W212HT [CYPRESS]

Processor Specific Clock Generator, 146MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48;
W212HT
型号: W212HT
厂家: CYPRESS    CYPRESS
描述:

Processor Specific Clock Generator, 146MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48

时钟 光电二极管 外围集成电路 晶体
文件: 总15页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
W212  
Frequency Timing Generator for ALI 1641  
CPU to PCI Offset: ........................ 1.0 to 3.0 ns (CPU leads)  
Features  
AGP Outputs Skew:.....................................................250 ps  
• Maximized EMI Suppression using Cypress’s Spread  
Spectrum technology  
• I C™ interface  
• Two copies of CPU Output  
• One copy of IOAPIC Output  
SDRAM Outputs Skew: ...............................................250 ps  
PCI Outputs Skew: ......................................................500 ps  
AGP to PCI Skew: .......................................................... TBD  
2
Table 1. Pin Selectable Frequency (Center Spread)  
• Six copies of PCI Output  
• Two copies of AGP Output  
Input Address  
CPU  
(MHz)  
SDRAM  
(MHz)  
AGP  
(MHz)  
PCI  
(MHz)  
APIC  
(MHz)  
FS3 FS2 FS1 FS0  
• One copy of selectable 48-MHz or 24-MHz Output  
• Thirteen copies of SDRAM Output  
• Two buffered copy of 14.318-MHz reference clock  
• Mode input pin selects optional power management in-  
put control pins (reconfigures pins 19, 20, 21 and 22)  
• Smooth frequency transition upon frequency  
reselection  
• Available in 48-pin SSOP (300 mils)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
66.8  
100.2  
66.8  
100.2  
100.2  
66.8  
66.8  
66.8  
66.8  
66.8  
66.8  
66.8  
66.8  
66.6  
63.3  
63.3  
70.0  
73.3  
61.0  
61.0  
70.0  
73.0  
33.4  
33.4  
33.4  
33.4  
33.4  
33.4  
33.4  
33.4  
31.6  
31.6  
35.0  
36.6  
30.5  
30.5  
35.0  
36.5  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
15.8  
15.8  
17.5  
18.3  
15.3  
15.3  
17.5  
18.3  
133.6  
66.8  
100.2  
133.6  
133.6  
66.8  
100.2  
100.2  
133.6  
95.0  
133.6  
95.0  
Key Specifications  
95.0  
126.6  
140.0  
110.0  
122.0  
91.5  
Supply Voltages: ....................................... V  
V
= 3.3V±5%  
= 2.5V±5%  
DDQ3  
DDQ2  
105.0  
110.0  
122.0  
122.0  
140.0  
146.0  
CPU Cycle to Cycle Jitter: .......................................... 250 ps  
CPU Outputs Skew:.................................................... 175 ps  
CPU to AGP Offset: .................................................. <500 ps  
CPU to SDRAM Offset:............................................. <500 ps  
105.0  
146.0  
Pin Configuration[1]  
Block Diagram  
VDDQ3  
PLL REF  
REF0/FS2  
REF1/FS1  
X1  
X2  
PWD  
XTAL  
PLL1  
REF0/FS2*  
VDDQ2  
IOAPIC  
VDDQ2  
CPU_F  
CPU  
*FS1/REF1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDDQ3  
2
X1  
X2  
GND  
GND  
3
VDDQ2  
CPU_F  
4
5
PWD  
6
7
8
9
CPU  
DIV  
^FS3/AGP0  
GND  
STOP/  
PWD  
CPU  
AGP1  
GND  
VDDQ3  
SDRAM0  
SDRAM1  
SDRAM2  
VDDQ3  
SDRAM3  
SDRAM4  
SDRAM5  
GND  
VDDQ3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
VDDQ3  
*FS0/PCI_F  
PCI1  
9
(AGP_STOP#)  
(CPU_STOP#)  
(PCI_STOP#)  
(PWR_DWN#)  
SDR  
DIV  
SDRAM(_0:8)  
PCI2  
GND  
PWD  
Control  
Unit  
PCI3  
PCI4  
PCI5  
SDRAM9 (AGP_STOP#)  
SDRAM10(PWR_DWN#)  
SDRAM11 (PCI_STOP#)  
SDRAM12 (CPU_STOP#)  
SDRAM6  
SDRAM7  
SDRAM8  
VDDQ3  
GND  
48_24MHz/Mode*  
VDDQ3  
SDATA  
(FS0:3)  
Mode  
VDDQ3  
*(CPU_STOP#)SDRAM12  
*(PCI_STOP#)SDRAM11  
*(PWR_DWN#)SDRAM10  
*(AGP_STOP#))SDRAM9  
GND  
VDDQ3  
AGP1  
SDATA  
SCLK  
AGP  
DIV  
2
STOP/  
PWD  
I C  
SCLOCK  
AGP0/FS3  
÷2  
PCI_F/FS0  
PCI(1:5)  
PWD  
5
Note:  
STOP  
PWD  
1. Signal names with (*) denotes pins have internal 140K pull-up resis-  
tor, though not relied upon for pulling to VDDQ3. Signal names with  
parentheses denotes function is selectable by MODE pin strapping.  
