STK14CA8-WF45I [CYPRESS]

128KX8 NON-VOLATILE SRAM, 45ns, PDIP32, 0.600 INCH, PLASTIC, DIP-32;
STK14CA8-WF45I
型号: STK14CA8-WF45I
厂家: CYPRESS    CYPRESS
描述:

128KX8 NON-VOLATILE SRAM, 45ns, PDIP32, 0.600 INCH, PLASTIC, DIP-32

静态存储器 光电二极管 内存集成电路
文件: 总15页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK14CA8  
128K x 8 AutoStoreTM nvSRAM  
QuantumTrapTM CMOS  
Nonvolatile Static RAM  
FEATURES  
DESCRIPTION  
25ns, 35ns and 45ns Access Times  
The Simtek STK14CA8 is a fast static RAM with a  
nonvolatile element in each memory cell. The  
embedded nonvolatile elements incorporate  
“Hands-off” Automatic STORE on Power Down  
with only a small capacitor  
Simtek’s QuantumTrapTM technology producing the  
world’s most reliable nonvolatile memory. The  
SRAM provides unlimited read and write cycles,  
while independent, nonvolatile data resides in the  
highly reliable QuantumTrapTM cell. Data transfers  
from the SRAM to the nonvolatile elements (the  
STORE operation) takes place automatically at  
power down. On power up, data is restored to the  
SRAM (the RECALL operation) from the nonvolatile  
memory. Both the STORE and RECALL operations  
are also available under software control.  
STORE to QuantumTrap™ Nonvolatile  
Elements is Initiated by Software , device pin  
or AutoStore™ on Power Down  
RECALL to SRAM Initiated by Software or  
Power Up  
Unlimited READ, WRITE and RECALL Cycles  
5mA Typical ICC at 200ns Cycle Time  
1,000,000 STORE Cycles to QuantumTrap™  
100-Year Data Retention to QuantumTrap™  
Single 3V +20%, -10% Operation  
Commercial and Industrial Temperatures  
SOIC, SSOP and DIP Packages  
RoHS Compliance  
BLOCK DIAGRAM  
VCC  
VCAP  
Quantum Trap  
1024 X 1024  
A5  
POWER  
A6  
A7  
A8  
A9  
A12  
A13  
A14  
A15  
A16  
CONTROL  
STORE  
RECALL  
STORE/  
RECALL  
CONTROL  
STATIC RAM  
ARRAY  
1024 X 1024  
HSB  
SOFTWARE  
DETECT  
A15 – A0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10 A11  
G
E
W
Figure 1. Block Diagram  
December 2004  
1
Document Control #ML0022 rev 1.0  
STK14CA8  
PACKAGES  
VCAP  
A16  
A14  
1
2
3
4
5
6
VCC  
A15  
HSB  
48  
47  
VCAP  
A16  
A14  
1
2
3
4
5
6
VCC  
A15  
32  
31  
46  
45  
44  
43  
HSB  
W
A13  
A8  
30  
29  
28  
27  
A12  
A7  
A6  
W
A13  
A8  
A12  
A7  
A6  
A5  
7
8
9
10  
11  
12  
13  
14  
15  
16  
A9  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
A5  
A4  
A3  
A2  
A1  
A9  
7
8
9
10  
11  
12  
13  
14  
15  
16  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
A11  
G
A10  
E
DQ7  
A4  
A11  
A0  
VSS  
VSS  
DQ0  
DQ1  
DQ2  
VSS  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
A3  
A2  
A1  
A0  
DQ6  
G
A10  
E
DQ7  
17  
18  
32  
31  
30  
29  
28  
27  
26  
25  
32 Pin  
SOIC or PDIP  
19  
20  
21  
22  
23  
24  
DQ1  
DQ2  
DQ5  
DQ4  
DQ3  
VCC  
48 Pin SSOP  
Relative PCB area usage.  
See website for detailed  
package size specifications.  
PIN DESCRIPTIONS  
Pin Name  
I/O  
Description  
A16 – A0  
Input  
Address: The 17 address inputs select one of 131,072 bytes in the nvSRAM array.  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM.  
DQ7 –DQ0  
E
I/O  
Input  
Chip Enable: The active low  
Write Enable: The active low  
E
input selects the device.  
W
enables data on the DQ pins to be written to the address location latched by  
W
Input  
the falling edge of E  
.
Output Enable: The active low  
G
input enables the data output buffers during read cycles. De-asserting G  
G
Input  
high causes the DQ pins to tri-state.  
Power 3.0V +20%, -10%  
VCC  
Power Supply  
Hardware Store Busy: When low this output indicates a Hardware Store is in progress. When pulled low external  
HSB  
I/O  
to the chip it will initiate a nonvolatile STORE operation. A weak internal pull up resistor keeps this pin high if not  
