CS5322 [CIRRUS]

24-Bit Variable Bandwidth A/D Converter Chipset; 24位可变带宽A / D转换器芯片组
CS5322
型号: CS5322
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

24-Bit Variable Bandwidth A/D Converter Chipset
24位可变带宽A / D转换器芯片组

转换器
文件: 总38页 (文件大小:757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5320/21/22  
24-Bit Variable Bandwidth A/D Converter Chipset  
Features  
Description  
The CK5320 and CK5321 Chipsets function as a unique  
A/D converter intended for very high resolution measure-  
ment of signals below 1500 Hz. The CK5320 Chipset is  
a cost effective commercial grade solution for applica-  
tions which require a high dynamic range A/D converter.  
The chipsets perform sampling, A/D conversion, and  
anti-alias filtering.  
l CMOS A/D Converter Chipset  
l Dynamic Range  
- 130 dB @ 25 Hz Bandwidth  
- 121 dB @ 411 Hz Bandwidth  
l Delta-Sigma Architecture  
- Fourth-Order Modulator  
The CS5320 and CS5321 use Delta-Sigma modulation  
to produce highly accurate conversions. The ∆Σ modula-  
tor oversamples, virtually eliminating the need for  
external analog anti-alias filters. The CS5322 linear-  
phase FIR digital filter decimates the output to any one  
of seven selectable update periods: 16, 8, 4, 2, 1, 0.5  
and 0.25 milliseconds. Data is output from the digital fil-  
ter in a 24-bit serial format.  
- Variable Oversampling: 64X to 4096X  
- Internal Track-and-Hold Amplifier  
l CS5321 Signal-to-Distortion: 115 dB  
l Clock Jitter Tolerant Architecture  
l Input Voltage Range: +4.5 V  
l Flexible Filter Chip  
- Hardware or Software Selectable Options  
ORDERING INFORMATION*  
- Seven Selectable Filter Corners (-3 dB)  
Frequencies: 25, 51, 102, 205, 411, 824 and  
1650 Hz  
Chip Sets  
Kits  
CS5320-KL & CS5322-KL CK5320-KL1  
CS5321-BL & CS5322-KL CK5321-KL1  
CS5321-BL & CS5322-BL CK5321-BL1  
l Low Power Dissipation: <100 mW  
* Refer to Table 5  
CS5320/21  
CS5322  
V
V
V
V
ss2  
VD+  
SYNC CLKIN CS R/W  
dd1  
ss1  
dd2  
LPWR  
OFST  
RESET  
RSEL  
SCLK  
SID  
MSYNC  
SOD  
MFLG  
MCLK  
MDATA  
AINR  
AIN+  
Digital  
Filter  
ERROR  
DRDY  
ORCAL  
DECA  
DECB  
DECC  
Analog  
Modulator  
AIN-  
MDATA  
HBR  
VD+  
DGND  
CSEL  
VREF+  
VREF-  
AGND  
DGND  
H/S TDATA PWDN USEOR DGND  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
OCT ‘99  
DS454PP1  
Copyright Cirrus Logic, Inc. 1999  
P.O. Box 17847, Austin, Texas 78760  
(512) 445 7222 FAX: (512) 445 7581  
http://www.cirrus.com  
(All Rights Reserved)  
1
CS5320/21/22  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS............................................... 4  
CS5320 AND CS5321 ANALOG CHARACTERISTICS ............................. 4  
CS5320 AND CS5321 SWITCHING CHARACTERISTICS ........................ 6  
CS5320 AND CS5321 DIGITAL CHARACTERISTICS .............................. 7  
CS5320 AND CS5321 RECOMMENDED OPERATION CONDITIONS .... 7  
CS5320 AND CS5321 ABSOLUTE MAXIMUM RATINGS ......................... 7  
CS5322 FILTER CHARACTERISTICS ...................................................... 8  
CS5322 POWER SUPPLY ....................................................................... 10  
CS5322 SWITCHING CHARACTERISTICS ............................................ 10  
CS5322 DIGITAL CHARACTERISTICS ................................................... 15  
CS5322 RECOMMENDED OPERATION CONDITIONS ......................... 15  
CS5322 ABSOLUTE MAXIMUM RATINGS ............................................. 15  
2. GENERAL DESCRIPTION ............................................................................ 16  
2.1. Analog Input ...................................................................................... 18  
2.2. The OFST Pin.................................................................................... 18  
2.3. Input Range and Overrange Conditions ............................................ 19  
2.4. Voltage Reference............................................................................. 20  
2.5. Clock Source ..................................................................................... 20  
2.6. Low Power Mode............................................................................... 21  
2.7. Digital Interface and Data Format...................................................... 21  
2.8. Performance ...................................................................................... 22  
2.9. Power Supply Considerations............................................................ 23  
2.10. Power Supply Rejection Ratio ......................................................... 23  
2.11. RESET Operation............................................................................ 23  
2.12. Power-down Operation.................................................................... 23  
2.13. SYNC Operation.............................................................................. 24  
2.14. Serial Read Operation ..................................................................... 24  
2.15. Serial Write Operation ..................................................................... 25  
2.16. Offset Calibration Operation ............................................................ 25  
2.17. Status Bits ....................................................................................... 26  
2.18. Board Layout Considerations .......................................................... 28  
3. CS5320/21 PIN DESCRIPTIONS .................................................................. 29  
Power Supplies ......................................................................................... 29  
Analog Inputs ............................................................................................ 29  
Digital Inputs ............................................................................................. 30  
Digital Outputs .......................................................................................... 30  
Contacting Cirrus Logic Support  
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:  
http://www.cirrus.com/corporate/contacts/  
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-  
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information  
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of  
any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights  
of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of  
this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or  
otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no  
part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical,  
photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Furthermore, no part of this publication may be used as a basis for manufacture  
or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing  
in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-  
marks and service marks can be found at http://www.cirrus.com.  
2
DS454PP1  
CS5320/21/22  
4. CS5322 PIN DESCRIPTIONS ....................................................................... 31  
Power Supplies ........................................................................................ 31  
Digital Outputs .......................................................................................... 31  
Digital Inputs ............................................................................................. 32  
5. ORDERING INFORMATION ......................................................................... 34  
6. PARAMETER DEFINITIONS......................................................................... 35  
7. PACKAGE DIMENSIONS ............................................................................. 36  
LIST OF FIGURES  
Figure 1. Rise and Fall Times ..................................................................................... 6  
Figure 2. CS5320 and CS5321 Interface Timing, HBR=1 .......................................... 6  
Figure 3. CS5322 Filter Response ............................................................................. 8  
Figure 4. CS5322 Digital Filter Passband Ripple f0 = 62.5 Hz ................................... 8  
Figure 5. CS5322 Digital Filter Passband Ripple f0 = 125 Hz ................................... 8  
Figure 6. CS5322 Digital Filter Passband Ripple f0 = 250 Hz ................................... 8  
Figure 7. CS5322 Digital Filter Passband Ripple f0 = 500 Hz ................................... 9  
Figure 8. CS5322 Digital Filter Passband Ripple f0 = 1000 Hz ................................. 9  
Figure 9. CS5322 Digital Filter Passband Ripple f0 = 2000 Hz ................................. 9  
Figure 10. CS5322 Digital Filter Passband Ripple f0 = 4000 Hz ............................... 9  
Figure 11. CS5322 Impulse Response f0 = 62.5 Hz ................................................... 9  
Figure 12. CS5322 Impulse Response f0 = 1000 Hz .................................................. 9  
Figure 13. CS5322 Serial Port Timing ...................................................................... 11  
Figure 14. TDATA Setup/Hold Timing ...................................................................... 12  
Figure 15. DRDY Timing .......................................................................................... 13  
Figure 16. RESET Timing ......................................................................................... 13  
Figure 17. CS5320/21/CS5322 Interface Timing ...................................................... 14  
Figure 18. CS5320/21 Block Diagram ...................................................................... 16  
Figure 19. CS5322 Block Diagram ........................................................................... 17  
Figure 20. System Connection Diagram ................................................................... 19  
Figure 21. 4.5 Voltage Reference with two filter options .......................................... 20  
Figure 22. 1024 Point FFT Plot with -20 dB Input, 100 Hz Input, ten averages ....... 22  
Figure 23. 1024 Point FFT Plot with Full Scale Input, 100 Hz Input, ten averages .. 22  
Figure 24. 1024 Point FFT Plot with Full Scale Input, 100 Hz Input, ten averages .. 22  
LIST OF TABLES  
Table 1. Output Coding for the CS5320/21 and CS5322 Combination ................. 21  
Table 2. Configuration Data Bits ............................................................................ 24  
Table 3. Status Data (from the SOD Pin) ............................................................... 26  
Table 4. Bandwidth Selection: Truth Table ............................................................ 27  
Table 5. Detailed Ordering Information .................................................................. 34  
DS454PP1  
3
CS5320/21/22  
1. CHARACTERISTICS AND SPECIFICATIONS  
CS5320 AND CS5321 ANALOG CHARACTERISTICS (TA = (See Note 1); Vss1, Vss2 = -5V;  
Vdd1, Vdd2 = +5V; VD+ = 5V; AGND = DGND = 0V; HBR = Vdd LPWR = 0, MCLK = 1.024 MHz; Device connected as  
shown in Figure 20, CS5322 used for filtering; Logic 1 = VD+, Logic 0 = 0V; unless otherwise specified.)  
CS5320  
Typ  
CS5321  
Typ  
Parameter*  
Dynamic Performance  
Symbol Min  
Max  
Min  
Max  
Unit  
Dynamic Range  
HBR = 1  
OFST = 1  
(Note 2)  
fO = 4000 Hz  
DR  
-
-
103  
118  
121  
124  
127  
129  
130  
-
-
-
-
-
-
-
-
-
103  
118  
121  
124  
127  
129  
130  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
fO = 2000 Hz  
fO = 1000 Hz  
fO = 500 Hz  
fO = 250 Hz  
fO = 125 Hz  
fO = 62.5 Hz  
113  
116  
-
-
-
-
-
-
-
-
HBR = 0  
OFST = 1  
fO = 4000 Hz  
fO = 2000 Hz  
fO = 1000 Hz  
fO = 500 Hz  
fO = 250 Hz  
fO = 125 Hz  
fO = 62.5 Hz  
-
-
-
-
-
-
-
99  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
99  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
115  
118  
121  
124  
126  
127  
115  
118  
121  
124  
126  
127  
Signal-to-Distortion  
(Note 3) SDR  
HBR = 1  
100  
-
110  
120  
-
-
100  
110  
115  
120  
-
-
dB  
dB  
HBR = 0  
Intermodulation Distortion  
dc Accuracy  
(Note 4)  
IMD  
-
105  
-
-
110  
-
dB  
Full Scale Error  
Full Scale Drift  
(Note 5)  
FSE  
-
-
-
-
-
-
1
5
-
-
-
-
-
-
-
-
-
-
-
-
1
5
-
-
-
-
-
-
%
ppm/°C  
(Note 5,6) TCFS  
(Note 5) VZSE  
(Note 7)  
Offset  
10  
10  
mV  
µV  
Offset after Calibration  
Offset Calibration Range  
Offset Drift  
±100  
100  
60  
±100  
100  
60  
(Note 8)  
%F.S.  
µV/°C  
(Note 5,6) TCZSE  
Notes: 1. CS5320-KL and CS5322-KL are guaranteed from 0o to 70o C. CS5322-BL is guaranteed from -40o to  
+85o C. CS5321-BL is guaranteed from -55o to +85o C.  
2. fO = CS5322 output word rate. Refer to “CS5322 FILTER CHARACTERISTICS” on page 8 for details  
on the FIR Filter.  
3. Characterized with full scale input signal of 50 Hz; fo = 500 Hz.  
4. Characterized with input signals of 30 Hz and 50 Hz, each 6 dB down from full scale with fo = 1000 Hz.  
5. Specification is for the parameter over the specified temperature range and is for the CS5320/21 device  
only (VREF = +4.5 V). It does not include the effects of external components; OFST = 0.  
6. Drift specifications are guaranteed by design and/or characterization.  
7. The offset after calibration specification applies to the effective offset voltage for a ±4.5 volt input to the  
CS5320/21 modulator, but is relative to the output digital codes from the CS5322 after ORCAL and  
USEOR have been made active.  
8. The CS5322 offset calibration is performed digitally and includes ± full scale (±4.5 volts into  
CS5320/21). Calibration of offsets greater than ±5% of full scale will begin to subtract from the dynamic  
range.  
4
DS454PP1  
 
