APW7062B_08 [ANPEC]

Synchronous Buck PWM Controller; 同步降压PWM控制器
APW7062B_08
型号: APW7062B_08
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM Controller
同步降压PWM控制器

控制器
文件: 总18页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7062B  
Synchronous Buck PWM Controller  
Features  
General Description  
The APW7062B is a voltage mode and synchronous PWM  
controller which drives dual N-Channel MOSFETs. It inte-  
grates the control, monitoring, and protection functions  
into a single package, provides one controlled power  
outputs with under-voltage and over-current protection.  
APW7062B provides excellent regulation for output load  
variation. An internal 0.8V temperature-compensated  
reference voltage is designed to meet the requirement of  
low output voltage applications. It includes a 200kHz free-  
running triangle-wave oscillator that is adjustable from  
70kHz to 800kHz.  
·
·
·
Simple Single-Loop Control Design  
- Voltage-Mode PWM Control  
Fast Transient Response  
- Full 0–100%DutyRatio  
Excellent Output Voltage Regulation  
- 0.8V Internal Reference  
- ± 1% Over Line Voltage and Temperature  
·
Over Current Fault Monitor  
- Uses Upper MOSFETs RDS (ON)  
·
·
Converter Can Source and Sink Current  
Small Converter Size  
The power-on-reset (POR) circuit monitors the VCC, EN,  
and OCSET input voltage to start-up or shutdown the IC.  
The over-current protection (OCP) monitors the output  
current by using the voltage drop across the upper  
MOSFET’s RDS(ON), eliminating the need for a current sens-  
ing resistor. The under-voltage protection (UVP) moni-  
tors the voltage of the FB pin for short-circuit protection.  
The over-current protection trip cycle the soft-start func-  
tion until the fault events be removed. Under-voltage pro-  
tection will shutdown the IC directly.  
- 200kHz Free-Running Oscillator  
- Programmable from 70kHz to 800kHz  
·
·
14-Lead SOIC Package  
Lead Free and Green Devices Available  
(RoHS Compliant)  
Applications  
Pin Configuration  
1
2
3
4
5
6
7
RT  
OCSET  
SS  
VCC  
·
·
·
·
Graphic Cards  
14  
13  
12  
11  
10  
9
PVCC  
DDR Memory Power Supply  
DDR Memory Termination Voltage  
Low-Voltage Distributed Power Supplies  
LGATE  
PGND  
BOOT  
COMP  
FB  
UGATE  
PHASE  
EN  
8
GND  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise  
customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ã ANPEC Electronics Corp.  
1
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Ordering and Marking Information  
Package Code  
APW7062B  
K : SOP-14  
Operating Ambient Temperature Range  
Assembly Material  
Handling Code  
C : 0 to 70 oC  
Handling Code  
TR : Tape & Reel  
Assembly Material  
Temperature Range  
Package Code  
L : Lead Free Device G : Halogen and Lead Free Device  
APW7062B  
APW7062B K :  
XXXXX - Date Code  
XXXXX  
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which  
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for  
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen  
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by  
weight).  
Absolute Maximum Ratings (Note 1)  
Symbol  
Parameter  
Rating  
30  
Unit  
V
VCC  
VCC to GND  
VBOOT  
VPHASE  
BOOT to GND  
30  
V
PHASE to GND  
30  
V
Operating Junction Temperature  
Storage Temperature  
0~150  
-65 ~ 150  
260  
oC  
oC  
oC  
TSTG  
TSDR  
Maximum Lead Soldering Temperature, 10 Seconds  
Note 1 : Stresses above those listed in bsolute Maximum Ratings may cause permanent damage to the device.  
Electrical Characteristics  
APW7062B  
Unit  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
VCC SUPPLY CURRENT  
ICC  
Nominal Supply  
Shutdown Supply  
POWER-ON-RESET  
Rising VCC Threshold  
EN=VCC; UGATE and LGATE Open  