2. Signal names with (^) denotes pins have internal 55K pull-down re-  
sistor, though not relied upon for pulling to VDDQ3. Signal names with  
VDDQ2  
IOAPIC  
VDDQ3  
÷2  
parentheses denotes function is selectable by MODE pin strapping.  
PWD  
÷1/÷2  
PLL2  
48_24MHz/Mode  
I2C is a trademark of Philips Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
April 5, 2000 rev. **  
PRELIMINARY  
W212  
Pin Definitions  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
CPU_F  
44  
43  
11  
O
Free Running CPU Clock: This clock output is not affected by the CPU_STOP#  
control pin. Output voltage swing is controlled by voltage applied to VDDQ2.  
CPU  
O
CPU Clock Output: This output is controlled by the CPU_STOP# control pin. Out-  
put voltage swing is controlled by voltage applied to VDDQ2.  
PCI_F/FS0  
I/O  
Free-running PCI Clock Output and Frequency Selection Bit 0: As an output,  
this pin works in conjunction with PCI1:5. Output voltage swing is controlled by  
voltage applied to VDDQ3.  
When an input, this pin functions as part of the frequency selection address. The  
value of FS0:3 determines the power-up default frequency of device output clocks  
as per Table 1 on page 1.  
PCI1:5  
12, 13, 15, 16,  
17  
O
O
PCI Clock Outputs 1 through 5: Output voltage swing is controlled by voltage  
applied to VDDQ3. Outputs are held LOW if PCI_STOP# is set LOW.  
SDRAM0:8  
30, 31,32, 34,  
35, 36,38, 39,  
40  
SDRAM Clock Outputs: These nine SDRAM clock outputs run synchronous to the  
CPU clock outputs or AGP clock output.  
SDRAM9/  
AGP_STOP#  
22  
I/O  
I/O  
SDRAM Clock Output and AGP Stop: The SDRAM clock outputs run synchronous  
to the CPU clock outputs or AGP clock output. If programmed as inputs (refer to  
MODE pin description), this pin is used for AGP stop control. When input is LOW,  
pin will be at logic zero.  
SDRAM10/  
PWR_DWN#  
21  
SDRAM Clock Output and Power Down: The SDRAM clock outputs run synchro-  
nous to the CPU clock outputs or AGP clock output. If programmed as inputs (refer  
to MODE pin description), this pin is used for power-down control. The asynchro-  
nous active LOW input pin disables the internal clocks with the VCO and crystal  
stopped.  
SDRAM11/  
PCI_STOP#  
20  
19  
27  
I/O  
I/O  
I/O  
SDRAM Clock Output and PCI Stop: The SDRAM clock outputs run synchronous  
to the CPU clock outputs or AGP clock output. If programmed as inputs (refer to  
MODE pin description), this pin is used for PCI stop control. All PCI pins except for  
PCI_F will be at logic zero.  
SDRAM12/  
CPU_STOP#  
SDRAM Clock Output and CPU Stop: The SDRAM clock outputs run synchronous  
to the CPU clock outputs or AGP clock output. If programmed as inputs (refer to  
MODE pin description), this pin is used to stop all CPU clocks except for the CPU_F  
clock. When input is LOW, pin will be at logic zero.  