 
 
 
 
 
 
CS5320/21/22  
CS5320 AND CS5321 ANALOG CHARACTERISTICS (Continued)  
CS5320/21  
Parameter*  
Symbol  
Min  
Typ  
Max  
Unit  
Input Characteristics  
Input Signal Frequencies  
Input Voltage Range  
(Note 9)  
(Note 10)  
(Note 10)  
BW  
VIN  
dc  
-4.5  
-
-
-
-
1500  
+4.5  
5
Hz  
V
Input Overrange Voltage  
Power Supplies  
IOVR  
%F.S.  
DC Power Supply Currents  
(Note 11)  
LPWR = 0 Positive Supplies  
Negative Supplies  
-
-
5.5  
5.5  
3.0  
3.0  
7.5  
7.5  
4.5  
4.5  
mA  
mA  
mA  
mA  
LPWR = 1 Positive Supplies  
Negative Supplies  
Power Consumption  
(Note 11)  
Normal Operating Mode (Note12)  
Lower Power Mode (Note 13)  
PDN  
PDL  
-
-
55  
30  
75  
45  
mW  
mW  
Power Down  
PD  
-
-
2
-
-
mW  
dB  
Power Supply Rejection  
(dc to 128 kHz) (Note 14)  
PSR  
60  
Notes: 9. The upper bandwidth limit is determined by the CS5322 digital filter.  
10. This input voltage range is for the configuration shown in Figure 20, the System Connection Diagram,  
and applies to signal from dc to f3 Hz. Refer to CS5322 Filter Characteristics for the values of f3.  
11. All outputs unloaded. All logic inputs forced to Vdd or GND respectively.  
12. LPWR = 0.  
13. The CS5321 power dissipation can be reduced under the following conditions:  
a) LPWR=1; MCLK=512kHz, HBR=1  
b) LWPR=1; MCLK=1.024MHz, HBR=0  
14. Characterized with a 100 mVp-p sine wave applied separately to each supply.  
* Refer to Parameter Definitions (immediately following pin descriptions at the end of this data sheet).  
Specifications are subject to change without notice.  
DS454PP1  
5
 
 
 
 
 
 
CS5320/21/22  
CS5320 AND CS5321 SWITCHING CHARACTERISTICS (TA = (See Note 1); Vdd1, Vdd2  
5V ± 5%; Vss1, Vss2 = -5V ± 5%; Inputs: Logic 0 = 0V Logic 1 = V+; CL = 50 pF (Note 15))  
=
Parameter  
Symbol  
Min  
0.250  
40  
Typ  
Max  
1.2  
Units  
MCLK Frequency  
MCLK Duty Cycle  
MCLK Jitter (In-band)  
Rise Times:  
(Note 16)  
fc  
1.024  
MHz  
%
-
-
60  
-
300  
ps  
Any Digital Input  
Any Digital Output  
(Note 17)  
(Note 17)  
trisein  
triseout  
-
-
-
50  
100  
200  
ns  
ns  
Fall Times:  
Any Digital Input  
Any Digital Output  
tfallin  
tfallout  
-
-
-
50  
100  
200  
ns  
ns  
MSYNC Setup Time to MCLK rising  
MSYNC Hold Time after MCLK rising  
MCLK rising to Valid MFLG  
tmss  
tmsh  
tmfh  
tmdv  
20  
20  
-
-
-
ns  
ns  
ns  
ns  
-
-
140  
170  
255  
300  
MCLK rising to Valid MDATA  
-
Notes: 15. Guaranteed by design, characterization, or test.  
16. If MCLK is removed, the modulator will enter the power down mode.  
17. Excludes MCLK input. MCLK should be driven with a signal having rise and fall times of 25 ns or faster.  
t
t
fallin  
risein  
t
t
fallout  
riseout  
4.0 V  
1.0 V  
4.6 V  
0.4 V  
Figure 1. Rise and Fall Times  
MCLK  
t
mss  
t
msh  
MSYNC  
MDATA  
t
t
mdv  
mdv  
VALID DATA  
VALID DATA  
t
mfh  
MFLG  
Figure 2. CS5320 and CS5321 Interface Timing, HBR=1  
6
DS454PP1  
 
 
 
CS5320/21/22  
CS5320 AND CS5321 DIGITAL CHARACTERISTICS (TA = (See Note 1); Vdd1 = Vdd2  
5.0V ± 5%; GND = 0V; measurements performed under static conditions)  
=
Parameter  
High-Level Input Drive Voltage  
Symbol  
VIH  
Min  
Typ  
Max  
Units  
V
(Note 18)  
(Note 18)  
(Note 19)  
(Note 19)  
(Vdd)-0.6  
-
-
-
1.0  
-
Low-Level Input Drive Voltage  
High-Level Output Voltage IOUT = -40 µA  
Low-Level Output Voltage IOUT = +40 µA  
Input Leakage Current  
VIL  
-
V
VOH  
VOL  
(Vdd)-0.3  
-
V
-
-
-
-
-
0.3  
±10  
-
V
ILKG  
CIN  
-
µA  
pF  
pF  
Digital Input Capacitance  
9
9
Digital Output Capacitance  
COUT  
-
Notes: 18. Device is intended to be driven with CMOS logic levels.  
19. Device is intended to be interfaced to CMOS logic. Resistive loads are not recommended on these pins.  
CS5320 AND CS5321 RECOMMENDED OPERATION CONDITIONS (Voltages with  
respect to GND = 0V, See Note 20)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Supply:  
Positive Vdd1,Vdd2  
Negative Vss1,Vss2  
4.75  
-4.75  
5.0  
-5.0  
5.25  
-5.25  
V
V
Ambient Operating Temperature  
-KL  
-BL  
TA  
TA  
0
-55  
-
-
+70  
+85  
°C  
°C  
Notes: 20. The maximum voltage differential between the Positive Supply of the CS5320/21 and the Positive  
Digital Supply of the CS5322 must be less than 0.25V.  
CS5320 AND CS5321 ABSOLUTE MAXIMUM RATINGS * (Voltages with respect to  
GND = 0V)  
Parameter  
Symbol  
Min  
Max  
Units  
DC Supply:  
Positive Vdd1,Vdd2  
Negative Vss1,Vss2  
-0.3  
+0.3  
6.0  
-6.0  
V
V
Input Current, Any Pin Except Supplies  
Output Current  
(Note 21)  
Iin  
Iout  
Pt  
-
-
±10  
25  
mA  
mA  
W
Total Power (all supplies and outputs)  
Digital Input Voltage  
-
1
VIND  
Tstg  
-0.3  
-65  
(Vdd)+0.3  
150  
V
Storage Temperature  
°C  
Notes: 21. Transient currents of up to 100 mA will not cause SCR latch up.  
*WARNING: Operation beyond these limits may result in permanent damage to the device. Normal operation is  
not guaranteed at these extremes.  
DS454PP1  
7
 
 
 