EN=0V  
-
-
2
-
mA  
250  
350  
mA  
VOCSET=4.5VDC  
VOCSET=4.5VDC  
VOCSET=4.5VDC  
-
-
10.4  
V
V
V
V
Falling VCC Threshold  
8.8  
0.8  
-
-
-
-
2.0  
-
Enable-Input Threshold Voltage  
Rising VOCSET Threshold  
1.27  
OSCILLATOR  
Free Running Frequency  
Total Variation  
RT=OPEN, VCC=12  
6kW < RT to GND < 200kW  
RT=OPEN  
170  
-15  
-
200  
-
230  
+15  
-
kHz  
%
Ramp Amplitude  
1.9  
VP-P  
DVOSC  
REFERENCE VOLTAGE ACCURACY  
Reference Voltage Tolerance  
PWM Error Amplifier  
-1  
-
-
+1  
-
DVREF  
%
VREF  
0.80  
V
Copyright ã ANPEC Electronics Corp.  
2
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Electrical Characteristics (Cont.)  
APW7062B  
Unit  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
GATE DRIVERS  
IUGATE  
RUGATE  
ILGATE  
RLGATE  
TD  
Upper Gate Source  
Upper Gate Sink  
VBOOT=12V, VUGATE=6V  
650  
800  
4
-
7
-
mA  
W
ILGATE=0.3A  
-
Lower Gate Source  
Lower Gate Sink  
Dead Time  
PVCC=12V, VLGATE=6V  
ILGATE=0.3A  
550  
700  
4
mA  
W
-
-
7
-
VOUT=2.5V, IOUT=1A, RT=OPEN  
50  
ns  
PROTECTION  
FB Under Voltage  
-
170  
8
50  
200  
10  
-
%
IOCSET  
ISS  
OCSET Current Source  
Soft-Start Current  
VOCSET=4.5VDC  
230  
12  
mA  
mA  
Copyright ã ANPEC Electronics Corp.  
3
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Typical Operating Characteristics  
Power Up  
Power Down  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
VCC(5V/div)  
SS(2V/div)  
VCC(5V/div)  
SS(2V/div)  
VOUT(1V/div)  
VOUT(1V/div)  
Time(10ms/div)  
Time(10ms/div)  
Enable (EN = VCC)  
Shutdown(EN=GND)  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
EN(10V/div)  
SS(2V/div)  
EN(10V/div)  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
SS(2V/div)  
VOUT(1V/div)  
VOUT(1V/div)  
Time(10ms/div)  
Time(2ms/div)  
Copyright ã ANPEC Electronics Corp.  
4
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Typical Operating Characteristics (Cont.)  
Load Transient Response  
Under Voltage Protection  
VCC=12V, VIN=12V  
VOUT=2.5V, RT=Open  
L=2.2uH  
VCC=12V, VIN=12V  
VOUT(100mV/div)  
VOUT=2.5V, L=2.2uH  
VOUT(2V/div)  
SS(5V/div)  
IL(10A/div)  
IOUT(2A/div)  
UGATE(20V/div)  
Time(20ms/div)  
Time(20ms/div)  
UGATE Rising  
UGATEFalling  
VCC=12V, VIN=12V  
VOUT=2.5V, RT=Open  
VCC=12V, VIN=12V  
VOUT=2.5V, RT=Open  
UGATE(10V/div)  
UGATE(10V/div)  
LGATE(10V/div)  
Phase(10V/div)  
LGATE(10V/div)  
Phase(10V/div)  
Time(50ms/div)  
Time(50ms/div)  
Copyright ã ANPEC Electronics Corp.  
5
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Typical Operating Characteristics (Cont.)  
UGATE Source Current vs. UGATE Voltage  
UGATE Sink Current vs. UGATE Voltage  
1.2  
1
1.4  
1.2  
1
VBOOT=12V  
VBOOT=12V  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
UGATE Voltage (V)  
UGATE Voltage (V)  
LGATE Source Current vs. LGATE Voltage  
1.4  
1.2  
LGATE Sink Current vs. LGATE Voltage  
1.2  
1
PVCC=12V  
PVCC=12V  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
LGATE Voltage (V)  
LGATE Voltage (V)  
Copyright ã ANPEC Electronics Corp.  
6
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Typical Operating Characteristics (Cont.)  
Over Current Protection  
RT Resistance vs. Switching Frequency  
10000  
1000  
100  
10  
VOUT(1V/div)  
RT pull up to 12V  
SS(5V/div)  
IL(10A/div)  
RT pull down to GND  
UGATE(20V/div)  
1
10  
100  
1000  
Time(20ms/div)  
Switching Frequency (kHz)  
VCC=12V, VIN=12V, VOUT=2.5V,  
ROCEST=1KW, RT=Open, RDS(ON)=14mW,  
IOUT=16.3A, L=2.2uH, LOUT=16.3A  
Reference Voltage vs. Junction Temperature  
Switching Frequency vs. Junction Temperature  
0.8  
220  
VCC=12V  
RT=Open  
210  
0.798  
0.796  
0.794  
0.792  
0.79  
200  
190  
180  
170  