connected. (Connection Optional)  
Autostore Capacitor: Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile  
VCAP  
Power Supply  
elements.  
VSS  
Power Supply  
No Connect  
Ground  
(Blank)  
Unlabeled pins have no internal connection.  
December 2004  
2
Document Control #ML0022 rev 1.0  
STK14CA8  
ABSOLUTE MAXIMUM RATINGSa  
Notes  
-0.5V to +4.1V  
Power Supply Voltage  
Voltage on Input Relative to VSS  
Voltage on Outputs  
a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at con-  
ditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
-0.5V to (VCC + 0.5V)  
-0.5V to (VCC + 0.5V)  
–55°C to 125°C  
–55°C to 140°C  
–65°C to 150°C  
1W  
Temperature under Bias  
Junction Temperature  
Storage Temperature  
Power Dissipation  
DC Output Current (1 output at a time, 1s duration)  
15mA  
Package Thermal Characteristics see website: http://www.simtek.com/  
DC CHARACTERISTICS  
Commercial  
Industrial  
Symbol  
Parameter  
Units  
mA  
mA  
mA  
Notes  
MIN  
MAX  
65  
55  
50  
MIN  
MAX  
70  
60  
55  
tAVAV = 25ns  
tAVAV = 35ns  
tAVAV = 45ns  
Average VCC Current  
ICC1  
Dependent on output loading and cycle  
rate. Values obtained without output loads.  
All Inputs Don’t Care, VCC = max  
Average current for duration of STORE  
cycle (tSTORE).  
Average VCC Current during STORE  
Average VCC Current at tAVAV = 200ns  
3V, 25°C, Typical  
ICC2  
ICC3  
ICC4  
ISB  
3
3
mA  
W
(VCC – 0.2V)  
All Others Inputs Cycling, at CMOS Levels.  
Dependent on output loading and cycle  
rate. Values obtained without output loads.  
All Inputs Don’t Care  
Average current for duration of STORE  
cycle (tSTORE).  
5
3
5
3
mA  
mA  
Average VCAP Current during  
AutoStore™ Cycle  
VCC Standby Current  
E
(VCC – 0.2V)  
All Others VIN 0.2V or (VCC – 0.2V)  
Standby current level after nonvolatile  
cycle is complete.  
(Standby, Stable CMOS Input Levels)  
2
2
mA  
µA  
VCC = max  
Input Leakage Current  
IILK  
±1  
±1  
±1  
VIN = VSS to VCC  
VCC = max  
Off-State Output Leakage Current  
IOLK  
VIN = VSS to VCC, E or G VIH  
±1  
VCC + 0.3  
0.8  
µA  
V
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
Operating Voltage  
VIH  
VIL  
2.0  
V
CC + 0.3  
0.8  
2.0  
VSS – 0.5  
2.4  
All Inputs  
All Inputs  
V
SS – 0.5  
2.4  
V
VOH  
VOL  
TA  
V
IOUT = –2mA  
0.4  
70  
0.4  
85  
V
IOUT = 4mA  
0
–40  
2.7  
17  
oC  
VCC  
VCAP  
2.7  
17  
3.6  
57  
3.6  
57  
V
3.0V +20%, -10%  
Between Vcap pin and Vss, 5V rated.  
Storage Capacitor  
µF  
December 2004  
3
Document Control #ML0022 rev 1.0  
STK14CA8  
AC TEST CONDITIONS  
0V to 3V  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Reference Levels  
5ns  
1.5V  
Output Load  
See Figure 2 and Figure 3  
CAPACITANCEb  
(TA = 25°C, f = 1.0MHz)  
SYMBOL  
PARAMETER  
MAX  
UNITS  
pF  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
CIN  
Input Capacitance  
Output Capacitance  
7
7
COUT  
pF  
Notes  
b: These parameters are guaranteed but not tested  
3.0V  
3.0V  
577 Ohms  
577 Ohms  
OUTPUT  
OUTPUT  
5 pF  
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
789 Ohms  
789 Ohms  
INCLUDING  
SCOPE AND  
FIXTURE  
Figure 2. AC Output Loading  
Figure 3. AC Output Loading,  
for tristate specs (  
tHZ, tLZ, tWLQZ, tWHQZ  
tGLQX, tGHQZ  
,
)
December 2004  
4
Document Control #ML0022 rev 1.0  
STK14CA8  
SRAM READ CYCLES #1 & #2  
SYMBOLS  
STK14CA8-25  
STK14CA8-35  
STK14CA8-45  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
tACS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tELQV  
1
2
Chip Enable Access Time  
Read Cycle Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c
c
tAVAV  
tAVAV  
tRC  
tAA  
tOE  
tOH  
tLZ  
25  
35  
45  
d
tAVQV  
3
Address Access Time  
25  
12  
35  
15  
45  
20  
tGLQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
d
tAXQX  
5
3
3
3
3
3
3
tELQX  
tEHQZ  
tGLQX  
6
e
tHZ  
tOLZ  
tOHZ  
tPA  
tPS  
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
8
0
0
0
0
0
0
e
tGHQZ  
9
b
tELICC  
10  
b
tEHICC  
11  
Notes  
c:  
W
must be high during SRAM READ cycles  
and  
d: Device is continuously selected with  
E
G
both low  
e: Measured ± 200mV from steady state output voltage  
f: HSB must remain high during READ and WRITE cycles.  
SRAM READ CYCLE #1: Address Controlledc,d,f  
2
tAVAV  
ADDRESS  
3
tAVQV  
5
tAXQX  
DATA VALID  
DQ (DATA OUT)  
SRAM READ CYCLE #2: E Controlledc,f  
2
tAVAV  
ADDRESS  
1
tELQV  
11  
tEHICCL  
6
tELQX  
E
7
tEHQZ  
G
9
tGHQZ  
4
tGLQV  
8
tGLQX  
DQ (DATA OUT)  
DATA VALID  
10  
tELICCH  
ACTIVE  
STANDBY  
ICC  
December 2004  
5
Document Control #ML0022 rev 1.0  
STK14CA8  
SRAM WRITE CYCLES #1 & #2  
SYMBOLS  
NO.  
STK14CA8-25  
STK14CA8-35  
STK14CA8-45 UNITS  
PARAMETER  
#1  
#2  
Alt.  
tWC  
tWP  
tCW  
tDW  
tDH  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
Write Cycle Time  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
tAVAV  
tWLWH  
tELWH  
tDVWH  
tWHDX  
tAVWH  
tAVWL  
tWHAX  
tAVAV  
tWLEH  
tELEH  
tDVEH  
tEHDX  
tAVEH  
tAVEL  
tEHAX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Pulse Width  
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
tAW  
tAS  
20  
0
25  
0
30  
0
tWR  
tWZ  
tOW  
0
0
0
e,g  
tWLQZ  
10  
13  
15  
tWHQX  
3
3
3
Notes  
g: If  
h:  
W
is low when E goes low, the outputs remain in the high-impedance state.  
E
or  
W
must be VIH during address transitions.  
SRAM WRITE CYCLE #1: W Controlledh,f  
12  
tAVAV  
ADDRESS  
19  
tWHAX  
14  
tELWH  
E
17  
tAVWH  
18  
13  
tWLWH  
tAVWL  
W
15  
16  
tDVWH  
tWHDX  
DATA VALID  
DATA IN  
20  
tWLQZ  
21  
tWHQX  
HIGH IMPEDANCE  
PREVIOUS DATA  
DATA OUT  
SRAM WRITE CYCLE #2: E Controlledh,f  
12  
tAVAV  
ADDRESS  
14  
tELEH  
18  
tAVEL  
19  
tEHAX  
E
17  
tAVEH  
13  
tWLEH  
W
16  
tEHDX  
15  
tDVEH  
DATA VALID  
DATA IN  
HIGH IMPEDANCE  
DATA OUT  
December 2004  
6
Document Control #ML0022 rev 1.0  
STK14CA8  
MODE SELECTION  
E
W
G
A15 - A0  
MODE  
I/O  
POWER  
NOTES  
H
L
L
X
H
L
X
L
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
Standby  
Active  
X
Active  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
L
L
H
H
L
L
Active  
Active  
i, j, k  
Autostore Disable  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Autostore Enable  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
i, j, k  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile Store  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
ICC2  
L
L
H
H
L
L
i, j, k  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
i, j, k  
Nonvolatile Recall  
Notes  
i: The six consecutive addresses must be in the order listed.  
j: While there are 17 addresses on the STK14CA8, only the lower 16 are used to control software modes  
W
must be high during all six consecutive cycles to enable a nonvolatile cycle.  
k: I/O state depends on the state of  
G
. The I/O table shown assumes  
G
low.  
December 2004  
7
Document Control #ML0022 rev 1.0  
STK14CA8  
AutoStore™ /POWER-UP RECALL  
SYMBOLS  
NO.  
PARAMETER  
STK14CA8  
UNITS  
NOTES  
Standard  
Alternate  
MIN  
MAX  
22  
23  
24  
25  
tHRECALL  
20  
ms  
ms  
V
l
Power-up RECALL Duration  
tSTORE  
tHLHZ  
12.5  
2.65  
m
STORE Cycle Duration  
VSWITCH  
tVCCRISE  
2.55  
150  
Low Voltage Trigger Level  
µs  
V
CC Rise Time  
Notes  
l: tHRECALL starts from the time VCC rises above VSWITCH  
m: If an SRAM WRITE has not taken place since the last nonvolatile cycle, no STORE will take place  
STORE occurs only if a  
SRAM write has  
happened.  
No STORE occurs  
without at least one  