48_24MHz/  
MODE  
48-MHz or 24-MHz Output, and MODE Control: Selectable clock output that de-  
faults to 48 MHz following device power-up. When an input, this pin functions as a  
select pin for either Desktop Mode (1) or Mobile Mode (0).  
REF0/FS2  
REF1/FS1  
48  
1
I/O  
I/O  
O
Reference Clock Output and Frequency Select Input: 14.318-MHz Reference  
Clock. When configured as an input, this pin is a frequency select pin.  
Reference Clock Output and Frequency Select Input: 14.318-MHz Reference  
Clock. When configured as an input, this pin is a frequency select pin.  
AGP0/FS3,  
AGP1  
7, 8  
46  
3
AGP Output: This output is controlled by the AGP_STOP# pin.  
IOAPIC  
O
I/O APIC Clock Output: The output voltage swing is set by the power connection  
to VDDQ2.  
X1  
I
Crystal Connection or External Reference Frequency Input: This pin has dual  
functions. It can be used as an external 14.318-MHz crystal connection or as an  
external reference frequency input.  
X2  
4
I
I
I
Crystal Connection: An input connection for an external 14.318-MHz crystal. If  
using an external reference, this pin must be left unconnected.  
SDATA  
SCLOCK  
25  
24  
Serial Data Input: Data input for Serial Data Interface. Refer to Serial Data Interface  
section that follows.  
Serial Clock Input: Clock input for Serial Data Interface. Refer to Serial Data In-  
terface section that follows.  
2
PRELIMINARY  
W212  
Pin Definitions (continued)  
Pin  
Pin  
Pin Name  
VDDQ3  
No.  
Type  
Pin Description  
2, 9, 10, 18,  
26, 29, 37  
P
Power Connection: Connected to 3.3V supply.  
VDDQ2  
GND  
45, 47  
P
Power Connection: Connected to 2.5V supply.  
5, 6, 14, 23,  
G
Ground Connection: Connect all ground pins to the common system ground plane.  
28, 33, 41, 42  
W212 Pin Selection Tables  
Table 2. Mode Function  
Pin Function  
MODE  
Pin 19  
Pin 20  
Pin 21  
Pin 22  
SDRAM9  
1
0
SDRAM12  
SDRAM11  
PCI_STOP#  
SDRAM10  
PWR_DWN#  
CPU_STOP#  
AGP_STOP#  
Table 3. Power Management Pin Function  
Signal  
= 0  
= 1  
CPU_STOP#  
PCI_STOP#  
AGP_STOP#  
PWR_DWN#  
CPU = LOW  
PCI1:5 = LOW  
AGP0:1 = LOW  
Active  
Active  
Active  
Active  
All Clock Outputs LOW  
the established logic 0 or 1 condition of each l/O is pin is  
latched. Next the output buffers are enabled, converting all l/O  
pins into operating clock outputs. The 2-ms timer starts when  
Overview  
The W212 was designed specifically to provide all clock sig-  
nals required for a motherboard designed with the ALI 1641  
PII/PIII style chipset.  
V
reaches 2.0V. The input bits can only be reset by turn-  
DDQ3  
ing V  
off and then back on again.  
DDQ3  
Thirteen SDRAM outputs are provided for support of up to 3  
SDRAM DIMM modules. Unused clock outputs can be dis-  
abled through the I C interface to reduce system power con-  
It should be noted that the strapping resistors have no signifi-  
cant effect on clock output signal integrity. The drive imped-  
ance of the clock output is 40(nominal) which is minimally  
2
sumption and more importantly reduce EMI emissions.  
affected by the 10-kstrap to ground or V  
. As with the  
DDQ3  
series termination resistor, the output strapping resistor should  
be placed as close to the l/O pin as possible in order to keep  
the interconnecting trace short. The trace from the resistor to  
Functional Description  
I/O Pin Operation  
ground or V  
should be kept less than two inches in length  
DDQ3  
to prevent system noise coupling during input logic sampling.  
Pins 1, 7, 11, 19, 20, 21, 22, 27, and 48 are dual-purpose l/O  
pins. Upon power-up these pins act as logic inputs, allowing  
the determination of assigned device functions. A short time  
after power-up, the logic state of each pin is latched and the  
pins then become clock outputs. This feature reduces device  
pin count by combining clock outputs with input select pins.  