160  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
Junction Temperature (°C)  
Junction Temperature (°C)  
Copyright ã ANPEC Electronics Corp.  
7
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Block Diagram  
VCC  
OCSET  
GND  
Power-On  
Reset  
EN  
SS  
IOCSET  
200mA  
VCC  
BOOT  
ISS  
10mA  
UGATE  
O.C.P  
Comparator  
Soft Start  
PHASE  
5.8V  
U.V.P  
Comparator  
:
2
50%VREF  
PVCC  
PWM  
Comparator  
Gate  
Control  
LGATE  
Error  
Amp  
PGND  
VREF  
Oscillator  
Triangle  
Wave  
COMP  
FB  
RT  
Typical Application Circuit  
12V  
C1  
R1  
10R  
1uF  
D1  
12V  
L1  
R3  
1K  
1N4148  
R2  
10K  
1uH  
+
+
+
U1  
C3  
C6  
C4  
100uF  
16V  
APW7062B  
8
7
6
5
C5  
4.7uF  
470uF  
16V  
30mR  
470uF  
16V  
30mR  
R4  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
RT  
OCSET  
SS  
COMP  
FB  
EN  
VCC  
PVCC  
LGATE  
PGND  
BOOT  
UGATE  
PHASE  
C2  
1nF  
4
NC  
Q1  
APM4220  
R5  
2R2  
8
1
2
3
GND  
1.2V  
C8  
0.1uF  
C7  
0.1uF  
L2  
8
7
6
5
R10  
15K  
2.2uH  
SHDN  
R7  
NC  
+
+
C10  
1000uF  
6.3V  
C9  
1000uF  
6.3V  
C13  
47pF  
D2  
SR24  
2A/40V  
C11  
4.7uF  
Q2  
APM4220  
R6  
0R  
C12  
8200pF  
4
30mR  
30mR  
1
2
3
R8  
1KF  
1%  
C12  
NC  
R9  
2KF  
1%  
R8  
æ
è
ö
÷
ø
VOUT = VREF ´ 1+  
ç
R9  
Copyright ã ANPEC Electronics Corp.  
8
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Function Pin Description  
RT (Pin1)  
output is rising rapidly. Until the output is in regulation at  
t2, the clamp on the COMP is released. This method pro-  
vides a rapid and controlled output voltage rise.  
When over-current protection occurs, the VOUT is  
shutdown, and re-soft-start again, if the over current con-  
dition still exists in soft-start, the VOUT is shutdowned  
again. After the SS reaches 4.5V, the SS is discharged to  
zero. The soft-start is recurring until the over current con-  
dition is eliminated.  
This pin can adjust the switching frequency. Connect a  
resistor from the RT to the GND for increasing the switch-  
ing frequency:  
4.15´ 106  
FS = 200kHz +  
RT  
(RT to GND,FS = 200kHz to 400kHz)  
Conversely, connect a resistor from the RT to the VCC for  
decreasing the switching frequency:  
VOLTAGE  
3.51´ 107  
FS = 200kHz -  
RT  
VSOFT-START  
(RT to VCC,FS = 200kHz to 75kHz)  
OCSET (Pin2)  
VOUT  
This pin serves two functions: a shutdown control and  
the setting of over current-limit threshold. Pulling this pin  
below 1.27V will shutdown the controller, forcing the  
UGATE and LGATE signals to be at 0V.  
Error Amp  
Output  
VOSC(MIN)  
VSS=1.2V  
A resistor (Rocset) connected between this pin and the drain  
of the high side MOSFET will determine the over current  
limit. An internal 200mA current source will flow through  
this resistor, creating a voltage drop, which will be com-  
pared with the voltage across the high side MOSFET.  
The threshold of the over current limit is therefore given  
by:  
TIME  
t0  
t1  
t2  
t3  
Figure 1. Soft-Start Interval  
C
=
SS ´ (VOSC(MIN)+t1)  
t2  
ISS  
IOCSET  
(
200uA ´ ROCSET  
)
VOUT  
IPEAK =  
SteadyState´ DVOSC  
CSS  
tSoftStart= t3 - t2  
=
´
RDS(ON)  
ISS  
VIN  
To avoid the noise interference from switching transient,  
a delay time is designed in the OCP comparator.  
The over-current protection is active only when the high  
side MOSFET is turned on longer than 300ns.  
Where :  
t1=1.2V  
CSS = Soft-Start Capacitor  
ISS = Soft-Start Current = 10mA  
SS (Pin3)  
VOSC(MIN) = Bottom of Oscillator = 1.35V  
VIN = Input Voltage  
Connect a capacitor from the pin to the GND to set the  
soft-start interval of the converter. An internal 10mA current  
source charges this capacitor to 5.8V. The SS voltage  
clamps the error amplifier output, and Figure1 shows the  
