (HPF) for canceling DC offset in the ADC. The  
HPF cut-off frequency is about 1 Hz (fs = 48 kHz). This cut-off frequency is proportional to the sampling  
frequency (fs).  
48kHz  
44.1kHz  
0.86Hz  
32kHz  
8kHz  
Cut-off frequency  
0.93Hz  
0.62Hz  
0.16Hz  
[MS0296-E-00]  
67  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(9) EEPROM Interface  
1) Using the EEPROM interface  
Since the AK7750 has an integrate EEPROM interface, PRAM, CRAM, OFRAM and Control Register data  
can be loaded from the EEPROM after an initial RESET.  
Use AKM’s 64Kbit/12Kbit serial EEPROM, the AK6512C/14C, when using the AK7750..  
The data listed in section 2) Program Map, should be written into the EEPROM.  
The following operations are required when using the EEPROM.  
Set EESEL pin to “H”, (after reaching a proper oscillation when a crystal oscillator is used ) and  
set INIT_RESET pin to raise “H”. Then internal counter starts to run which generates EEPROM  
control signals EECS , EESK and EESI, and EEPROM data is taken from EESO pin.  
After taking all data, EESK and EESI become “L” and EECS to “H”. EEST pin rises from “L” to  
“H”, informing that loading has been completed. When EEST becomes “H”, interface with  
microprocessor is enabled with EESEL pin as it stands at “H”. When reading is required again, set  
INIT_RESET pin to “H” after executing initial reset ( INIT_RESET = “L”) with EESEL kept at “H”.  
Note that hands-free parameters can not be downloaded via EEPROM interface.  
[MS0296-E-00]  
68  
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) Program map  
EEPROMADDRESS  
DATA  
Note  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
zzzz  
0BFEh  
0BFFh  
0C00h  
0C01h  
0C02h  
0C03h  
0C04h  
0C05h  
0C06h  
0C07h  
0C08h  
zzzz  
1403h  
1404h  
1405h  
1406h  
1407h  
1408h  
1409h  
140Ah  
140Bh  
zzzz  
1494h  
1495h  
1496h  
1497h  
1498h 1519A  
151Ah  
151Bh  
151Ch  
151Dh  
151Eh  
151Fh  
1520h  
1521h  
1522h  
1523h  
1524h  
1525h  
1526h  
1527h  
1528h  
1529h  
152Ah  
C0h  
00h  
00h  
PRAM WRITE command code  
PRAM address MSB side  
PRAM address LSB side  
PRAM address 0 MSB 8bit data  
PRAM address 0 MSB-1 8bit data  
PRAM address 0 MSB-2 8bit data  
PRAM address 0 LSB 8bit data  
PRAM address 1 MSB 8bit data  
PRAM0 DATA31-24  
PRAM0 DATA23-16  
PRAM0 DATA15-8  
PRAM0 DATA7-0  
PRAM1 DATA31-24  
zzzz  
PRAM766 DATA7-0  
PRAM767 DATA31-24  
PRAM767 DATA23-16  
PRAM767 DATA15-8  
PRAM767 DATA7-0  
A0h  
PRAM address 766 LSB 8bit data  
PRAM address 767 MSB 8bit data  
PRAM address 767 MSB-1 8bit data  
PRAM address 767 MSB-2 8bit data  
PRAM address 767 LSB 8bit data  
CRAM WRITE command code  
CRAM address MSB side  
CRAM address LSB side  
CRAM address 0 MSB 8bit data  
CRAM address 0 LSB 8bit data  
CRAM address 1 MSB 8bit data  
00h  
00h  
CRAM0 DATA15-8  
CRAM0 DATA7-0  
CRAM1 DATA15-8  
zzzz  
CRAM1022 DATA7-0  
CRAM1023 DATA15-8  
CRAM1023 DATA7-0  
90h  
CRAM address 1022 LSB 8bit data  
CRAM address 1023 MSB 8bit data  
CRAM address 1023 LSB 8bit data  
OFRAM WRITE command code  
OFRAM address  
OFRAM address 0 MSB 8bit data  
OFRAM address 0 MSB-1 8bit data  
OFRAM address 0 LSB 8bit data  
OFRAM address 1 MSB 8bit data  