SRAM write.  
AutoStore™/POWER-UP RECALL  
VCC  
24  
VSWITCH  
25  
tVCCRISE  
AutoStoreTM  
23  
tSTORE  
23  
tSTORE  
POWER-UP RECALL  
22  
tHRECALL  
22  
tHRECALL  
Read & Write Inhibited  
POWER DOWN  
BROWN OUT  
POWER-UP  
RECALL  
POWER-UP  
RECALL  
AutoStoreTM  
AutoStoreTM  
Note: Read and Write cycles will be ignored during STORE, RECALL and while VCC is below VSWITCH.  
December 2004  
8
Document Control #ML0022 rev 1.0  
STK14CA8  
SOFTWARE-CONTROLLED STORE/RECALL CYCLEn,o  
SYMBOLS  
STK14CA8-25  
STK14CA8-35  
STK14CA8-45  
NO.  
PARAMETER  
UNITS  
NOTES  
o
E
G
cont  
tAVAV  
Alt.  
tRC  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
cont  
tAVAV  
26  
27  
25  
0
35  
0
45  
0
ns  
ns  
ns  
ns  
µs  
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
tAVEL  
tAVGL  
tAS  
28  
tELEH  
tELAX  
tGLGH  
tGLAX  
tCW  
20  
20  
25  
20  
30  
20  
29  
Address Hold Time  
30  
tRECALL  
tRECALL  
40  
40  
40  
RECALL Duration  
Notes  
n: The software sequence is clocked with  
E
controlled READs or G controlled READs.  
o: The six consecutive addresses must be read in the order listed in the Mode Selection Table.  
W
must be high during all six consecutive cycles.  
SOFTWARE STORE/RECALL CYCLE: E Controlledo  
26  
tAVAV  
26  
tAVAV  
ADDRESS #1  
ADDRESS #6  
ADDRESS  
E
27  
tAVEL  
28  
tELEH  
29  
tELAX  
G
23  
30  
/
tSTORE tRECALL  
HIGH IMPEDENCE  
DATA VALID  
DQ (DATA)  
DATA VALID  
SOFTWARE STORE/RECALL CYCLE: G Controlledo  
26  
26  
tAVAV  
tAVAV  
ADDRESS #1  
ADDRESS #6  
ADDRESS  
E
28  
tGLGH  
27  
tAVGL  
G
30  
tRECALL  
23  
tSTORE  
/
29  
tGLAX  
HIGH IMPEDENCE  
DATA VALID  
DATA VALID  
DQ (DATA)  
December 2004  
9
Document Control #ML0022 rev 1.0  
STK14CA8  
HARDWARE STORE CYCLE  
SYMBOLS  
NO.  
STK14CA8  
PARAMETER  
UNITS  
NOTES  
Standard  
tDELAY  
tHLHX  
tHLBL  
Alternate  
MIN  
MAX  
tHLQZ  
31  
32  
33  
Time Allowed to Complete SRAM Cycle  
Hardware STORE Pulse Width  
1
µs  
ns  
ns  
p
15  
Hardware STORE Low to STORE Busy  
300  
Notes  
p: Read and Write cycles in progress before HSB is asserted are given this amount of time to complete.  
HARDWARE STORE CYCLE  
32  
tHLHX  
HSB (IN)  
23  
tSTORE  
33  
tHLBL  
HSB (OUT)  
HIGH IMPEDENCE  
DATA VALID  
HIGH IMPEDENCE  
31  
tDELAY  
DQ (DATA OUT)  
DATA VALID  
December 2004  
10  
Document Control #ML0022 rev 1.0  
STK14CA8  
DEVICE OPERATION  
nvSRAM  
SRAM WRITE  
The STK14CA8 nvSRAM is made up of two  
functional components paired in the same physical  
cell. These are a SRAM memory cell and a  
nonvolatile QuantumTrapcell. The SRAM memory  
cell operates as a standard fast static RAM. Data in  
the SRAM can be transferred to the nonvolatile cell  
(the STORE operation), or from the nonvolatile cell  
to SRAM (the RECALL operation). This unique  
architecture allows all cells to be stored and recalled  
in parallel. During the STORE and RECALL  
operations SRAM READ and WRITE operations are  
inhibited. The STK14CA8 supports unlimited reads  
and writes just like a typical SRAM. In addition, it  
provides unlimited RECALL operations from the  
nonvolatile cells and up to 1 million STORE  
operations.  
A WRITE cycle is performed whenever  
E
and W  
are low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into the memory if it is valid tDVWH  
before the end of a W controlled WRITE or tDVEH  
before the end of an E controlled WRITE.  
It is recommended that  
G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry will  
turn off the output buffers tWLQZ after W goes low.  
AutoStore™ OPERATION  
The STK14CA8 stores data to nvSRAM using one of  
three storage operations. These three operations are  
Hardware Store, activated by HSB , Software Store,  
actived by an address sequence, and AutoStore™, on  