soft-start interval. At t1, the SS voltage reaches the valley  
of the oscillator’s triangle wave. The PWM comparator  
starts to generate a PWM signal to control logic, and the  
DVosc = Peak to Peak Oscillator Voltage = 1.9V  
DVOUTSteadyState = Steady State Output Voltage  
Copyright ã ANPEC Electronics Corp.  
9
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Function Pin Description (Cont.)  
COMP (Pin4)  
BOOT (Pin 10)  
This pin is the output of the error amplifier. Add an exter-  
nal resistor and capacitor network to provide the loop com-  
pensation for the PWM converter (see Application  
Information).  
This pin provides the supply voltage to the high side  
MOSFET driver. For driving logic levelN-channel MOSEFT,  
a bootstrap circuit can be used to create a suitable driver’s  
supply.  
FB(Pin5)  
PGND(Pin11)  
FB pin is the inverter input of the error amplifier and it  
receives the feedback voltage from an external resis-tive  
divider across the output (VOUT). The output voltage is  
determined by:  
Power ground for the gate diver. Connect the lower  
MOSFET source to this pin.  
LGATE (Pin 12)  
Connect the pin to the external MOSFET, and provides  
the gate drive signal for the lower MOSFET.  
ROUT  
RGND  
æ
è
ö
÷
ø
VOUT = 0.8V´ 1+  
ç
Where ROUT is the resistor connected from the VOUT to the  
FB and RGND is the resistor connected from the FB to the  
PVCC (Pin13)  
GND.  
This pin provides a supply voltage for the lower gate  
drive, connect it to the VCC pin in common use.  
If the FB voltage is under 50% VREF because of the short  
circuit or other influence , it will cause the under-voltage  
protection, and the device is shutdowned. Remove the  
error condition and restart the VCC voltage or pull the EN  
from low to high once, the device can be enabled again.  
VCC (Pin14)  
This pin provides a supply voltage for the device. When  
the VCC is above the rising threshold 10.4V, the device is  
turned on; conversely, when the VCC is below the falling  
threshold, the device is turned off.  
EN (Pin6)  
Pull the pin higher than 2V to enable the device, and pull  
the pin lower than 0.8V to shutdown the device. In  
shutdown, the SS is discharged and the UGATE and  
LGATE pins are held low. The EN pin is the open-collector,  
and it will not be floating.  
GND(Pin7)  
Signal ground for the IC.  
PHASE (Pin8)  
This pin is connected to the source of the high-side  
MOSFET and is used to monitor the voltage drop across  
the high-side MOSFET for over-current protection.  
UGATE(Pin9)  
Connect the pin to external MOSFET, and provides the  
gate drive for the upper MOSFET.  
Copyright ã ANPEC Electronics Corp.  
10  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Application Information  
Component Selection Guidelines  
Output Capacitor Selection  
and vice versa. The maximum ripple current occurs at the  
maximum input voltage. A good starting point is to choose  
the ripple current to be approximately 30% of the maxi-  
mum output current.  
The selection of COUT is determined by the required effec-  
tive series resistance (ESR) and voltage rating rather than  
the actual capacitance requirement. Therefore, select high  
performance low ESR capacitors that are intended for  
switching regulator applications. In some applications,  
multiple capacitors have to be paralled to achieve the  
desired ESR value. If tantalum capacitors are used, make  
sure they are surge tested by the manufactures. If in doubt,  
consult the capacitors manufacturer.  
Once the inductance value has been chosen, select an  
inductor that is capable of carrying the required peak cur-  
rent without going into saturation. In some types of  