00h  
OFRAM0 DATA23-16  
OFRAM0 DATA15-8  
OFRAM0 DATA7-0  
OFRAM1 DATA23-16  
zzzz  
OFRAM46 DATA7-0  
OFRAM47 DATA23-16  
OFRAM47 DATA15-8  
OFRAM47 DATA7-0  
00h  
60h  
DATA  
62h  
DATA  
64h  
DATA  
66h  
DATA  
68h  
DATA  
6Ah  
DATA  
OFRAM address 46 LSB 8bit data  
OFRAM address 47 MSB 8bit data  
OFRAM address 47 MSB-1 8bit address  
OFRAM address 47 LSB 8bit address  
Reserved  
CONT0 WRITE command code  
CONT0 data  
CONT1 WRITE command code  
CONT1 data  
CONT2 WRITE command code  
CONT2 data  
CONT3 WRITE command code  
CONT3 data  
CONT4 WRITE command code  
CONT4 data  
CONT5 WRITE command code  
CONT5 data  
6Ch  
DATA  
B6h  
CRC DATA15-8  
CRC DATA7-0  
CONT6 WRITE command code  
CONT6 data  
CRC WRITE command code  
CRC MSB 8bit data  
CRC LSB 8bit data  
[MS0296-E-00]  
69  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(10) DAC Soft Mute Operation  
DAC block in the AK7750 includes soft mute circuit.  
Soft mute operation is performed at digital domain. When the SMUTE bit goes to “1”, the output signal is  
attenuated from 0dB level to -level during the LRCLK cycle time that is specified by SF1 bit and SF0 bit  
in CONT5 register plus additional 2LRCLK cycle time(max). When the SMUTE bit is returned to “0”, the  
mute is cancelled and the output attenuation gradually changes to 0dB level by the same cycle. If the soft  
mute is cancelled before attenuating to -after starting the operation, the attenuation is discontinued and  
returned to 0dB by the same cycle. The soft mute is effective when S_RESET is “H” (DAC opeates  
normally) External mute circuit is recommended to suppress the pop noise at the reset.  
Attenuation value is initialized by INIT_RESET =”L”, not S_RESET =”L”  
SMUTE bit  
setting value +2LRCLK(max)  
setting value +2LRCLK(max)  
0dB  
Attenuation  
-dB  
GD  
GD  
Analog out  
Soft Mute Operation  
setting value +2LRCLK(max)  
GD  
SMUTE bit  
S_RESET  
setting value +2LRCLK(max)  
0dB  
Attenuation  
-dB  
Analog out  
pop noise  
Mute ON  
External Mute  
Circuit  
Example of soft mute control@ S_RESET =”H”  
[MS0296-E-00]  
70  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(11) Hands-free mode  
The AK7750 has hands-free mode in addition to normal surround mode.  
The write “1” to HF_RST_N bit and HF bit in CONT5 register under system reset (S _RESET =”L”) allows the  
AK7750 to hands-free operation mode. The AK7750 returns to surround mode by the execution of  
initial reset or the clear of HF_RESETN bit and HF bit.  
The AK7750 can change the attenuation level of noise canceller. If PID bit of CONT5 register is “0”, the  
default attenuation level is used. If PID bit is “1”, the attenuation level which is stored in the hands-free  
parameter RAM is used.  
Hands-free parameter must be downloaded to the address AFTER the AK7750 switches to hands-free  
mode.  
Please contact AKM for the detail of hands-free parameter contents.  
S _ RESET  
RQ  
SCLK  
SI  
6Ah ECh  
E0h 00h  
DATA0  
DATA6  
other  
DATA  
control register CONT5  
Hands-free mode ON  
writing hands-free  
parameter RAM  
[MS0296-E-00]  
71  
2005/03  
[ASAHI KASEI]  
[AK7750]  
9. System Design  