 
CS5320/21/22  
CS5322 FILTER CHARACTERISTICS (TA = (See Note 1); VD+ = 5.0V; GND = 0V;  
CLKIN = 1.024 MHz; transfer function shown in Figure 3; unless otherwise specified.)  
Output Word Rate  
f0 (Hz)  
Passband Flatness  
RPB (dB)  
Passband f1  
(Hz)  
-3dB Freq. f2 Stopband f3 (Hz)  
Group Delay  
(ms)  
(Hz)  
(Note 22)  
4000  
2000  
1000  
500  
250  
125  
1500  
750  
375  
187.5  
93.8  
46.9  
23.4  
0.2  
0.04  
0.08  
0.1  
0.1  
0.1  
1652.5  
824.3  
411.9  
205.9  
102.9  
51.5  
2000  
1000  
500  
250  
125  
7.25  
14.5  
29  
58  
116  
232  
464  
62.5  
31.25  
62.5  
0.1  
25.7  
Notes: 22. GSB = -130 dB for all Output Word Rates.  
dB  
0
-3  
G
SB  
-130  
f1  
f2 f3  
f
Figure 3. CS5322 Filter Response  
Figure 4. CS5322 Digital Filter Passband Ripple  
f0 = 62.5 Hz  
Figure 5. CS5322 Digital Filter Passband Ripple  
f0 = 125 Hz  
Figure 6. CS5322 Digital Filter Passband Ripple  
f0 = 250 Hz  
8
DS454PP1  
 
 
 
CS5320/21/22  
Figure 7. CS5322 Digital Filter Passband Ripple  
f0 = 500 Hz  
Figure 8. CS5322 Digital Filter Passband Ripple  
f0 = 1000 Hz  
Figure 9. CS5322 Digital Filter Passband Ripple  
f0 = 2000 Hz  
Figure 10. CS5322 Digital Filter Passband Ripple  
f0 = 4000 Hz  
-5,206,250  
-5,212,500  
-5,218,750  
-5,225,000  
-5,231,250  
-5,206,250  
-5,208,328  
-5,212,500  
-5,218,750  
-5,225,000  
-5,231,250  
-5,237,500  
-5,243,750  
-5,250,000  
-5,240,723  
-5,237,500  
-5,243,750  
-5,250,000  
1
8
15  
22  
29  
36  
43  
50  
57  
1
8
15  
22  
29  
36  
43  
50  
57  
Time (# of Output Words)  
Time (# of Output Words)  
Figure 11. CS5322 Impulse Response,  
f0 = 62.5 Hz  
Figure 12. CS5322 Impulse Response,  
f0 = 1000 Hz  
DS454PP1  
9
CS5320/21/22  
CS5322 POWER SUPPLY (TA = (See Note 1); VD+ = 5V; CLKIN = 1.024 MHz)  
CS5322-K  
Typ  
CS5322-B  
Parameter  
Power Supply Current: ID+  
Power Dissipation:  
Min  
Max  
Min  
Typ  
Max  
Unit  
(Note 11)  
-
2.2  
4
-
2.2  
4
mA  
(Note 11)  
PWDN Low  
PWDN High  
-
-
11  
0.6  
20  
2.5  
-
-
11  
0.6  
20  
2.5  
mW  
mW  
CS5322 SWITCHING CHARACTERISTICS (TA = (See Note 1); VD+ = 5V ± 5%; DGND = 0V;  
Inputs: Logic 0 = 0V Logic 1 = VD+; CL = 50 pF (Note 23)  
Parameter  
Symbol  
Min  
0.512  
40  
Typ  
1.024  
-
Max  
1.2  
60  
Units  
MHz  
%
CLKIN Frequency  
CLKIN Duty Cycle  
Rise Times:  
fc  
Any Digital Input  
Any Digital Output  
trise  
tfall  
-
-
-
50  
100  
100  
ns  
ns  
Fall Times:  
Any Digital Input  
Any Digital Output  
-
-
-
50  
100  
100  
ns  
ns  
Serial Port Read Timing  
DRDY to Data Valid  
tddv  
trss  
trsc  
trdv  
trdd  
trph  
trpl  
-
50  
20  
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RSEL Setup Time before Data Valid  
Read Setup before CS Active  
Read Active to Data Valid  
-
50  
50  
-
SCLK rising to New SOD bit  
SCLK Pulse Width High  
-
30  
30  
100  
-
SCLK Pulse Width Low  
-
SCLK Period  
trsp  
trst  
-
SCLK falling to DRDY falling  
CS High to Output Hi-Z  
50  
20  
-
trch  
trhc  
trds  
-
Read Hold Time after CS Inactive  
Read Select Setup to SCLK falling  
Serial Port Write Timing  
20  
20  
-
Write Setup Before CS Active  
SCLK Pulse Width Low  
twsc  
twpl  
20  
30  
30  
100  
20  
20  
20  
20  
20  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse Width High  
twph  
twsp  
twws  
twds  
twwh  
twhc  
twdh  
SCLK Period  
Write Setup Time to First SCLK falling  
Data Setup Time to First SCLK falling  
Write Select Hold Time after SCLK falling  
Write Hold Time after CS Inactive  
Data Hold Time after SCLK falling  
23. Guaranteed by design, characterization and/or test.  
10  
DS454PP1  
 
CS5320/21/22  
t
rss  
RSEL  
DRDY  
R/W  
t
ddv  
t
rst  
t
rsc  
t
rhc  
CS  
t
rch  
t
rdv  
Hi-Z  
Hi-Z  
SOD  
MSB-1  
LSB  
MSB  
LSB+1  
t
rdd  
SCLK  
t
rsp  
t
t
rpl  
rph  
t
rds  
Serial Port Read Timing  
(R/W = 1, CS = 0, RSEL = 1 DRDY Does not toggle if reading status, RSEL = 0)  
CS  
t
whc  
t
wsc  
R/W  
t
wph  
t
wws  
t
wwh  
SCLK  
t
wsp  
t
wds  
t
wpl  
t
wdh  
LSB  
MSB  
MSB-1  
LSB+1  
SID  
Serial Port Write Timing  
Figure 13. CS5322 Serial Port Timing  
DS454PP1  
11  
CS5320/21/22  
CS5322 SWITCHING CHARACTERISTICS (continued)  
Parameter  
Test Data (TDATA) Timing  
Symbol  
Min  
Typ  
Max  
Units  
SYNC Setup Time to CLKIN rising  
SYNC Hold Time after CLKIN rising  
TDATA Setup Time to CLKIN rising after SYNC  
TDATA Hold Time after CLKIN rising  
ORCAL Setup Time to CLKIN rising  
ORCAL Hold Time after CLKIN rising  
DRDY Timing  
tss  
tsh  
20  
20  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ttds  
ttdh  
tos  
toh  
20  
150  
-
-
20  
20  
-
CLKIN rising to DRDY falling  
tdf  
tdr  
tec  
-
-
-
140  
150  
140  
-
-
-
ns  
ns  
ns  
CLKIN falling to DRDY rising  
CLKIN rising to ERROR change  
RESET Timing  
RESET Setup Time to CLKIN rising  
RESET Hold Time after CLKIN rising  
SYNC Setup Time to CLKIN rising  
SYNC Hold Time after CLKIN rising  
trs  
trh  
tss  
tsh  
20  
20  
20  
20  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
CLKIN  
t
sh  
t
t
ss  
os  
SYNC  
t
oh  
ORCAL  
LSYNC*  
t
tds  
t
t
t
tdh  
rdh  
tds  
TDATA  
VALID  
VALID  
FILTER  
SAMPLES  
DATA  
Figure 14. TDATA Setup/Hold Timing  
12  
DS454PP1  
CS5320/21/22  
CLKIN  
SYNC  
LSYNC*  
DRDY  
t
t
df  
dr  
t
ec  
ERROR  
*Note: For overwrite case, DRDY will remain high.  
Figure 15. DRDY Timing  
CLKIN  
t
rh  
t
rs  
RESET  
t
sh  
t
ss  
SYNC  
Figure 16. RESET Timing  
DS454PP1  
13  
CS5320/21/22  
CS5322 SWITCHING CHARACTERISTICS (continued)  
Parameter  
Symbol  
Min  
0.512  
40  
Typ  
1.024  
-
Max  
1.1  
60  
Units  
MHz  
%
MCLK Frequency  
MCLK Duty Cycle  
Rise Times:  
(Note 24)  
fc  
Any Digital Input  
Any Digital Output  
(Note 25)  
(Note 25)  
trise  
tfall  
-
-
-
50  
100  
200  
ns  
ns  
Fall Times:  
Any Digital Input  
Any Digital Output  
-
-
-
50  
100  
200  
ns  
ns  
SYNC Setup Time to CLKIN rising  
SYNC Hold Time after CLKIN rising  
CLKIN edge to MCLK edge  
tss  
tsh  
20  
20  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
-
tmss  
tmsh  
tmsd  
30  
50  
90  
MCLK rising to Valid MDATA  
-
MSYNC Delay from MCLK rising  
(Note 26)  
-
Notes: 24. If MCLK is removed, the modulator will enter the power down mode.  
25. Excludes MCLK input. MCLK should be driven with a signal having rise and fall times of 25 ns or faster.  
26. Only the rising edge of MSYNC relative to MCLK is used to synchronize the device. MSYNC can return  
low at any time as long as it remains high for at least one MCLK cycle.  
CLKIN  
t
sh  
t
ss  
SYNC  
LSYNC*  
MCLK  
t
mss  
t
t
msd  
msd  
MSYNC  
MDATA  
t
t
msh  
msh  
VALID DATA  
VALID DATA  
FILTER  
SAMPLES  
DATA  
MFLG  
* Internal timing signal generated in the CS5322  
Figure 17. CS5320/21/CS5322 Interface Timing  
14  
DS454PP1  
 
 
 