When the clock outputs are enabled following the 2-ms input  
period, target (normal) output frequency is delivered, assum-  
ing that V  
has stabilized. If V  
has not yet reached full  
DDQ3  
DDQ3  
value, output frequency initially may be below target but will  
increase to target once V voltage has stabilized. In either  
DDQ3  
case, a short output clock cycle may be produced from the  
CPU clock outputs when the outputs are enabled.  
An external 10-kstrappingresistor is connected between  
each l/O pin and ground or V  
. Connection to ground sets  
DDQ3  
a latch to 0,connection to V  
and Figure 2 show two suggested methods for strapping resis-  
sets a latch to 1.Figure 1  
DDQ3  
CPU/ SDRAM/ AGP/ PCI Frequency Selection  
tor connection.  
CPU output frequency is selected with I/O pins 1, 7, 11, and  
48. Refer to Table 2 for CPU/PCI frequency programming in-  
formation. Alternatively, frequency selections are available  
through the serial data interface. Refer to Table 7, Additional  
Frequency Selections through Serial Data Interface Data  
Bytes (Down Spread),on page 8.  
Upon W212 power-up, the first 2 ms of operation is used for  
input logic selection. During this period, the 48_24MHz, REF1,  
PCI_F, AGP0 and SDRAM9:12 clock output buffers are three-  
stated, allowing the output strapping resistor on each l/O pin  
to pull the pin and its associated capacitive clock load to either  
a logic HIGH or logic LOW state. At the end of the 2-ms period,  
3
PRELIMINARY  
W212  
V
DDQ3  
Output Strapping Resistor  
Series Termination Resistor  
10 k  
(Load Option 1)  
Clock Load  
W212  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 kΩ  
(Load Option 0)  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
Jumper Options  
Output Strapping Resistor  
Series Termination Resistor  
V
DDQ3  
10 kΩ  
Clock Load  
W212  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
Q
D
Data  
Latch  
Figure 2. Input Logic Selection Through Jumper Option  
Output Buffer Configuration  
The internal crystal oscillator is used in conjunction with a  
quartz crystal connected to device pins X1 and X2. This forms  
a parallel resonant crystal oscillator circuit. The W212 incor-  
porates the necessary feedback resistor and crystal load ca-  
pacitors. Including typical stray circuit capacitance, the total  
load presented to the crystal is approximately 20 pF. For opti-  
mum frequency accuracy without the addition of external ca-  
pacitors, a parallel-resonant mode crystal specifying a load of  
20 pF should be used. This will typically yield reference fre-  
quency accuracies within ±100 ppm. To achieve similar accu-  
racies with a crystal calling for a greater load, external capac-  
itors must be added such that the total load (internal, external,  
and parasitic capacitors) equals that called for by the crystal.  
Clock Outputs  
All clock outputs are designed to drive serially terminated clock  
lines. The W212 outputs are CMOS-type which provide rail-to-  
rail output swing.  
Crystal Oscillator  
The W212 requires one input reference clock to synthesize all  
output frequencies. The reference clock can be either an ex-  
ternally generated clock signal or the clock generated by the  
internal crystal oscillator. When using an external clock signal,  
pin X1 is used as the clock input and pin X2 is left open. The  
input threshold voltage of pin X1 is (V  
)/2.  
DDQ3  
4
PRELIMINARY  
W212  
chipset. Clock device register changes are normally made  
upon system initialization, if any are required. The interface  
can also be used during system operation for power manage-  
ment functions. Table 4 summarizes the control functions of  
the serial data interface.  
Serial Data Interface  
The W212 features a two-pin, serial data interface that can be  
used to configure internal register settings that control partic-  
ular device functions. Upon power-up, the W212 initializes with  
default register settings, therefore the use of this serial data  
interface is optional. The serial interface is write-only (to the  
clock chip) and is the dedicated function of device pins SDATA  
and SCLOCK. In motherboard applications, SDATA and  
SCLOCK are typically driven by two logic outputs of the  
Operation  
Data is written to the W212 in ten bytes of eight bits each.  
Bytes are written in the order shown in Table 5.  