(1) Connection example  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
0.1µ  
Digital +3.3V  
10µ  
43  
28  
7
11  
24  
36  
DVDD DVDD DVDD  
DVDD  
DVDD  
SMODE  
DRDY  
SO  
41  
22 SDIN1  
17  
38  
32  
37  
39  
40  
30  
31  
21 SDIN2  
20 SDIN3  
19 SDIN4  
P I/F  
µ
RDY  
RQ  
SI  
Rd  
33  
XTO  
XTI  
CL  
CL  
SCLK  
CS  
34  
HFST  
AK7750  
JX0  
18  
16  
LRCLK_I  
BITCLK_I  
CKSX  
CKS1  
CKS0  
42  
46  
47  
15  
12  
13  
14  
CLKO  
BITCLK_O  
LRCLK_O  
INIT_RESET  
25  
26  
RESET  
CK_RESET  
S_RESET  
CONTROL  
27  
Analog Lch+  
64  
AINL+  
AINL-  
AINR+  
AINR-  
Analog Lch-  
Analog Rch+  
Analog Rch-  
63  
62  
61  
SDOUT1  
SDOUT2  
SDOUT3  
SDOUT4A  
6
5
4
3
22K  
49  
LFLT  
1.5nF  
AOUTL 54  
AOUTR 53  
50  
AVDD  
0.1µ  
55  
56  
AVDD  
AVDD  
AVSS  
51,52,60  
0.1µ  
0.1µ  
Analog +3.3V  
VREFL  
VCOM  
59  
10µ  
58  
57  
VREFH  
10µ  
0.1µ  
10µ  
0.1µ  
BVSS  
9,45  
8,10,23,29,35,44 DVSS  
[MS0296-E-00]  
72  
2005/03  
[ASAHI KASEI]  
[AK7750]  
(2) Periphery Circuit  
1) Connection with EEPROM  
AK7750  
INIT_RESET  
Micro cmp  
S_RESET  
RQ  
RQ  
SCLK  
SI  
SCLK  
SI  
SO  
SO  
EESEL  
L
HFST /EEST  
RDY  
DRDY  
RDY/EESI  
DRDY/EECK  
CS /EESO  
CS  
LRCLK_O/ EECS  
4-wire control  
AK7750  
INIT_RESET  
S_RESET  
RQ  
Micro cmp  
RQ  
SCLK  
SCLK  
SI  
SI  
SO  
SO  
EESEL  
H
ST  
HFST /EEST  
RDY  
DRDY  
EEPROM  
RDY/EESI  
DRDY/EECK  
CS /EESO  
SI  
CK  
SO  
CS  
LRCLK_O/ EECS  
4-wire control + EEPROM  
AK7750  
INIT_RESET  
S_RESET  
H
H
H
RQ  
SCLK  
SI  
SO  
EESEL  
H
HFST /EEST  
EEPROM  
SI  
RDY/EESI  
DRDY/EECK  
CK  
SO  
CS /EESO  
CS  
LRCLK_O/ EECS  
EEPROM only  
[MS0296-E-00]  
73  
2005/03  
[ASAHI KASEI]  
[AK7750]  
2) Grounding and Power Supply  
When designing with the AK7750, AVDD and DVDD are separately decoupled in order to minimize digital  
noise. System Analog power supply is fed to AVDD. In general, power supply lines and ground lines are  
separately wired for the analog and digital portions, and they are connected together near the power  
supplies (terminals) on the printed circuit board. Small ceramic de-coupling capacitors should be connected  
as close as possible to the AK7750.  
3) Reference Voltage  
An input voltage difference between VREFH pin and VREFL pin determines the analog full scale input and  
output. Normally, AVDD is connected to VREFH and AVSS to VREF.  
In order to eliminate high frequency noise, connect a 10 uF electrolytic capacitor and a 0.1 uF ceramic  
capacitor in parallel between VREFH and AVSS . The ceramic capacitor should be connected as close as  
possible to this pin. Digital signals, especially clocks should be wired as far as possible from the VREFH  
and VREFL pins in order to avoid coupling with the AK7750.  
The AK7750 common voltage is output on VCOM. Do not use this VCOM common voltage for connection  
with any external circuits. To eliminate high frequency noise, connect a 10-uF electrolytic capacitor and a  
0.1 uF ceramic capacitor between VCOM and AVSS. These capacitors should be placed as close as  
possible to the VCOM pin.  
4) Analog Input  
An analog signal is input to the internal modulator through differential input pins for each channel.  