CS5320/21/22  
CS5322 DIGITAL CHARACTERISTICS (TA = (See Note 1); VD+ = 5.0V ± 5%; GND = 0V;  
measurements performed under static conditions)  
Parameter  
High-Level Input Drive Voltage  
Symbol  
VIH  
Min  
Typ  
Max  
-
Units  
V
(VD+)-0.3  
-
-
Low-Level Input Drive Voltage  
VIL  
-
0.3  
-
V
High-Level Input Threshold  
(Note 27)  
(Note 27)  
(Note 28)  
(Note 28)  
(VD+)-1.0  
-
V
Low-Level Input Threshold  
-
-
1.0  
-
V
High-Level Output Voltage IOUT = -40µA  
Low-Level Output Voltage IOUT = +1.6 mA  
VOH  
VOL  
ILKG  
IOZ  
(VD+)-0.6  
-
V
-
-
-
-
-
-
0.4  
±10  
±10  
-
V
Input Leakage Current  
All pins except MFLG, SOD  
-
µA  
µA  
pF  
pF  
Three-State Leakage Current  
Digital Input Capacitance  
Digital Output Capacitance  
-
CIN  
9
9
COUT  
-
Notes: 27. Device is intended to be driven with CMOS logic levels.  
28. Device is intended to be interfaced to CMOS logic. Resistive loads are not recommended on these pins.  
CS5322 RECOMMENDED OPERATION CONDITIONS (VoltageswithrespecttoGND=0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Supply:  
(Note 29)  
Positive  
Negative  
VD+  
VD-  
4.75  
-4.75  
5.0  
-5.0  
5.25  
-5.25  
V
V
Ambient Operating Temperature  
-KL  
-BL  
TA  
TA  
0
-40  
-
-
+70  
+85  
°C  
°C  
Notes: 29. The maximum voltage differential between the Positive Supply of the CS5320/21 and the Positive  
Digital Supply of the CS5322 must be less than 0.25V.  
CS5322 ABSOLUTE MAXIMUM RATINGS * (Voltages with respect to GND = 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Supply:  
(Note 29)  
(Note 30)  
Positive  
Negative  
VD+  
VD-  
-0.3  
0.3  
-
-
(VD+)+0.3  
-6.0  
V
V
Input Current, Any Pin Except Supplies  
Digital Input Voltage  
Iin  
-
-
-
-
±10  
(VD+)+0.3  
150  
mA  
V
VIND  
Tstg  
-0.3  
-65  
Storage Temperature  
°C  
Notes: 30. Transient currents of up to 100 mA will not cause SCR latch up.  
*WARNING: Operation beyond these limits may result in permanent damage to the device. Normal operation is  
not guaranteed at these extremes.  
DS454PP1  
15  
 
 
 
 
CS5320/21/22  
The CS5322 is a monolithic digital Finite Impulse  
Response (FIR) filter with programmable decima-  
tion. The CS5322 and CS5320/CS5321 are intend-  
ed to be used together to form a unique high  
dynamic range ADC chipset. The CS5322 provides  
the digital anti-alias filter for the CS5320/CS5321  
modulator output. The CS5322 consists of: a multi-  
stage FIR filter, four registers (status, data, offset,  
and configuration), a flexible serial input and out-  
put port, and a 2-channel input data multiplexer  
that selects data from the CS5320/CS5321 (MDA-  
TA) or user test data (TDATA). The CS5322 deci-  
mates (64x to 4096x) the output to any of seven  
selectable up-date periods: 16, 8, 4, 2, 1, 0.5 and  
0.25 milliseconds. Data is output from the digital  
filter in a 24-bit serial format. Figure 19 illustrates  
the CS5322 Block Diagram.  
2. GENERAL DESCRIPTION  
The CS5320 and CS5321 are fourth-order CMOS  
monolithic analog modulators designed specifical-  
ly for very high resolution measurement of signals  
between dc and 1500 Hz. Configuring the CS5320  
or CS5321 with the CS5322 FIR filter results in a  
high resolution A/D converter system that performs  
sampling and A/D conversion with dynamic range  
exceeding 120 dB .  
The CS5320 and CS5321 use a fourth-order over-  
sampling architecture to achieve high resolution  
A/D conversion. The modulator consists of a 1-bit  
A/D converter embedded in a negative feedback  
loop. The modulator provides an oversampled seri-  
al bit stream at 256 kbits per second (HBR=1) and  
128 kbits per second (HBR=0) operating with a  
clock rate of 1.024 MHz. Figure 18 illustrates the  
CS5320/CS5321 Block Diagram.  
AGND  
DGND  
V
V
V
V
ss2  
dd1  
ss1  
dd2  
LPWR  
OFST  
Digital  
Control  
Osc.  
Detect  
MFLG  
AINR  
AIN+  
AIN-  
Σ
HBR  
Clock  
Generation  
MCLK  
A/D  
MSYNC  
MDATA  
MDATA  
D/A  
VREF+  
VREF-  
Figure 18. CS5320/21 Block Diagram  
16  
DS454PP1  
 
CS5320/21/22  
SID  
TDATA MDATA  
CSEL  
PWDN  
ORCAL  
USEOR  
DECC  
DECB  
DATA MUX  
FIR1  
CONFIG REG  
DECA  
CONFIG MUX  
H/S  
SCLK  
CLKIN  
RESET  
SYNC  
CS  
FIR2  
R/W  
MFLG  
CONTROL  
DRDY  
ERROR  
MSYNC  
MCLK  
FIR3  
DATA REG  
STATUS REG  
BIT SELECT  
BIT SELECT  
MUX  
SOD  
RSEL  
Figure 19. CS5322 Block Diagram  
DS454PP1  
17  
CS5320/21/22  
ing may be accomplished in an amplifier stage  
ahead of the CS5320/21 modulator or with the RC  
input filter at the AIN+ and AINR input pins. The  
RC filter at the AIN+ and AINR pins is recom-  
mended to reduce the "charge kick" that the driving  
amplifier sees as the switched capacitor sampling is  
performed.  
2.1 Analog Input  
The CS5320 and CS5321 modulators use a  
switched capacitor architecture for its signal and  
voltage reference inputs. The signal input uses three  
pins; AINR, AIN+, and AIN-. The AIN- pin acts as  
the return pin for the AINR and AIN+ pins. The  
AINR pin is a switched capacitor "rough charge" in-  
put for the AIN+ pin. The input impedance for the  
rough charge pin (AINR) is 1/fC where f is two  
Figure 20 illustrates the CS5320/21 and CS5322  
system connections. The input components on  
times the modulator sampling clock rate and C is AINR and AIN+ should be identical values for op-  
the internal sampling capacitor (about 40 pF). Us- timum performance. In choosing the components  
ing a 1.024 MHz master clock (HBR = 1) yields an the capacitor should be a minimum of 0.1 µF (C0G  
input impedance of about 1/(512 kHz)X(40 pF) or dielectric ceramic preferred). For minimum board  
about 50 k. Internal to the chip the rough charge  
input pre-charges the sampling capacitor used on  
the AIN+ input, therefore the effective input imped-  
space, the RC components on the AINR input can  
be removed, but this will force the driving amplifi-  
er to source the full dynamic charging current of  
ance on the AIN+ pin is orders of magnitude above the AINR input. This can increase distortion in the  
the impedance seen on the AINR pin.  
driving amplifier and reduce system performance.  
In choosing the RC filter components, increasing C  
and minimizing R is preferred. Increasing C reduc-  
es the instantaneous voltage change on the pin, but  
may require paralleling capacitors to maintain  
smaller size (the recommended 0.1 µF C0G ceram-  
ic capacitor is larger than other similar-valued ca-  
pacitors with different dielectrics). Larger resistor  
values will increase the voltage drop across the re-  
sistor as the recharging current charges the  
switched capacitor input.  
The analog input structure inside the VREF+ pin is  
very similar to the AINR pin but includes addition-  
al circuitry whose operating current can change  
over temperature and from device to device. There-  
fore, if gain accuracy is important, the VREF+ pin  
should be driven from a low source impedance.  
The current demand of the VREF+ pin will produce  
a voltage drop of approximately 45 mV across the  
200 source resistor of Figure 20 and Figure 21  
Option A with MCLK = 1.024 MHz, HBR = 1, and  
temperature = 25°C.  
2.2 The OFST Pin  
When the CS5320/21 modulator is operated with a  
4.5 V reference it will accept a 9 V p-p input signal,  
but modulator loop stability can be adversely af-  
fected by high frequency out-of-band signals.  
Therefore, input signals must be band-limited by an  
input filter. The -3 dB corner of the input filter must  
be equal to the modulator sampling clock divided  
by 64. The modulator sampling clock is MCLK/4  
when HBR = 1 or MCLK/8 when HBR = 0. With  
MCLK = 1.024 MHz, HBR = 1, the modulator  
sampling clock is 256 kHz which requires an input  
filter with a -3 dB corner of 4 kHz. The bandlimit-  
The CS5320/21 modulator can produce "idle  
tones" which occur in the passband when the input  
signal is steady state dc signal within about  
±50 mV of bipolar zero. In the CS5320/21 these  
tones are about 135 dB down from full scale. The  
user can force these idle tones "out-of-band" by  
adding 100 mV of dc offset to the signal at the AIN  
input. Alternately, if the user circuitry has a low  
offset voltage such that the input signal is within  
±50 mV of bipolar zero when no AC signal is  
present, the OFST pin on the CS5320/21 can be ac-  
tivated. When OFST = 1, +100 mV of input re-  
18  
DS454PP1  
CS5320/21/22  
ferred offset will be added internal to the  
CS5320/21 and guarantee that any idle tones  
The modulator is a fourth order delta-sigma and is  
therefore conditionally stable. The modulator may  
present will lie out-of-band. The user should be go into an oscillatory condition if the analog input  
certain that when OFST is active (OFST =1) that  
the offset voltage generated by the user circuitry  
does not negate the offset added by the OFST pin.  
is overranged. Input signals which exceed either  
plus or minus full scale by more than 5 % can intro-  
duce instability in the modulator. If an unstable  
condition is detected, the modulator will be re-  
duced to a first order system until loop stability is  
achieved. If this occurs the MFLG pin will transi-  
tion from a low to a high will result in an error bit  
being set in the CS5322. The input signal must be  
reduced to within the full scale range of the con-  
verter for at least 32 MCLK cycles for the modula-  
tor to recover from this error condition.  
2.3 Input Range and Overrange Conditions  
The analog input is applied to the AIN+ and AINR  
pins with the AIN- pin connected to GND. The in-  
put is fully differential but for proper operation the  
AIN- pin must remain at GND potential.  
The analog input span is defined by the voltage ap-  
plied between the VREF+ and VREF- input pins.  
See the Voltage Reference section of this data sheet  
for voltage reference requirements.  
+5V  
Analog  
Supply  
+5 V  
Digital  
Supply  
+
10  
µ
F
0.1 F  
µ
0.01 F  
µ
20  
22  
2
0.1  
µ
F
21  
VD+  
V
V
23  
dd1  
dd2  
DGND  
1
GND11  
GND1  
25  
24  
SID  
28  
27  
26  
SOD  
OFST  
LPWR  
HBR  
Control  
Logic  
26  
1
SCLK  
CS  
200  
Serial  
Data  
5
6
+4.5V  
VREF  
28  
22  
VREF+  
VREF-  
25  
5
6
R/W  
+
68  
µF  
0.1 µF  
MSYNC  
MFLG  
MSYNC  
MFLG  
TANT.  
DRDY  
Interface  
24  
20  
27  
23  
RSEL  
7
402  
MCLK  
MCLK  
ERROR  
10  
12  
10  
18  
AINR  
0.1  
COG  
µ
F
F
CSEL  
MDATA  
MDATA  
402  
9
8
Signal  
Source  
CS5320/21  
AIN+  
AIN-  
CS5322  
0.1  
COG  
µ
13  
14  
15  
19  
18  
17  
16  
4
H/S  
PWDN  
USEOR  
ORCAL  
DECA  
17  
11  
Test  
Data  
MDATA  
TDATA  
14  
13  
12  
GND7  
GND6  
GND5  
Hardware  
Control  
15  
16  
3
2
GND8  
GND9  
CLKIN  
SYNC  
11  
7
Clock  
DECB  
GND4  
GND3  
Source  
DECC  
19  
4
RESET  
GND10  
GND2  
V
V
ss1  
ss2  
21  
VD+  
8
DGND  
9
0.01 F  
µ
µ
0.1 F  
3
Unused logic  
inputs must be  
connected to  
DGND or VD+  
-5V  
Analog  
Supply  
+5 V  
Digital  
Supply  
+
10 µF  
0.1 F  
µ
Figure 20. System Connection Diagram  
DS454PP1  
19  
 