inductors, especially core that is make of ferrite, the ripple  
current will increase abruptly when it saturates. This will  
result in a larger output ripple voltage.  
Input Capacitor Selection  
Compensation  
The input capacitor is chosen based on the voltage rating  
and the RMS current rating. For reliable operation, select  
the capacitor voltage rating to be at least 1.3 times higher  
than the maximum input voltage. The maximum RMS  
current rating requirement is approximately IOUT/2 , where  
IOUT is the load current. During power up, the input capaci-  
tors have to handle large amount of surge current. If tanta-  
lum capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capacitors  
manufacturer.  
The output LC filter introduces a double pole, which con-  
tributes with –40dB/decade gain slope and 180 degrees  
phase shift in the control loop. A compensation network  
between the COMP pin and the ground should be added.  
The simplest loop compensation network is shown in  
Figure 5.  
The output LC filter consists of the output inductor and  
output capacitors. The transfer function of the LC filter is  
given by:  
1+ s´ ESR´ COUT  
s2 ´ L´ COUT + s´ ESR +1  
GAINLC  
=
For high frequency decoupling, a ceramic capacitor be-  
tween 0.1mF to 1mF can be connected between the VCC  
and the ground pin.  
The poles and zero of this transfer function are:  
1
FLC  
=
Inductor Selection  
2´ p´ L´ COUT  
1
The inductance of the inductor is determined by the out-  
put voltage requirement. The larger the inductance, the  
lower the inductor’s current ripple. This will translate into  
lower output ripple voltage. The ripple current and ripple  
voltage can be approximated by:  
FESR  
=
2´ p ´ ESR´ COUT  
The FLC is the double poles of the LC filter, and FESR is the  
zero introduced by the ESR of the output capacitor.  
VIN - VOUT  
FSx L  
VOUT  
VIN  
PHASE  
L
Output  
IRIPPLE  
=
x
COUT  
ESR  
DVOUT = IRIPPLE x ESR  
where Fs is the switching frequency of the regulator.  
There is a tradeoff exists between the inductor’s ripple  
current and the regulator load transient response time. A  
smaller inductor will give the regulator a faster load tran-  
sient response at the expense of higher ripple current  
Figure 2. The Output LC Filter  
Copyright ã ANPEC Electronics Corp.  
11  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Application Information (Cont.)  
The compensation circuit is shown in Figure 5. R3 and  
C1 introduce a zero and C2 introduces a pole to reduce  
the switching noise. The transfer function of error ampli-  
fier is given by:  
Compensation (Cont.)  
FLC  
-40dB/dec  
FESR  
é
ù
ú
æ
1 ö  
sC1ø  
1
sC2 û  
gm´ çR3 +  
÷//  
gm´ Zo  
gm´  
ê
=
GAINAMP =  
=
ç
÷
è
ë
Gain  
-20dB/dec  
(
R3sC1+1  
C1+ C2  
R3´ C1´ C2 ø  
)
æ
ö
s´ çs+  
÷
÷
ç
è
The poles and zero of the compensation network are:  
Frequency  
Figure 3. The Output LC Filter Gain & Frequency  
1
FP =  
C1´ C2  
The PWM modulator is shown in Figure 4. The input is  
the output of the error amplifier and the output is the PHASE  
node. The transfer function of the PWM modulator is given  
2´ p´ R3´  
C1+ C2  
1
FZ  
=
2´ p ´ R3 ´ C1  
by:  
VIN  
DVOSC  
VOUT  
GAINPWM =  
VIN  
Error  
Amplifier  
R1  
Driver  
FB  
-
COMP  
PWM  
Comparator  
R2  
+
R3  
C1  
VOSC  
VREF  
C2  
Output of  
Error  
PHASE  
Amplifier  
Figure 5. Compensation Network  
Driver  
Figure 4. The PWM Modulator  
Copyright ã ANPEC Electronics Corp.  
12  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Application Information (Cont.)  
Compensation (Cont.)  
MOSFETSelection  
The closed loop gain of the converter can be written as:  
The selection of the N-channel power MOSFETs are de-  