The input voltage range is equal to difference in voltage between AIN+ and AIN- (VAIN = (AIN+) – (AIN-)),  
and equals ±FS = ±(VREFH – VREFL) x 0.4. When VREFH = 3.3 V and VREFL = 0.0 V, input range is  
±1.32 V. Output code format is in 2’s complement.  
In the AK7750, the analog input is sampled at 3.072 MHz when fs = 48 KHz. A digital filter rejects noise  
ranging from 30 KHz to 3.042 MHz. Noise around the 3.072 MHz periphery band is not rejected. As no  
audio signals exhibit noise near 3.072 MHz, noise can be sufficiently attenuated using a simple RC filter.  
Analog input signal to the AK7750 must be biased as shown in Figure 1  
Analog power supply voltage of the AK7750 is + 3.3 V (typ).  
Voltages higher than AVDD + 0.3 V & lower than AVSS – 0.3 V and current exceeding 10 mA should not  
be applied on the analog input pins (AINL+, AINL-, AINR+, AINR-).  
Injection of excessive current may destroy the internal protection circuits and may cause a latch-up that  
results in total device destruction.  
Therefore if ±15 V power supplies are used in peripheral analog circuits, the analog input pins must be  
protected from signals exceeding absolute maximum ratings.  
[MS0296-E-00]  
74  
2005/03  
[ASAHI KASEI]  
[AK7750]  
10k  
Vop  
10k  
1.32Vpp  
AVSS  
BIAS  
10k  
Vop  
10k  
-
+
Signal  
-
AIN+  
+
330  
NJM2100  
1.5nF  
4.7k  
0.1µ  
BIAS  
AIN-  
330  
BIAS  
+
10µ  
4.7k  
Vop = VA+ = 3.3V  
1.32Vpp  
AIN-  
AVSS  
Fig.1 Input Buffer Circuit Example ( Differential input )  
10k  
Vop  
BIAS  
NJM2100  
10k  
Vop  
AVSS  
3.3nF  
-
+
Signal  
AIN+  
AIN-  
330  
330  
+
10µ  
4.7k  
0.1µ  
BIAS  
+
10µ  
4.7k  
Vop = VA+ = 3.3V  
2.64Vpp  
BIAS  
AIN-  
AVSS  
Fig.2 Input Buffer Circuit Example ( Single-Ended input )  
The AK7750 can also receive single-ended analog signals. In this case, the analog signal is fed to the AIN-  
input pin (FS = (VREFH – VREFL) x 0.8= 2.64 Vp-p at VREFH = 3.3 V, VREFL = 0.0 V), and a bias voltage  
is fed to the AIN+ input pin. When 3.3 V OP amps are used in, low-saturation type OP amps are  
recommended. An electrolytic capacitor connected to AIN+ pin is effective in lowering secondary  
harmonics (refer to Figure 2).  
5) Analog Output  
The analog output is single-ended. Output range is 2.00 Vp-p (typ) centered on VCOM.  
The Out-of-Band noise (shaping noise) generated by an internal delta-sigma modulator is attenuated by an  
on-chip switched capacitor filter (SCF) and a continuous time filter (CTF). Therefore it is not necessary to  
add an external filter for normal use. If ADC without anti-aliasing input filter is connected to DAC’s output  
directly, the spurious noise may be appear. In this case, the insertion of low pass filter that has fo< 20kHz,  
2nd order (>12dB/oct) is effective.  
The input code format is in 2’s complement. Positive full-scale output corresponds to 7FFFFFh (@ 24 Bit)  
input code, Negative full scale is 800000h (@ 24 Bit) and VCOM voltage ideally is 000000h (@ 24 Bit).  
6) Connection with Digital Circuit  
In order to minimize noise caused by Digital circuits, use low voltage logic ICs to connect the digital outputs.  
Recommended logic families are 74LV, 74LV-A, 74ALVC and 74AVC series ICs.  