CS5320/21/22  
for dc-measurement applications. Due to its dy-  
namic (switched-capacitor) input the input imped-  
ance of the +VREF pin of the CS5320/21 will  
change any time MCLK or HBR is changed. There-  
fore the current required from the voltage reference  
will change any time MCLK or HBR is changed.  
This can affect gain accuracy due to the high source  
impedance of the filter resistor in Figure 20 and  
Figure 21 Option A. If gain error is to be mini-  
mized, especially when MCLK or HBR is changed,  
the voltage reference should have lower output im-  
pedance. The buffer of Figure 21 Option B offers  
lower output impedance and will exhibit better sys-  
tem gain stability.  
2.4 Voltage Reference  
The CS5320/21 is designed to operate with a volt-  
age reference in the range of 4.0 to 4.5 volts. The  
voltage reference is applied to the VREF+ pin with  
the VREF- pin connected to the GND. A 4.5 V ref-  
erence will result in the best S/N performance but  
most 4.5 V references require a power supply volt-  
age greater than 5.0 V for operation. A 4.0 V refer-  
ence can be used for those applications which must  
operate from only 5.0 V supplies, but will yield a  
S/N slightly lower (1-2 dB) than when using a 4.5  
V reference. The voltage reference should be de-  
signed to yield less than 2 µV rms of noise in band  
at the VREF+ pin of the CS5320/21. The CS5322  
filter selection will determine the bandwidth over  
which the voltage reference noise will affect the  
CS5320/21/22 dynamic range.  
2.5 Clock Source  
For proper operation, the CS5320/21 must be pro-  
vided with a CMOS-compatible clock on the  
MCLK pin. The MCLK for the CS5320/21 is usu-  
ally provided by the CS5322 filter. MCLK is usu-  
ally 1.024 MHz to set the seven selectable output  
word rates from the CS5322. The MCLK frequency  
can be as low as 250 kHz and as high as 1.2 MHz.  
The choice of clock frequency can affect perfor-  
mance; see the Performance section of the data  
For a 4.5 V reference, the LT1019-4.5 voltage ref-  
erence yields low enough noise if the output is fil-  
tered with a low pass RC filter as shown in Figure  
21 Option A. The filter in Figure 21 Option A is ac-  
ceptable for most spectral measurement applica-  
tions, but a buffered version with lower source  
impedance (Figure 21 Option B) may be preferred  
10  
Option A  
+9 to  
15V  
200  
µ
0.1  
F
To VREF+  
µ
µ
F
0.1  
F
68  
+
LT1019-4.5  
+9 to 15V  
Option B  
1k  
49.9  
100  
1k  
+
-
To VREF+  
+
+
µ
100  
AL  
F
F
µ
µ
10k  
0.1  
F
68  
F
+
Tant  
µ
100  
AL  
LT1007  
Figure 21. 4.5 Voltage Reference with two filter options  
20  
DS454PP1  
 
CS5320/21/22  
sheet. The clock must have less than 300 ps jitter to For proper synchronization of the bitstream, the  
maintain data sheet performance from the device.  
The CS5320/21 is equipped with loss of clock de- nal prior to data conversion. The MSYNC signal,  
tection circuitry which will cause the CS5320/21 to generated by the CS5322, resets the MCLK  
enter a powered-down state if the MCLK is re- counter-divider in the CS5320/21 to the correct  
CS5320/21 must be furnished with an MSYNC sig-  
moved or reduced to a very low frequency. The  
HBR pin on the CS5320/21 modifies the sampling  
clock rate of the modulator. When HBR = 1, the  
modulator sampling clock will be at MCLK/4; with  
HBR = 0 the modulator sampling clock will be at  
MCLK/8. The chip set will exhibit about 3 dB less  
S/N performance when the HBR pin is changed  
from a logic "1" to a logic "0" for the same output  
word rate from the CS5322.  
phase so that the bitstream can be properly sampled  
by the CS5322 digital filter.  
When operated with the CS5322 digital filter the  
output codes from the CS5320/21/22 will range  
from approximately decimal -5,242,880 to  
+5,242,879 for an input to the CS5320/21 of ±4.5  
V. Table 1 illustrates the output coding for various  
input signal amplitudes. Note that with a signal in-  
put defined as a full scale signal (4.5 V with  
VREF+ = 4.5 V) the CS5320/22 and CS5321/22  
chipsets does not output a full scale digital code of  
8,388,607 but is scaled to a lower value to allow  
some overrange capability. Input signals can ex-  
ceed the defined full scale by up to 5% and still be  
converted properly.  
2.6 Low Power Mode  
The CS5320/21 includes a low power operating  
mode (LPWR =1). When operated with LPWR = 1,  
the CS5320/21 modulator sampling clock must be  
restricted to rates of 128 kHz or less. Operating in  
low power mode with modulator sample rates  
greater than 128 kHz will greatly degrade perfor-  
mance.  
CS5322 Filter  
Output Code  
Modulator Input  
Signal  
> (+VREF + 5%)  
(+VREF + 5%)  
+VREF  
HEX  
Decimal  
2.7 Digital Interface and Data Format  
Error Flag Possible  
The MCLK signal (normally 1.024 MHz) is divid-  
ed by four, or by eight inside the CS5320/21 to gen-  
erate the modulator oversampling clock. The HBR  
pin determines whether the clock divider inside the  
CS5320/21 divides by four (HBR =1) or by eight  
(HBR = 0). The modulator outputs a ones density  
bit stream from its MDATA and MDATA pins pro-  
portional to the analog input signal, but at a bit rate  
determined by the modulator over sampling clock.  
53FFFF(H)  
+5505023  
+5242879  
0
4FFFFF(H)  
000000(H)  
B00000(H)  
AC0000(H)  
0V  
-VREF  
-5242880  
-5505024  
- (+VREF +5%)  
> - (+VREF +5%)  
Error Flag Possible  
Table 1. Output Coding for the CS5320/21 and  
CS5322 Combination  
DS454PP1  
21  
 
CS5320/21/22  
2.8 Performance  
0
-20  
Dynamic Range = 122.0 dB  
HBR = 1  
OFST = 0  
LPWR = 0  
Figure 22, 23 and 24 illustrate the spectral perfor-  
mance of the CS5321/22 and CS5320/22 chipsets  
when operating from a 1.024 MHz master clock.  
Ten 1024 point FFTs were averaged to produce the  
plots.  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
Figure 22 illustrates the chip set with a 100 Hz,  
-20 dB input signal. The sample rate was set at 1  
kHz. Dynamic range is 122 dB.  
0
500  
The dynamic range calculated by the test soft-ware  
is reduced somewhat in Figures 23 and 24 because  
of jitter in the signal test oscillator. Jitter in the  
100 Hz signal source is interpreted by the signal  
processing software to be increased noise.  
Figure 22. 1024 Point FFT Plot with -20 dB Input, 100  
Hz Input, ten averages  
0
S/D = 116.0 dB  
S/N = 118.4 dB  
-20  
The choice of master clock frequency will affect  
performance. The CS5320/21 will exhibit the best  
Signal/ Distortion performance with slower modu-  
lator sampling clock rates as slower sample rates  
allow more time for amplifier settling.  
-40  
S/N+D = 114.2 dB  
HBR = 1  
OFST = 0  
LPWR = 0  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
see text  
For lowest offset drift, the CS5320/21 should be  
operated with MCLK = 1.024 MHz and HBR = 1.  
Slower modulator sampling clock rates will exhibit  
more offset drift. Changing MCLK to 512 kHz  
(HBR = 1) or changing HBR to zero (MCLK =  
1.024 MHz) will cause the drift rate to double. Off-  
set drift is not linear over temperature so it is diffi-  
cult to specify an exact drift rate. Offset drift  
characteristics vary from part to part and will vary  
as the power supply voltages vary. Therefore, if the  
CS5320/21 is to be used in precision dc measure-  
ment applications where offset drift is to be mini-  
mized, the power supplies should be well  
regulated. The CS5320/21 will exhibit about  
6 ppm/°C of offset drift with MCLK = 1 and HBR  
= 1.  
0
500  
Figure 23. 1024 Point FFT Plot with Full Scale Input,  
100 Hz Input, HBR = 1, ten averages  
0
S/D = 122.7 dB  
S/N = 117.1 dB  
-20  
-40  
-60  
S/N+D = 116.4 dB  
HBR = 0  
OFST = 0  
LPWR = 0  
-80  
-100  
-120  
-140  
-160  
-180  
see text  
Gain drift of the CS5320/21 itself is about  
5 ppm/°C and is not affected by either modulator  
sample rate or by power supply variation.  
0
500  
Figure 24. 1024 Point FFT Plot with Full Scale Input,  
100 Hz Input, HBR = 0, ten averages  
22  
DS454PP1  
 