Table 4. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Clock Output Disable  
Any individual clock output(s) can be disabled. Dis- Unused outputs are disabled to reduce EMI and  
abled outputs are actively held LOW.  
system power. Examples are clock outputs to un-  
used SDRAM DIMM socket or PCI slot.  
CPU Clock Frequency Provides CPU/PCI frequency selections through  
For alternate CPU devices, and power manage-  
ment options. Smooth frequency transition al-  
lows CPU frequency change under normal sys-  
tem operation.  
Selection  
software. Frequency is changed in a smooth and  
controlled fashion.  
Output Three-state  
(Reserved)  
Puts clock output into a high-impedance state.  
Production PCB testing.  
Reserved function for future device revision or pro- No user application. Register bit must be written  
duction device testing. as 0.  
Table 5. Byte Writing Sequence  
Byte Sequence  
Byte Name  
Bit Sequence  
Byte Description  
1
Slave Address 11010010  
Commands the W212 to accept the bits in Data Bytes 06 for internal  
register configuration. Since other devices may exist on the same com-  
mon serial data bus, it is necessary to have a specific slave address for  
each potential receiver. The slave receiver address for the W212 is  
11010010. Register setting will not be made if the Slave Address is not  
correct (or is for an alternate slave receiver).  
2
3
Command  
Code  
Dont Care  
Dont Care  
Unused by the W212, therefore bit values are ignored (Dont Care).  
This byte must be included in the data write sequence to maintain proper  
byte allocation. The Command Code Byte is part of the standard serial  
communication protocol and may be used when writing to another ad-  
dressed slave receiver on the serial data bus.  
Byte Count  
Unused by the W212, therefore bit values are ignored (Dont Care).  
This byte must be included in the data write sequence to maintain proper  
byte allocation. The Byte Count Byte is part of the standard serial com-  
munication protocoland may be used when writing to anotheraddressed  
slave receiver on the serial data bus.  
4
5
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte 5  
Data Byte 6  
Refer to Table 6 The data bits in Data Bytes 07 set internal W212 registers that control  
device operation. The data bits are only accepted when the Address  
Byte bit sequence is 11010010, as noted above. For description of bit  
control functions, refer to Table 6, Data Byte Serial Configuration Map.  
6
7
8
9
10  
5
PRELIMINARY  
W212  
Writing Data Bytes  
7. Table 6 gives the bit formats for registers located in Data  
Bytes 06.  
Each bit in the data bytes controls a particular device function  
except for the reservedbits which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit  
Table 7 details additional frequency selections that are avail-  
able through the serial data interface.  
Table 6. Data Bytes 06 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 0  
7
6
5
4
--  
--  
--  
--  
--  
--  
SEL_3  
Refer to Table 7  
0
0
0
0
0
SEL_2  
--  
SEL_1  
--  
SEL_0  
3
11, 1,48,  
7
FS0:3  
BYT0 /FS#  
Frequency Controlled Frequency Controlled  
by external pins FS 0:2 by SEL _0:3, above  
2-1  
--  
--  
Bit 2 Bit 1 Function  
00  
0
0
1
1
0
1
0
1
±0.5% Center Spread  
0.5% Down Spread  
(Reserved)  
All Outputs Three-stated  
0
27  
48_24#MHz 1 = 48 MHz  
0 = 24 MHz  
1
Data Byte 1  
7
27  
--  
48_24#MHz Clock Output Disable  
Low  
--  
Active  
1
1
1
1
1
1
1
1
6
--  
(Reserved)  
--  
--  
5
--  
--  
--  
(Reserved)  
--  
4
--  
(Reserved)  
--  
--  
3
--  
--  
(Reserved)  
--  
--  
2
--  
--  
(Reserved)  
--  
--  
1
43  
44  
CPU  
CPU_F  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
0
Data Byte 2  
7
11  
--  