termined by the RDS(ON), reverse transfer capacitance (CRSS  
)
R2  
R1+R2  
x GAINAMP  
GAINLC x GAINPWM x  
and maximum output current requirement.The losses in  
the MOSFETs have two components: conduction loss and  
transition loss. For the upper and lower MOSFET, the  
losses are approximately given by the following :  
Figure 6 shows the converter gain and the following guide-  
lines will help to design the compensation network.  
1.Select the desired zero crossover frequency FO:  
(1/5 ~ 1/10) x FS >FO>FZ  
PUPPER = Iout2 (1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FS  
PLOWER = Iout2(1+ TC)(RDS(ON))(1-D)  
Use the following equation to calculate R3:  
DVOSC FESR R1+R2 FO  
where IOUT is the load current  
R3 =  
´
´
´
2
VIN  
R2  
gm  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
FLC  
Where:  
gm=900mA/V  
tsw is the switching interval  
D is the duty cycle  
2.Place the zero FZ before the LC filter double poles FLC:  
FZ = 0.75 x FLC  
Note that both MOSFETs have conduction losses while  
the upper MOSFET include an additional transition loss.  
The switching internal, tsw, is the function of the reverse  
transfer capacitance CRSS. Figure 7 illustrates the switch-  
ing waveform internal of the MOSFET.  
Calculate the C1 by the equation:  
1
C1 =  
2´ p ´ R1´ FLC ´ 0.75  
The (1+TC) term is to factor in the temperature depen-  
dency of the RDS(ON) and can be extracted from the “RDS(ON)  
vs Temperature” curve of the power MOSFET.  
3. Set the pole at the half the switching frequency:  
FP = 0.5xFS  
Calculate the C2 by the equation:  
Layout Consideration  
C1  
C2 =  
In high power switching regulator, a correct layout is im-  
portant to ensure proper operation of the regulator. In  
general, interconnecting impedances should be mini-  
mized by using short and wide printed circuit traces. Sig-  
nal and power grounds are to be kept separate and finally  
combined using ground plane construction or single point  
grounding. Figure 8 illustrates the layout, with bold lines  
indicating high current paths. Components along the bold  
lines should be placed close together. Below is a check-  
list for your layout:  
R3´ C1´ FS - 1  
FZ=0.75FLC  
FP=0.5FS  
20×log(gm×R3)  
Compensation  
Gain  
FLC  
VIN  
FO  
· Keep the switching nodes (UGATE, LGATE, and  
PHASE) away from sensitive small signal nodes since  
these nodes are fast moving signals. There fore keep  
traces to these nodes as short as possible.  
20×log  
?VOSC  
Converter  
Gain  
FESR  
PWM &  
Filter Gain  
· The ground return of CIN must return to the combine  
COUT (-) terminal.  
Frequency  
· Capacitor CBOOT should be connected as close to the  
BOOT and PHASE pins as possible.  
Figure 6. Converter Gain & Frequency  
Copyright ã ANPEC Electronics Corp.  
13  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Application Information (Cont.)  
Layout Consideration (Cont.)  
VDS  
tsw  
Time  
Figure 7. Switching waveform across MOSFET  
VIN  
CIN  
APW7062B  
+
11  
12  
PGND  
L
O
A
D
LGATE  
COUT  
9
8
Q1  
UGATE  
PHASE  
Q2  
+
L1  
VOUT  
Figure 8. Recommended Layout Diagram  
Copyright ã ANPEC Electronics Corp.  
14  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Package Information  
SOP-14  
D
SEE VIEW A  
°
c
e
b
GAUGE PLANE  
SEATING PLANE  
L
VIEW A  
SOP-14  
S
Y
M
B
O
L
MILLIMETERS  
INCHES  
MIN.  
MAX.  
1.75  
0.25  
MIN.  
MAX.  
A
0.069  
0.010  
0.004  
0.049  
0.012  
0.007  
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
8.55  
5.80  
3.80  
0.020  
0.010  
0.51  
0.25  
8.75  
6.20  
4.00  
c
D
0.337  
0.228  
0.150  
0.344  
0.244  
0.157  
E
E1  
e
1.27 BSC  
0.050 BSC  
0.010  
0.016  
0.020  
0.050  
0.25  
0.40  
0.50  
1.27  
h
L
°
°
°
°
0
0
8
0
8