 
CS5320/21/22  
2.9 Power Supply Considerations  
2.11 RESET Operation  
The system connection diagram, Figure 20, illus- The RESET pin puts the CS5322 into a known ini-  
trates the recommended power supply arrange- tialized state. RESET is recognized on the next  
ments. There are two positive power supply pins CLKIN rising edge after the RESET pin has been  
for the CS5320/21 and two negative power supply brought high (RESET=1). All internal logic is ini-  
pins. Power must be supplied to all four pins and tialized when RESET is active.  
each of the supply pins should be de-coupled with  
a 0.1 µF capacitor to the nearest ground pin on the  
device.  
Normal device operation begins on the second  
CLKIN rising edge after RESET is brought low.  
The CS5322 will remain in an idle state, not per-  
When used with the CS5322 digital filter, the max- forming convolutions, until triggered by a SYNC  
imum voltage differential between the positive sup- event.  
plies of the CS5320/21 and the positive digital  
A RESET operation clears memory, sets the data  
supply of the CS5322 must be less than 0.25 V. Op-  
output register, offset register, and status flags to all  
eration beyond this constraint may result in loss of  
zeroes, and sets the configuration register to the  
analog performance in the CS5320/22 and  
state of the corresponding hardware pins (PWDN,  
CS5321/22 system performance.  
ORCAL, DECC, DECB, DECA, USEOR, and  
Many seismic or portable data acquisition systems CSEL). The reset state is entered on power on, in-  
are battery powered and utilize dc-dc converters to dependent of the RESET pin. If RESET is low, the  
generate the necessary supply voltages for the sys-  
tem. To minimize the effects of power supply inter-  
ference, it is desirable to operate the dc-dc  
converter at a frequency which is rejected by the  
digital filter, or locked to the modulator sample  
clock rate.  
first CLKIN will exit the power on reset state.  
2.12 Power-down Operation  
The PWDN pin puts the CS5322 into the power-  
down state. The power-down state is entered on the  
first CLKIN rising edge after the PWDN pin is  
brought high. While in the power-down state, the  
MCLK and MSYNC signals to the CS5320/21 an-  
alog modulator are held low. The loss of the MCLK  
signal to the modulator causes it to power-down.  
The signals on the MDATA and MFLG pins are ig-  
nored. The serial interface of the CS5322 remains  
active allowing read and write operations. Informa-  
tion in the data register, offset register, configura-  
tion register, and convolution data memory are  
maintained during power-down. The internal con-  
troller requires 64 clock cycles after PWDN is as-  
serted before CLKIN stops.  
A synchronous dc-dc converter, whose operating  
frequency is derived from the 1.024 MHz clock  
used to drive the CS5322, will minimize the poten-  
tial for "beat frequencies" appearing in the pass-  
band between dc and the corner frequency of the  
digital filter.  
2.10 Power Supply Rejection Ratio  
The PSRR of the CS5320/21 is frequency depen-  
dent. The CS5322 digital filter attenuation will aid  
in rejection of power supply noise for frequencies  
above the corner frequency setting of the CS5322.  
For frequencies between dc and the corner frequen- The CS5322 exits the power-down state on the first  
cy of the digital filter, the PSRR is nearly constant  
at about 60 dB.  
CLKIN rising edge after the PWDN pin is brought  
low. The CS5322 then enters an idle state until trig-  
gered by a SYNC event.  
DS454PP1  
23  
CS5320/21/22  
To avoid possible high current states while in the  
power down state, the following conditions apply:  
SCLK falling edge, each SCLK rising edge shifts  
out a new bit. Status reads are 16 bits, and data  
reads are 24 bits. Both streams are supplied as MSB  
first, LSB last.  
1) CLKIN must be active for at least 64 clock cy-  
cles after PWDN entry.  
In the event more SCLK pulses are supplied than  
necessary to clock out the requested information,  
trailing zeroes will be output for data reads and  
trailing LSB’s for status reads. If the read operation  
is terminated before all the bits are read, the inter-  
nal bit pointer is reset to the MSB so that a re-read  
will give the same data as the first read, with one  
exception. The status error flags are cleared on read  
and will not be available on a re-read.  
2) CSEL and TDATA must not both be asserted  
high.  
2.13 SYNC Operation  
The SYNC pin is used to start convolutions and  
synchronize the CS5322 and CS5320/21 to an ex-  
ternal sampling source or timing reference. The  
SYNC event is recognized on the first CLKIN ris-  
ing edge after the SYNC pin goes high. SYNC may  
remain high indefinitely. Only the sequence of  
SYNC rising followed by CLKIN rising generates  
a SYNC event.  
The status error flags must be read before entering  
the power-down state. If an error has occurred be-  
fore entering powerdown and the status bit (ER-  
ROR) has not been read, the status bits (ER-ROR,  
OVERWRITE, MFLG, ACC1 and ACC2) may not  
be cleared on status reads. Upon exiting the power-  
down state and entering normal operation, the user  
may be flagged that an error is still present.  
The SYNC event aligns the output sample and  
causes the filter to begin convolutions. The first  
SYNC event causes an immediate DRDY provided  
DRDY is low. Subsequent data ready events will  
occur at a rate determined by the decimation rate  
inputs DECC, DECB, and DECA. Multiple SYNC  
events can be applied with no effect on operation if  
they are perfectly timed according to the decima-  
tion rate. Any SYNC event not in step with the dec-  
imation rate will cause a realignment and loss of  
data.  
The SOD pin floats when read operation is deacti-  
vated (R/W=1, CS=1). This enables the SID and  
SOD pins to be tied together to form a bi-direction-  
al serial data bus. There is an internal nominal  
100 kpull-up resistor on the SOD pin.  
2.15 Serial Write Operation  
2.14 Serial Read Operation  
Serial write is used to write data to the configura-  
tion register. The CS, R/W, SCLK and SID pins  
control the serial write operation. The serial write  
operation is activated when CS goes low (CS=0)  
with R/W pin low (R/W=0).  
Serial read is used to obtain status or conversion  
data. The CS, R/W, SCLK, RSEL, and SOD pins  
control the read operation. The serial read opera-  
tion is activated when CS goes low (CS=0) with the  
R/W pin high (R/W=1). The RSEL pin selects be-  
tween conversion data (data register) or status in-  
formation (status register). The selected serial bit  
stream is output on the SOD (Serial Output Data)  
pin.  
Serial input data on the SID pin is sampled on the  
falling edge of SCLK. The input bits are stored in a  
temporary buffer until either the write operation is  
terminated or 8 bits have been received. The data is  
then parallel loaded into the configuration register.  
If fewer than 8 bits are input before the write termi-  
nation, the other bits may be indeterminate.  
On read select, SCLK can either be high or low, the  
first bit appears on the SOD pin and should be  
latched on the falling edge of SCLK. After the first  
24  
DS454PP1  
CS5320/21/22  
Note that a write will occur when CS = 0 and R/W (except when ORCAL = 1 and the CS5322 is RE-  
= 0 even if SCLK is not toggled. Failure to clock in SET as this toggles the ORCAL internally). After  
data with the appropriate number of SCLKs can  
leave the configuration register in an indeterminate  
condition.  
ORCAL has been toggled, the SYNC signal must  
be applied to the CS5322. The filter settles on the  
input value in 56 output words. The output word  
rate is determined by the state of the decimation  
rate control pins, DECC, DECB, and DECA. On  
the 57th output word, the CS5322 issues the OR-  
CALD status flag, outputs the offset data sample,  
and internally loads the offset register. During cal-  
ibration, the offset register value is not used.  
The serial bit stream is received MSB first, LSB  
last. The order of the input control data is PWDN  
first, followed by ORCAL, USEOR, CSEL, Re-  
served, DECC, DECB, and DECA. The configura-  
tion data bits are defined in Table 2. The  
configuration data controls device operation only  
when in the software mode, i.e., the H/S pin is low If USEOR is high (USEOR=1), subsequent sam-  
(H/S = 0). The Reserved configuration data bit  
must always be written low.  
ples will have the offset subtracted from the output.  
The state of USEOR must remain high for the com-  
plete duration of the convolution cycle. If USEOR  
is low (USEOR=0), the output word is not correct-  
ed, but the offset register retains its value for later  
use. The results of the last calibration will be held  
in the offset register until the end of a new calibra-  
tion, or until the CS5322 is reset using the RESET  
pin. USEOR does not alter the offset register value,  
only its usage.  
2.16 Offset Calibration Operation  
The offset calibration routine computes the offset  
produced by the CS5320/21 modulator and stores  
this value in the offset register. The USEOR pin or  
bit determines if the offset register data is to be  
used to correct output words.  
After power is applied to the chip set the CS5322  
must be RESET. To begin an offset calibration, the  
CS5320/21 analog input must represent the offset  
value. Then in software mode (H/S = 0) the OR-  
CAL bit must be toggled from a low to a high. In  
hardware mode the ORCAL pin must be toggled  
low for at least one CLKIN cycle, then taken high  
To restart a calibration, ORCAL and SYNC must  
be taken low for at least one CLKIN cycle. OR-  
CAL must then be taken high. The calibration will  
restart on the next SYNC event. If the ORCAL pin  
remains in a high state, only a single calibration  
will start on the first SYNC signal.  
Equivalent Hardware  
Input Bit #  
Function  
PWDN  
ORCAL  
USEOR  
CSEL  
Description  
Standby mode  
1 (MSB)  
2
Self-offset calibration  
Use Offset Register  
Channel Select  
3
4
5
Reserved  
DECC  
Factory use only  
Filter BW selection  
Filter BW selection  
Filter BW selection  
6
7
DECB  
8 (LSB)  
DECA  
Table 2. Configuration Data Bits  
DS454PP1  
25  
CS5320/21/22  
tempted, the CS5322 assumes that data is not want-  
ed and does not assert OVERWRITE, and the old  
data is over-written by the new data. On an OVER-  
WRITE condition, the old partially read data is pre-  
served, and the new data word is lost.  
2.17 Status Bits  
The Status Register is a 16-bit register which al-  
lows the user to read the flags and configuration  
settings of the CS5322. Table 3 documents the data  
bits of the Status Register.  
Status reads have no effect on OVERWRITE assert  
operations. The OVERWRITE bit is cleared on a  
status register read or RESET.  
The ERROR flag, ERROR, is the OR’ed result of  
OVERWRITE, MFLG, ACC1, and ACC2. The  
ERROR bit is active high whenever any of the four  
error bits are set due to a fault condition. The ER-  
The MFLG error bit reflects the CS5320/21 MFLG  
ROR output has a nominal 100 Kinternal pull-up signal. Any high level on the CS5322 MFLG pin  
resistor.  
will set the MFLG status bit. The bit is cleared on a  
status register read or RESET operation, only if the  
MFLG pin on the CS5322 has returned low. A in-  
ternal nominal 100 Kpulldown resistor is on the  
MFLG pin.  
The OVERWRITE bit is set when new conversion  
data is ready to be loaded into the data register, but  
the previous data was not completely read out. This  
can occur on either of two conditions: a read oper-  
ation is in progress or a read operation was started,  
then aborted, and not completed. These two condi-  
tions are data read attempts. The attempt is identi-  
fied by the first SCLK low edge (MSB read) of a  
data register read. If a data register read is not at-  
The accumulator error bits, ACC1 and ACC2, indi-  
cate that an underflow or overflow has occurred in  
the FIR1 filter for ACC1, or the FIR2 and FIR3 fil-  
ters for ACC2. Both errors are cleared on a status  
read, provided the error conditions are no longer  
Output Bit #  
Function  
Error  
Description  
Detects one of the errors below  
Overwrite Error  
1 (MSB)  
2
3
OVERWRITE Error  
MFLG Error  
ACC1 Error  
ACC2 Error  
DRDY  
Modulator Flag Error  
Accumulator 1 Error  
Accumulator Error  
4
5
6
Data Ready  
7
1SYNC  
First sample after SYNC  
Offset calibration done  
Standby mode  
8
ORCALD  
PWDN  
9
10  
11  
12  
13  
14  
15  
16  
ORCAL  
Self-offset Calibration  
Use Offset Register  
Channel Select  
USEOR  
CSEL  
Reserved  
DECC  
Factory use only  
Bandwidth Selection Status  
Bandwidth Selection Status  
Bandwidth Selection Status  
DECB  
DECA  
Table 3. Status Data (from the SOD Pin)  
26  
DS454PP1  
 