device power down.  
SRAM READ  
The STK14CA8 performs a READ cycle whenever  
E
and  
G
are low while  
W
and HSB are high.  
The address specified on pins A16-0 determines which  
of the 131,072 data bytes will be accessed. When the  
READ is initiated by an address transition, the  
outputs will be valid after a delay of tAVQV (READ  
cycle #1). If the READ is initiated by E or G , the  
outputs will be valid at tELQV or at tGLQV, whichever is  
later (READ cycle #2). The data outputs will  
repeatedly respond to address changes within the  
tAVQV access time without the need for transitions on  
any control input pins, and will remain valid until  
another address change or until E or G is brought  
high, or W or HSB is brought low.  
AutoStore™ operation is a unique feature of Simtek  
QuantumTraptechnology and is enabled by default  
on the STK14CA8.  
During normal operation, the device will draw current  
from Vcc to charge a capacitor connected to the Vcap  
pin. This stored charge will be used by the chip to  
perform a single STORE operation. If the voltage on  
the Vcc pin drops below Vswitch, the part will  
automatically disconnect the Vcap pin from Vcc.  
A
STORE operation will be initiated with power provided  
by the Vcap capacitor.  
VCC  
Figure 4 shows the proper connection of the storage  
capacitor (Vcap) for automatic store operation. Refer  
to the DC CHARACTERISTICS table for the size of  
Vcap. The voltage on the Vcap pin is driven to 5V by a  
charge pump internal to the chip. A pull up should be  
placed on W to hold it inactive during power up.  
VCAP  
VCC  
W
To reduce unneeded nonvolatile stores, AutoStore™  
and Hardware Store operations will be ignored unless  
at least one WRITE operation has taken place since  
the most recent STORE or RECALL cycle. Software  
initiated STORE cycles are performed regardless of  
whether a WRITE operation has taken place. The  
HSB signal can be monitored by the system to detect  
an AutoStore™ cycle is in progress.  
Figure 4: AutoStoreTM Mode  
December 2004  
11  
Document Control #ML0022 rev 1.0  
STK14CA8  
SOFTWARE STORE  
HARDWARE STORE ( HSB ) OPERATION  
Data can be transferred from the SRAM to the  
nonvolatile memory by a software address sequence.  
The STK14CA8 software STORE cycle is initiated by  
executing sequential E controlled READ cycles from  
six specific address locations in exact order. During  
the STORE cycle an erase of the previous nonvolatile  
data is first performed, followed by a program of the  
nonvolatile elements. Once a STORE cycle is  
initiated, further input and output are disabled until the  
cycle is completed.  
The STK14CA8 provides the HSB pin for controlling  
and acknowledging the STORE operations. The HSB  
pin can be used to request a hardware STORE cycle.  
When the HSB pin is driven low, the STK14CA8 will  
conditionally initiate a STORE operation after tDELAY  
.
An actual STORE cycle will only begin if a WRITE to  
the SRAM took place since the last STORE or  
RECALL cycle. The HSB pin also acts as an open  
drain driver that is internally driven low to indicate a  
busy condition while the STORE (initiated by any  
means) is in progress.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is important  
that no other READ or WRITE accesses intervene in  
the sequence, or the sequence will be aborted and no  
STORE or RECALL will take place.  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK14CA8 will  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
continue SRAM operations for tDELAY. During tDELAY  
,
multiple SRAM READ operations may take place. If  
a WRITE is in progress when HSB is pulled low it  
will be allowed a time, tDELAY, to complete. However,  
any SRAM WRITE cycles requested after HSB goes  