Note: 1. Follow JEDEC MS-012 AB.  
2. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.  
3. Dimension “E” does not include inter-lead flash or protrusions.  
Inter-lead flash and protrusions shall not exceed 10 mil per side.  
Copyright ã ANPEC Electronics Corp.  
15  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Carrier Tape & Reel Dimensions  
P0  
P2  
P1  
OD0  
A
K0  
A0  
A
OD1  
B
B
SECTION A-A  
SECTION B-B  
d
T1  
Application  
SOP-14  
A
H
T1  
C
d
D
W
E1  
F
16.4+2.00 13.0+0.50  
330.0±2.00 50 MIN.  
1.5 MIN.  
D1  
20.2 MIN.  
16.0±0.30 1.75±0.10  
7.50±0.10  
K0  
-0.00 -0.20  
P0  
P1  
P2 D0  
T
A0  
B0  
1.5+0.10  
-0.00  
0.6+0.00  
-0.40  
4.0±0.10  
8.0±0.10  
2.0±0.10  
1.5 MIN.  
6.40±0.20  
9.00±0.20  
2.10±0.20  
(mm)  
Devices Per Unit  
Package Type  
SOP-14  
Unit  
Quantity  
Tape & Reel  
2500  
Copyright ã ANPEC Electronics Corp.  
16  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Taping Direction Information  
SOP-14  
USER DIRECTION OF FEED  
t
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Reliability Test Program  
Test item  
SOLDERABILITY  
Method  
MIL-STD-883D-2003  
Description  
245°C, 5 sec  
HOLT  
PCT  
TST  
ESD  
Latch-Up  
MIL-STD-883D-1005.7  
JESD-22-B, A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
1000 Hrs Bias @125°C  
168 Hrs, 100%RH, 121°C  
-65°C~150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
Copyright ã ANPEC Electronics Corp.  
17  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  
APW7062B  
Classification Reflow Profiles  
Profile Feature  
Average ramp-up rate  
(TL to TP)  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
3°C/second max.  
3°C/second max.  
Preheat  
100°C  
150°C  
60-120 seconds  
150°C  
200°C  
60-180 seconds  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
Time maintained above:  
- Temperature (TL)  
183°C  
60-150 seconds  
217°C  
60-150 seconds  
- Time (tL)  
Peak/Classification Temperature (Tp)  
See table 1  
See table 2  
Time within 5°C of actual  
Peak Temperature (tp)  
10-30 seconds  
20-40 seconds  
Ramp-down Rate  
6°C/second max.  
6°C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to Peak Temperature  
Notes: All temperatures refer to topside of the package. Measured on the body surface.  
Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures  
Volume mm3  
350  
Volume mm3  
Package Thickness  
<350  
<2.5 mm  
³ 2.5 mm  
240 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Volume mm3  
Volume mm3  
Volume mm3  
>2000  
Package Thickness  
<350  
350-2000  
<1.6 mm  
1.6 mm – 2.5 mm  
³ 2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
* Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated  
classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL  
level.  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
No.6, Dusing 1st Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,  
Sindian City, Taipei County 23146, Taiwan  
Tel : 886-2-2910-3838  
Fax : 886-2-2917-3838  
Copyright ã ANPEC Electronics Corp.  
18  
www.anpec.com.tw  
Rev. A.4 - Oct., 2008  

相关型号:

APW7063

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TR

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TRG

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TRL

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TU

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TUL

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063_09

Synchronous Buck PWM and Linear Controller
ANPEC

APW7064

Synchronous Buck PWM Controller
ANPEC

APW7064KAE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065

Synchronous Buck PWM Controller
ANPEC

APW7065C

Synchronous Buck PWM Controller
ANPEC

APW7065CKE-TRG

Synchronous Buck PWM Controller
ANPEC