CS5320/21/22  
present. In normal operation the ACC1 error will able in the output register. This flag is high only  
only occur when the input data stream to FIR1 is all during that sample and is otherwise low.  
1’s for more than 32 bits. The ACC2 error cannot  
occur in normal operation.  
The remaining five status bits (PWDN, ORCAL,  
USEOR, CSEL, Reserved, DECC, DECB, and DE-  
The DRDY bit reflects the state of the DRDY pin. CA) provide configuration readback for the user.  
DRDY rising edge indicates that a new data word  
has been loaded into the data register and is avail- such that in the hardware mode (H/S=1), they fol-  
able for reading. DRDY will fall after the SCLK low the corresponding input pins. In host mode  
These bits echo the control source for the CS5322  
falling edge that reads the data register LSB. If no- (H/S=0) they follow the corresponding configura-  
data read attempt is made, DRDY will pulse low tion bits.  
for 1/2 CLKIN cycle, providing a positive edge on  
the new data availability. In the OVERWRITE  
case, DRDY remains high because new data is not  
loaded at the normal end of conversion time.  
A brief explanation of the eight bits are as follows:  
PWDN - When high, indicates that the CS5322 is in  
the power-down state.  
ORCAL - When high, indicates a potential calibra-  
tion start.  
The 1SYNC status bit provides an indication of the  
filter group delay. It goes high on the second output  
sample after SYNC and is valid for only that sam-  
ple. For repetitive SYNC operations, SYNC must  
run at one fourth the output word rate or slower to  
avoid interfering with the 1SYNC operation. With  
these slower repetitive SYNC’s or non-periodic  
SYNC’s separated by at least three output words,  
1SYNC will occur on the second output sample af-  
ter SYNC.  
USEOR - When high, indicates the Offset Register is  
used. During calibration, this bit will read zero indi-  
cating the offset register is not being used during cal-  
ibration.  
CSEL- When high, TDATA is selected as the filter  
source. When low, the MDATA output signal from  
the CS5320/21 is selected as the input source to the  
filter.  
ORCALD indicates that calibration of the offset  
register is complete and the offset sample is avail-  
Reserved - Always read low.  
DECC, DECB, and DECA - Indicate the decimation  
rate of the filter and are defined in Table 4.  
DECC  
DECB  
DECA  
Output Word Rate (Hz)  
Clocks Filter Output  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
62.5  
125  
16384  
8192  
4096  
2048  
1024  
512  
250  
500  
1000  
2000  
4000  
Reserved  
256  
-
Table 4. Bandwidth Selection: Truth Table  
DS454PP1  
27  
 