low will be inhibited until HSB returns high.  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
During any STORE operation, regardless of how it  
was initiated, the STK14CA8 will continue to drive  
the HSB pin low, releasing it only when the STORE  
is complete. Upon completion of the STORE  
operation the STK14CA8 will remain disabled until  
the HSB pin returns high.  
The software sequence may be clocked with  
controlled READs or G controlled READs.  
E
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ cycles  
and not WRITE cycles be used in the sequence,  
although it is not necessary that G be low for the  
sequence to be valid. After the tSTORE cycle time has  
been fulfilled, the SRAM will again be activated for  
READ and WRITE operation.  
If HSB is not used, it should be left unconnected.  
HARDWARE RECALL (POWER-UP)  
During power up, or after any low-power condition  
(VCC < VSWITCH), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
SOFTWARE RECALL  
voltage of VSWITCH  
,
a
RECALL cycle will  
automatically be initiated and will take tHRECALL to  
complete.  
Data can be transferred from the nonvolatile memory  
to the SRAM by a software address sequence. A  
software RECALL cycle is initiated with a sequence of  
READ operations in a manner similar to the software  
STORE initiation. To initiate the RECALL cycle, the  
following sequence of E controlled READ operations  
must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
December 2004  
12  
Document Control #ML0022 rev 1.0  
STK14CA8  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the  
nonvolatile information is transferred into the SRAM  
cells. After the tRECALL cycle time the SRAM will once  
again be ready for READ and WRITE operations.  
The RECALL operation in no way alters the data in  
the nonvolatile elements.  
NOISE CONSIDERATIONS  
The STK14CA8 is a high-speed memory and so must  
have high-frequency bypass capacitor of  
a
approximately 0.1µF connected between VCC and VSS,  
using leads and traces that are as short as possible.  
As with all high-speed CMOS ICs, careful routing of  
power, ground and signals will reduce circuit noise.  
PREVENTING AUTOSTORETM  
LOW AVERAGE ACTIVE POWER  
The AutoStore™ function can be disabled by initiat-  
ing an AutoStore Disable sequence. A sequence of  
read operations is performed in a manner similar to  
the software STORE initiation. To initiate the  
AutoStore Disable sequence, the following sequence  
CMOS technology provides the STK14CA8 this the  
benefit of drawing significantly less current when it is  
cycled at times longer than 50ns. Figure 5 shows the  
relationship between ICC and READ/WRITE cycle  
time. Worst-case current consumption is shown for  
commercial temperature range, VCC = 3.6V, and chip  
enable at maximum frequency. Only standby current  
is drawn when the chip is disabled. The overall  
average current drawn by the STK14CA8 depends on  
the following items:  
of  
E
controlled read operations must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
AutoStore Disable  
1. The duty cycle of chip enable.  
2. The overall cycle rate for accesses.  
3. The ratio of READs to WRITEs.  
4. The operating temperature.  
5. The VCC level.  
The AutoStore™ can be re-enabled by initiating an  
AutoStore Enable sequence. A sequence of read  
operations is performed in a manner similar to the  
software RECALL initiation. To initiate the AutoStore  
Enable sequence, the following sequence of  
E
6. I/O loading.  
controlled read operations must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
AutoStore Enable  
50  
40  
30  
If the AutoStore™ function is disabled or re-enabled  
a manual STORE operation (Hardware or Software)  
needs to be issued to save the AutoStore state  