[MS0296-E-00]  
75  
2005/03  
[ASAHI KASEI]  
[AK7750]  
Package  
64pin LQFP (Unit: mm)  
12.0±0.3  
Max 1.70  
1.40  
10.0  
0.10±0.10  
33  
32  
48  
49  
64  
1
17  
16  
0.17±0.05  
0.21±0.05  
0.5  
0.10  
M
1.0  
0°~10°  
0.45 ±0.2  
0.10  
z
Material & Lead finish  
Package:  
Lead-frame: Copper  
Lead-finish: Soldering plate (Pb free)  
Epoxy  
[MS0296-E-00]  
76  
2005/03  
[ASAHI KASEI]  
[AK7750]  
Marking  
AKM  
AK7750VT  
XXXXXXX  
1
1) Pin #1 indication  
2) ARM Logo  
3) Date Code: XXXXXXX(7 digits)  
4) Marking Code: AK7750VT  
5) Asahi Kasei Logo  
IMPORTANT NOTICE  
zThese products and their specifications are subject to change without notice. Before considering any use  
or application, consult the Asahi Kasei Microsystems Co., Ltd.(AKM) sales office or authorized distributor  
concerning their current status.  
zAKM assumes no liability for infringement of any patent, intellectual property, or other right in the  
application or use of any information contained herein.  
zAny export of these products, or devices or systems containing them, may require an export license or  
other official approval under the law and regulations of the country of export pertaining to customs and  
tariffs, currency exchange, or strategic materials.  
zAKM products are neither intended nor authorized for use as critical components in any safety, life  
support, or other hazard related device or system, and AKM assumes no responsibility relating to any  
such use, except with the express written consent of the Representative Director of AKM. As used  
here:  
(a): A hazard related device or system is one designed or intended for life support or maintenance of  
safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure  
to function or perform may reasonably be expected to result in loss of life or in significant injury or  
damage to person or property.  
(b): A critical component is one whose failure to function or perform may reasonably be expected to  
result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system  
containing it, and which must therefore meet very high standards of performance and reliability.  
zIt is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or  
otherwise places the product with a third party to notify that party in advance of the above content and  
conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and  
hold AKM harmless from any and all claims arising from the use of said product in the absence of such  
notification.  
[MS0296-E-00]  
77  
2005/03  

相关型号:

AK7752

Audio/Hands Free DSP with Stereo CODEC
AKM

AK7752VQ

Audio/Hands Free DSP with Stereo CODEC
AKM

AK7753ET

Telecom Circuit, 1-Func, PQFP64, LEAD FREE, LQFP-64
AKM

AK7754

Audio DSP with Stereo CODEC MIC/HP-AMP
AKM

AK7754EN

Audio DSP with Stereo CODEC MIC/HP-AMP
AKM

AK7755

DSP with Mono ADC Stereo CODEC Mic/Lineout Amp
AKM

AK7755EN

Consumer Circuit, PQCC36, QFN-36
AKM

AK7755EN_16

DSP with Mono ADC Stereo CODEC Mic/Lineout Amp
AKM

AK7756

DSP with Mono CODEC + Mic/Lineout Amp
AKM

AK7756EN

DSP with Mono CODEC + Mic/Lineout Amp
AKM

AK7756VF

DSP with Mono CODEC + Mic/Lineout Amp
AKM

AK7757VQ

24bit 3ch ADC 4ch DAC Mic Amp 内蔵 Audio DSP
AKM