PCI_F  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
1
1
1
1
1
1
1
1
6
5
17  
16  
15  
13  
12  
--  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
4
3
2
1
0
Data Byte 3  
7
6
5
4
3
2
31  
32  
34  
35  
36  
38  
SDRAM7  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
1
1
1
1
1
1
6
PRELIMINARY  
W212  
Table 6. Data Bytes 06 Serial Configuration Map (continued)  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
39  
Pin Name  
SDRAM1  
SDRAM0  
Control Function  
Clock Output Disable  
Clock Output Disable  
0
1
Default  
1
0
Low  
Low  
Active  
Active  
1
1
40  
Data Byte 4  
7
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
0
1
1
1
1
1
1
1
6
--  
--  
5
--  
--  
4
19  
20  
21  
22  
30  
SDRAM12 Clock Output Disable  
SDRAM11 Clock Output Disable  
SDRAM10 Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
3
2
1
SDRAM9  
SDRAM8  
Clock Output Disable  
Clock Output Disable  
0
Data Byte 5  
7
5
5
4
3
2
1
0
--  
--  
(Reserved)  
--  
--  
0
0
0
1
1
1
1
1
(Reserved)  
--  
--  
--  
(Reserved)  
--  
--  
48  
1
REF0  
REF1  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
7
AGP0  
AGP1  
IOAPIC  
8
46  
Data Byte 6  
7
6
5
4
3
2
1
0
7
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
SEL_3  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
0
1
1
0
0
Refer to Table 7  
7
PRELIMINARY  
W212  
Table 7. Additional Frequency Selections through Serial Data Interface Data Bytes (Down Spread)  
Input Conditions  
Data Byte 0  
Output Frequency  
CPU  
Clocks  
(MHz)  
SDRAM  
(MHz)  
AGP  
PCI Clocks  
APCI Clocks  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
(MHz)  
(MHz)  
33.3  
33.3  
33.3  
33.3  
33.3  
33.3  
33.3  
33.3  
31.6  
31.6  
35.0  
36.6  
30.5  
30.5  
35.0  
36.5  
(MHz)  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
16.7  
15.8  
15.8  
17.5  
18.3  
15.3  
15.3  
17.5  
18.3  
66.6  
100.0  
66.6  
100.0  
100.0  
66.6  
66.6  
66.6  
66.6  
66.6  
66.6  
66.6  
66.6  
66.6  
63.3  
63.3  
70.0  
73.3  
61.0  
61.0  
70.0  
73.0  
0
0
0
1
0
0
1
0
0
0
1
1
133.3  
66.6  
100.0  
133.3  
133.3  
66.6  
0
1
0
0
0
1
0
1
100.0  
100.0  
133.3  
95.0  
0
1
1
0
0
1
1
1
133.3  
95.0  
1
0
0
0
1
0
0
1
95.0  
126.6  
140.0  
110.0  
122.0  
91.5  
1
0
1
0
105.0  
110.0  
122.0  
122.0  
140.0  
146.0  
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
105.0  
146.0  
1
1
1
1
8
PRELIMINARY  
W212  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
55 to +125  
0 to +70  
Unit  
V
V
, V  
IN  
DDQ3  
STG  
B
T
T
°C  
°C  
°C  
kV  
Ambient Temperature under Bias  
Operating Temperature  
T
A
ESD  
Input ESD Protection  
2 (min.)  
PROT  
3.3V DC Electrical Characteristics: T = 0°C to +70°C, V  
= 3.3V±5%, V  
= 2.5V±5%  
DDQ2  
A
DDQ3  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
3.3V Supply Current  
CPU, CPU_F=133.3 MHz  
Outputs Loaded  
TBD  
TBD  
mA  
mA  
DD  
[3]  
I
2.5V Supply Current  
CPU, CPU_F=133.3 MHz  
DD  
[3]  
Outputs Loaded  
Logic Inputs  
V
V
Input Low Voltage  
Input High Voltage  
0.8  
V
V
IL  
2.0  
IH  
[4]  
I
I
Input Low Current  
20  
5
µA  
µA  
IL  
IH  
[4]  
Input High Current  
Clock Outputs  
V
Output Low Voltage  
I
I
I
= 1 mA  
50  
mV  
V
OL  
OL  
OH  
OH  
V
Output High Voltage  
= 1 mA  
= 1 mA  
3.1  
2.2  
55  
80  
55  
60  
55  
55  
80  
55  
60  
55  
OH  
V
Output High Voltage CPU,CPU_F  
Output Low Current CPU; CPU_F  
V
OH  
I
V
= 1.5V  
75  
110  
75  
105  
155  
105  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
OL  
OL  
SDRAM0:12, AGP0:1  
PCI_F, PCI1:5  
REF0:1  
75  
48/24 MHZ  
75  
105  
125  
175  
125  
110  
125  
I
Output High Current CPU; CPU_F  
V
= 1.5V  
85  
OH  
OH  
SDRAM0:12, AGP0:1  
120  
85  
PCI_F, PCI1:5  
REF0:1  
85  
48/24 MHZ  
85  
Notes:  