through subsequent power down cycles. The part  
comes from the factory with AutoStore™ enabled.  
Writes  
20  
DATA PROTECTION  
10  
Reads  
The STK14CA8 protects data from corruption during  
low-voltage conditions by inhibiting all externally  
initiated STORE and WRITE operations. The low-  
voltage condition is detected when VCC < VSWITCH .  
0
If the STK14CA8 is in a WRITE mode (both E and  
W low ) at power-up, after a RECALL, or after a  
STORE, the WRITE will be inhibited until a negative  
50 100 150 200 300  
Cycle Time (ns)  
transition on  
E
or  
W
is detected. This protects  
against inadvertent writes during power up or brown  
out conditions.  
Figure 5 Current vs. Cycle time  
December 2004  
13  
Document Control #ML0022 rev 1.0  
STK14CA8  
ORDERING INFORMATION  
STK14CA8 – R F 45 I  
Temperature Range  
Blank = Commercial (0 to 70ºC)  
I = Industrial (-40 to 85ºC)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Lead Finish  
Blank = 85% Sn / 15% Pb  
F = 100% Sn (Matte Tin) RoHS Compliant  
Package  
N = Plastic 32-pin 300 mil SOIC (50 mil pitch)  
R = Plastic 48-pin 300 mil SSOP (25 mil pitch)  
W = Plastic 32-pin 600 mil DIP (100 mil pitch)  
December 2004  
14  
Document Control #ML0022 rev 1.0  
STK14CA8  
Document Revision History  
Summary  
Revision  
Date  
Publish new datasheet  
0.0  
January 2003  
Add 48 pin SSOP, Modify AutoStore drawing (Figure 2), Update Mode  
Selection Table and Absolute Maximum Ratings, Added G control software  
store  
0.1  
0.2  
May 2003  
Added lead-free lead finish  
September  
2003  
Parameter  
Vcap Min  
Old Value  
10µF  
New Value  
17 µF  
Notes  
tVCCRISE  
NA  
150 µs  
50 mA  
55 mA  
65 mA  
55 mA  
60 mA  
70 mA  
3.0 mA  
3 mA  
New Spec  
ICC1 Max Com.  
ICC1 Max Com.  
ICC1 Max Com.  
ICC1 Max Ind.  
ICC1 Max Ind.  
ICC1 Max Ind.  
ICC2 Max  
35 mA  
40 mA  
50 mA  
35 mA  
45 mA  
55 mA  
1.5 mA  
0.5 mA  
5 ms  
@ 45ns access  
@ 35ns access  
@ 25ns access  
@ 45ns access  
@ 35ns access  
@ 25ns access  
Com. & Ind.  
December  
2004  
1.0  
ICC4 Max  
tHRECALL  
tSTORE  
tRECALL  
Com & Ind.  
20 ms  
12.5 ms  
40µs  
10 ms  
20µs  
tGLQV  
10ns  
12ns  
25 ns device  
SIMTEK STK14CA8 Data Sheet, December 2004  
Copyright 2004, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the express use of Simtek Customers. No part of this datasheet may be reproduced in any other form or  
means without express written permission from Simtek Corporation. The information contained in this publication is believed to be accurate, but  
changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including MERCHANTABILITY  
or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein constitutes a license, grant or  
transfer of any rights to any Simtek patent, copyright, trademark or other proprietary right.  
December 2004  
15  
Document Control #ML0022 rev 1.0  

相关型号:

STK14CA8C-35C35M

nvSRAM (non-volatile SRAM)
INFINEON

STK14CA8_08

128Kx8 Autostore nvSRAM
SIMTEK

STK14CC8-RF25

Non-Volatile SRAM, 512KX8, 25ns, CMOS, PDSO48, 0.300 INCH, ROHS COMPLIANT, PLASTIC, SSOP-48
SIMTEK
SIMTEK

STK14D88

32Kx8 Autostore nvSRAM
SIMTEK

STK14D88

32Kx8 AutoStore nvSRAM
CYPRESS

STK14D88-3N25

Non-Volatile SRAM, 32KX8, 25ns, CMOS, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N35

32KX8 NON-VOLATILE SRAM, 35ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N35I

Non-Volatile SRAM, 32KX8, 35ns, CMOS, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N45

32KX8 NON-VOLATILE SRAM, 45ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N45I

32KX8 NON-VOLATILE SRAM, 45ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3NF25

32KX8 NON-VOLATILE SRAM, 25ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, LEAD FREE, PLASTIC, SOIC-32
SIMTEK