CS5320/21/22  
2.18 Board Layout Considerations  
All of the 0.1 µF filter capacitors on the power sup-  
plies, AIN+, and AINR, should be placed very  
close to the chip and connect to the nearest ground  
pin on the device. The capacitors between VREF+  
and VREF- should be located as close to the chip as  
possible. The 0.l µF capacitors on the AIN+ and  
AINR pins should be placed with their leads on the  
same axis, not side-by-side. If these capacitors are  
placed side-by-side their electric fields can interact  
and cause increased distortion. The chip should be  
surrounded with a ground plane. Trace fill should  
be used around the analog input components.  
See AN18: Layout and Design Rules for Data Con-  
verters for further information.  
28  
DS454PP1  
CS5320/21/22  
3. CS5320/21 PIN DESCRIPTIONS  
Power Supplies  
Vdd1 – Positive Power One, PIN 2  
Positive supply voltage. Nominally +5 Volts.  
Vdd2 – Positive Power Two, PIN 22  
Positive supply voltage. Nominally +5 Volts.  
Vss1 – Negative Power One, PIN 3  
Negative supply voltage. Nominally -5 Volts.  
Vss2 – Negative Power Two, PIN 21  
Negative supply voltage. Nominally -5 Volts.  
GND1 through GND11 – Ground, PINS 1, 4, 7, 11, 12, 13, 14, 15, 16, 19, 23.  
Ground reference.  
Analog Inputs  
AIN+ - Positive Analog Input, PIN 9  
Nominally ± 4.5V  
AIN- - Negative Analog Input, PIN 8  
This pin is tied to ground.  
DS454PP1  
29  
CS5320/21/22  
AINR - Analog Input Rough, PIN 10  
Allows a non-linear current to bypass the main external anti-aliasing filter which if allowed to  
happen, would cause harmonic distortion in the modulator. Please refer to the System  
Connection Diagram and the Analog Input and Voltage Reference section of the data sheet for  
recommended use of this pin.  
VREF+ – Positive Voltage Reference Input, PIN 5  
This pin accepts an external +4.5 V voltage reference.  
VREF- – Negative Voltage Reference Input, PIN 6  
This pin is tied to ground.  
Digital Inputs  
MCLK – Clock Input, PIN 20  
A CMOS-compatible clock input to this pin (nominally 1.024 MHz) provides the necessary  
clock for operation of the modulator and data output portions of the A/D converter. MCLK is  
normally supplied by the CS5322  
MSYNC – Modulator Sync, PIN 25  
A transition from a low to high level on this input will re-initialize the CS5320/21. MSYNC  
resets a divider-counter to align the MDATA output bit stream from the CS5320/21 with the  
timing inside the CS5322.  
OFST - Offset, PIN 28  
When high, adds approximately 100 mV of input referred offset to guarantee that any zero  
input limit cycles are out of band if present. When low, zero offset is added.  
LPWR - Low Power Mode, PIN 27  
The CS5320/21 power dissipation can be reduced from its nominal value of 55 mW to 30 mW  
under the following conditions:  
LPWR=1; MCLK = 512 kHz, HBR=1; or LPWR=1; MCLK = 1.024 MHz, HBR=0  
HBR – High Bit Rate, Pin 26  
Selects either 1 4 MCLK (HBR=1) or 1 8MCLK (HBR=0) for the modulator sampling clock.  
Digital Outputs  
MDATA – Modulator Data Output, PIN 18  
Data will be presented in a one-bit serial data stream at a bit rate of 256 kHz (HBR=1) or  
128 kHz (HBR=0) with MCLK operating at 1.024 MHz.  
MDATA – Modulator Data Output, PIN 17  
Inverse of the MDATA output.  
MFLG – Modulator Flag, PIN 24  
A transition from a low to high level signals that the CS5320/21 modulator is unstable due to  
an over-range on the analog input  
30  
DS454PP1  
CS5320/21/22  
4. CS5322 PIN DESCRIPTIONS  
CHIP SELECT  
CS  
FRAME SYNC SYNC  
CLOCK INPUT CLKIN  
RESET RESET  
R/W  
READ/WRITE  
RSEL REGISTER SELECT  
SCLK SERIAL CLOCK  
MODULATOR SYNC MSYNC  
MODULATOR FLAG MFLG  
MODULATOR CLOCK MCLK  
SID  
SERIAL INPUT DATA  
4
3
2
1
28 27 2 6  
SOD  
SERIAL OUTPUT DATA  
5
25  
24  
23  
22  
21  
20  
19  
6
CS5322  
ERROR ERROR FLAG  
DRDY DATA READY  
7
TOP  
POSITIVE DIGITAL POWER  
VD+  
8
VIEW  
9
DIGITAL GROUND DGND  
MODULATOR DATA MDATA  
TEST DATA TDATA  
VD+  
POSITIVE DIGITAL POWER  
10  
11  
DGND DIGITAL GROUND  
ORCAL OFFSET CALIBRATION  
DECA DECIMATION RATE CONTROL  
12 13 14 15 16 17 18  
CHANNEL SELECT CSEL  
HARDWARE/SOFTWARE MODE  
H/S  
DECIMATION RATE CONTROL  
DECIMATION RATE CONTROL  
DECB  
DECC  
POWER DOWN PWDN  
USEOR USE OFFSET REGISTER  
Power Supplies  
VD+ – Positive Digital Power, Pin 8, 21  
Positive digital supply voltage. Nominally +5 volts.  
DGND – Digital Ground, Pin 9, 20  
Digital ground reference.  
Digital Outputs  
MCLK – Modulator Clock Output, Pin 7  
A CMOS-compatible clock output (nominally 1.024 MHz) that provides the necessary clock for  
operation of the modulator.  
MSYNC – Modulator Sync, Pin 5  
The transition from a low to high level on this output will re-initialize the CS5320/21.  
ERROR - Error Flag, Pin 23  
This signal is the output of an open pull-up NOR gate with a nominal 100 kpull-up resistor  
to which the error status data (OVERWRITE error, MFLG error, ACC1 error and ACC2 error)  
are inputs. When low, it notifies the host processor that an error condition exists. The ERROR  
signal can be wire OR’d together with other filters’ outputs. The value of the internal pull-up  
resistor is 100 k.  
DRDY - Data Ready, Pin 22  
When high, data is ready to be shifted out of the serial port data register.  
DS454PP1  
31  
CS5320/21/22  
SOD - Serial Output Data, Pin 24  
The output coding is 2’s complement with the data bits presented MSB first, LSB last. Data  
changes on the rising edge of SCLK. An internal nominal 100 kpull-up resistor is included.  
Digital Inputs  
MDATA – Modulator Data, Pin 10  
Data will be presented in a one-bit serial data stream at a bit rate of 256 KHz; (CLKIN =  
1.024 MHz).  
TDATA - Test Data, Pin 11  
Input for user test data.  
MFLG – Modulator Flag, Pin 6  
A transition from a low to high level signals that the CS5320/21 modulator is unstable due to  
an over-range on the analog input. A Status Bit will be set in the digital filter indicating an  
error condition. An internal nominal 100 kpull-down resistor included on the input pin.  
RESET - Filter Reset, Pin 4  
Performs a hard reset on the chip, all registers and accumulators are cleared. All signals to the  
device are locked out except CLKIN. The error flags in the Status Register are set to zero and  
the Data Register and Offset Register are set to zero. The configuration register is set to the  
values of the corresponding input pins. SYNC must be applied to resume convolutions after  
RESET deasserts.  
CLKIN - Clock Input, Pin 3  
A CMOS-Compatible clock input to this pin (nominally 1.024 MHz) provides the necessary  
clock for operation the modulator and filter.  
SYNC - Frame Sync, Pin 2  
Conversion synchronization input. This signal synchronizes the start of the filter convolution.  
More than one SYNC signal can occur with no effect on filter performance, providing the  
SYNC signals are perfectly timed at intervals equal to the output sample period.  
CSEL - Channel Select, Pin 12  
When high, information on the TDATA pin is presented to the digital filter. A low causes data  
on the MDATA input to be presented to the digital filter.  
PWDN - Powerdown, Pin 14  
Powers down the filter when taken high. Convolution cycles in the digital filter and the MCLK  
signal are stopped. The registers maintain their data and the serial port remains active. SYNC  
must be applied to resume convolutions after PWDN deasserts.  
DECA - Decimation Rate Control, Pin 18  
See Table 4.  
DECB - Decimation Rate Control, Pin 17  
See Table 4.  
32  
DS454PP1  
CS5320/21/22  
DECC - Decimation Rate Control, Pin 16  
See Table 4.  
H/S - Hardware/Software Mode Select, Pin 13  
When high, the device pins control device operation; when low, the value entered by a prior  
configuration write controls device operation.  
CS - Chip Select, Pin 1  
When high, all signal activity on the SID, R/W and SCLK pins is ignored. The DRDY and  
ERROR signals indicate the status of the chip’s internal operation.  
R/W - Read/Write, Pin 28  
Used in conjunction with CS such that when both signals are low, the filter inputs data from the  
SID pin on the falling edge of SCLK. If CS is low and R/W is high, the filter outputs data on  
the SOD pin on the rising edge of SCLK. R/W low floats the SOD pin allowing SID and SOD  
to be tied together, forming a bidirectional serial data bus.  
SCLK - Serial Clock, Pin 26  
Clock signal generated by host processor to either input data on the SID input pin, or output  
data on the SOD output pin. For write, data must be valid on the SID pin on the falling edge of  
SCLK. Data changes on the SOD pin on the rising edge of SCLK.  
SID - Serial Data Input, Pin 25  
Data bits are presented MSB first, LSB last. Data is latched on the falling edge of SCLK.  
RSEL - Register Select, Pin 27  
Selects conversion data when high, or status data when low.  
USEOR - Use Offset Register, Pin 15  
Use offset register value to correct output words when high. Output words will not be offset  
corrected when low.  
ORCAL - Offset Register Calibrate, Pin 19  
Initiates an offset calibration cycle when SYNC goes high after ORCAL has been toggled from  
low to high. The offset value is output on the 57th word following SYNC. Subsequent words  
will have their offset correction controlled by USEOR.  
DS454PP1  
33  
CS5320/21/22  
5. ORDERING INFORMATION  
Kits  
Analog Modulator  
Digital Filter  
Part Number Temperature  
Part Number Part Number Temperature  
Package  
28-pin PLCC CS5322-KL  
Package  
CK5320-KL1  
CK5321-KL1  
CK5321-BL1  
CS5320-KL  
0o to +70o C  
0o to +70o C  
0o to +70o C  
-40o to +85o C 28-pin PLCC  
28-pin PLCC  
28-pin PLCC  
CS5321-BL -55o to +85o C 28-pin PLCC CS5322-KL  
CS5321-BL -55o to +85o C 28-pin PLCC CS5322-BL  
Table 5. Detailed Ordering Information  
34  
DS454PP1  
CS5320/21/22  
6. PARAMETER DEFINITIONS  
Dynamic Range  
The ratio of the full-scale (rms) signal to the broadband (rms) noise signal. Broadband noise is  
measured with the input grounded within the bandwidth of 1 Hz to f3 Hz (See “CS5322  
FILTER CHARACTERISTICS” on page 8). Units in dB.  
Signal-to-Distortion  
The ratio of the full-scale (rms) signal to the rms sum of all harmonics up to f3 Hz.  
Units in dB.  
Intermodulation Distortion  
The ratio of the rms sum of the two test frequencies (30 and 50 Hz) which are each 6 dB down  
from full-scale to the rms sum of all intermodulation components within the bandwidth of dc to  
f3 Hz. Units in dB.  
Full Scale Error  
The ratio of the difference between the value of the voltage reference and analog input voltage  
to the full scale span (two times the voltage reference value). This ratio is calculated after the  
effects of offset and the external bias components are removed and the analog input voltage is  
adjusted. Measurement of this parameter uses the circuitry illustrated in the System Connection  
Diagram. Units in %.  
Full Scale Drift  
The change in the Full Scale value with temperature. Units in %/°C.  
Offset  
The difference between the analog ground and the analog voltage necessary to yield an output  
code from the CS5320/22 or CS5321/22 of 000000(H). Measurement of this parameter uses the  
circuit configuration illustrated in the System Connection Diagram. Units in mV.  
Offset Drift  
The change in the Offset value with temperature. Measurement of this parameter uses the  
circuit configuration illustrated in the System Connection Diagram. Units in µV/°C.  
DS454PP1  
35  
CS5320/21/22  
7. PACKAGE DIMENSIONS  
28L PLCC PACKAGE DRAWING  
e
D2/E2  
E1 E  
B
D1  
D
A1  
A
INCHES  
MILLIMETERS  
MIN MAX  
DIM  
A
A1  
B
MIN  
MAX  
0.165  
0.090  
0.013  
0.485  
0.450  
0.390  
0.485  
0.450  
0.390  
0.040  
0.180  
0.120  
0.021  
0.495  
0.456  
0.430  
0.495  
0.456  
0.430  
0.060  
4.043  
2.205  
0.319  
11.883  
11.025  
9.555  
11.883  
11.025  
9.555  
0.980  
4.572  
3.048  
0.533  
12.573  
11.582  
10.922  
12.573  
11.582  
10.922  
1.524  
D
D1  
D2  
E
E1  
E2  
e
JEDEC #: MS-018  
36  
DS454PP1  
• Notes •  

相关型号:

CS5322-BL

24-Bit Variable Bandwidth A/D Converter Chipset
CIRRUS

CS5322-BLZ

24-bit, Variable-bandwidth A/D Converter Chipset
CIRRUS

CS5322-KL

24-Bit Variable Bandwidth A/D Converter Chipset
CIRRUS

CS5322/D

Two-Phase Buck Controller with Integrated Gate Drivers and 5-Bit DAC
ETC

CS5322GDW28

Two−Phase Buck Controller with Integrated Gate Drivers and 5−Bit DAC
ONSEMI

CS5322GDWR28

Two−Phase Buck Controller with Integrated Gate Drivers and 5−Bit DAC
ONSEMI

CS5323

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI

CS5323-BL

Other/Special/Miscellaneous Converter
ETC

CS5323-D

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI

CS5323-KL

Other/Special/Miscellaneous Converter
ETC

CS5323/D

Three-Phase Buck Controller with 5-Bit DAC
ETC

CS5323D

Three-Phase Buck Controller with 5-Bit DAC
ONSEMI