3. All clock outputs loaded with maximum lump capacitance test load specified in AC Electrical Characteristics section.  
4. W212 logic inputs have internal pull-up devices (not full CMOS level).  
9
PRELIMINARY  
W212  
3.3V DC Electrical Characteristics: T = 0°C to +70°C, V  
= 3.3V±5%, V  
= 2.5V±5% (continued)  
DDQ2  
A
DDQ3  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Crystal Oscillator  
[5]  
V
X1 Input Threshold Voltage  
V
= 3.3V  
DDQ3  
1.65  
20  
V
TH  
C
Load Capacitance, Imposed on  
pF  
LOAD  
[6]  
External Crystal  
[7]  
C
X1 Input Capacitance  
Pin X2 unconnected  
Except X1 and X2  
30  
pF  
IN,X1  
Pin Capacitance/Inductance  
C
C
Input Pin Capacitance  
Output Pin Capacitance  
Input Pin Inductance  
5
6
7
pF  
pF  
nH  
IN  
OUT  
IN  
L
Serial Input Port  
V
V
Input Low Voltage  
Input High Voltage  
Input Low Current  
Input High Current  
V
V
= 3.3V  
= 3.3V  
0.3V  
DDQ3  
V
V
IL  
DDQ3  
DDQ3  
0.7V  
IH  
DDQ3  
I
I
I
10  
10  
µA  
µA  
mA  
IL  
IH  
Sink Current into SDATA or SCLOCK,  
Open Drain N-Channel Device On  
I
= 0.3(V )  
DDQ3  
6
OL  
OL  
C
C
C
Input Capacitance of SDATA and SCLOCK  
Total Capacitance of SDATA Bus  
10  
pF  
pF  
pF  
IN  
400  
400  
SDATA  
SCLOCK  
Total Capacitance of SCLOCK Bus  
AC Electrical Characteristics  
T = 0°C to +70°C, V  
= 3.3V±5%,V  
= 2.5V± 5% f  
= 14.31818 MHz  
A
DDQ3  
DDQ2  
XTL  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.  
AGP Clock Outputs, AGP0:1 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.6 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Min.  
Typ.  
Max. Unit  
t
f
t
t
t
t
t
t
15  
ns  
MHz  
ns  
P
Frequency, Actual  
High Time  
Determined by PLL divider ratio  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
TBD  
5.2  
5
H
L
Low Time  
ns  
Output Rise Edge Rate Measured from 0.4V to 2.4V  
Output Fall Edge Rate Measured from 2.4V to 0.4V  
1
4
4
V/ns  
V/ns  
%
R
F
1
Duty Cycle  
Measured on rising and falling edge at 1.5V  
45  
55  
250  
D
JC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum difference  
of cycle time between two adjacent cycles.  
ps  
t
f
Output Skew  
Measured on rising edge at 1.5V  
175  
3
ps  
SK  
FrequencyStabilization Assumes full supply voltage reached within 1 ms from  
from Power-up (cold  
start)  
ms  
ST  
power-up. Short cycles exist prior to frequency stabili-  
zation.  
Z
AC Output Impedance Average value during switching transition. Used for de-  
termining series termination value.  
15  
20  
30  
o
Notes:  
5. X1 input threshold voltage (typical) is VDDQ3/2.  
6. The W212 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is 20 pF;  
this includes typical stray capacitance of short PCB traces to crystal.  
7. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
10  
PRELIMINARY  
W212  
CPU Clock Outputs, CPU0:1 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.6 MHz CPU = 100 MHz CPU = 133 MHz  
Test Condition/  
Comments  
Parameter  
Description  
Period  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
t
Measured on rising edge at  
1.5V  
15  
10  
7.5  
ns  
MHz  
ns  
P
f
t
t
t
t
t
t
Frequency,  
Actual  
Determined by PLL divider  
ratio  
TBD  
TBD  
TBD  
High Time  
Duration of clock cycle  
above 2.4V  
5.2  
5
3.0  
2.8  
1
1.87  
1.67  
1
H
L
Low Time  
Duration of clock cycle be-  
low 0.4V  
ns  
Output Rise  
Edge Rate  
Measured from 0.4V to 2.4V  
1
4
4
4
4
4
4
V/ns  
V/ns  
%
R
F
Output Fall Edge Measured from 2.4V to 0.4V  
Rate  
1
1
1
Duty Cycle  
Measured on rising and fall- 45  
ing edge at 1.5V  
55  
250  
45  
55  
250  
45  
55  
250  
D
JC  
Jitter, Cycle-to-  
Cycle  
Measured on rising edge at  
1.5V. Maximumdifferenceof  
cycle time between two ad-  
jacent cycles.  
ps  
t
f
Output Skew  
Frequency  
Measured on rising edge at  
1.5V  
175  
3
175  
3
175  
3
ps  
SK  
Assumes full supply voltage  
ms  
ST  
Stabilizationfrom reached within 1 ms from  
Power-up (cold  
start)  
power-up. Short cycles exist  
prior to frequency stabiliza-  
tion.  
Z
AC Output  
Impedance  
Average value during  
switching transition. Used  
for determining series termi-  
nation value.  
15  
20  
30  
15  
20  
30  
15  
20  
30  
o
11  
PRELIMINARY  
W212  
SDRAM Clock Outputs, SDRAM0:12 (Lump Capacitance Test Load = 30 pF)  
SDRAM =  
SDRAM =  
100 MHz  
SDRAM =  
133 MHz  
66.6 MHz  
Test Condition/  
Parameter  
Description  
Period  
Comments  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
t
f
t
t
t
t
Measured on rising edge at  
1.5V  
15  
10  
7.5  
ns  
MHz  
V/ns  
V/ns  
%
P
Frequency,  
Actual  
Determined by PLL divider  
ratio  
TBD  
TBD  
TBD  
Output Rise Edge Measured from 0.4V to 2.4V  
Rate  
1
1
4
4
1
1
4
4
1
1
4
4
R
Output Fall Edge Measured from 2.4V to 0.4V  
Rate  
F
Duty Cycle  
Measured on rising and fall- 45  
ing edge at 1.5V  
55  
250  
45  
55  
250  
45  
55  
250  
D
Jitter, Cycle-to-  
Cycle  
Measured on rising edge at  
1.5V. Maximum differenceof  
cycle time between two ad-  
jacent cycles.  
ps  
JC  
t
t
Output Skew  
Measured on rising edge at  
1.5V  
100  
100  
100  
ps  
ps  
SK  
CPU to SDRAM  
Clock Skew  
Covers all CPU/SDRAM  
outputs. Measured on rising  
edge at 1.5V.  
500  
3
500  
3
500  
3
SK  
f
Frequency Stabi- Assumes full supply voltage  
lization from Pow- reached within 1 ms from  
er-up (cold start) power-up. Short cycles exist  
prior to frequency stabiliza-  
ms  
ST  
tion.  
Z
AC Output  
Impedance  
Average value during  
switching transition. Used  
for determining series termi-  
nation value.  
10  
15  
20  
10  
15  
20  
10  
15  
20  
o
12  
PRELIMINARY  
W212  
PCI Clock Outputs, PCI0:5 (Lump Capacitance Test Load = 30 pF  
PCI = 33.3 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Min.  
Typ.  
Max.  
Unit  
ns  
t
f
t
t
t
t
t
t
30  
P
Frequency, Actual  
High Time  
Determined by PLL divider ratio  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
TBD  
MHz  
ns  
12  
12  
1
H
L
Low Time  
ns  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
4
4
V/ns  
V/ns  
%
R
F
Measured from 2.4V to 0.4V  
1
Measured on rising and falling edge at 1.5V  
45  
55  
250  
D
JC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum  
ps  
difference of cycle time between two adjacent cycles.  
t
t
Output Skew  
Measured on rising edge at 1.5V  
250  
3
ps  
ns  
SK  
CPU to PCI Clock Skew Covers all CPU/PCI outputs. Measured on rising  
edge at 1.5V. CPU leads PCI output.  
1
O
f
Frequency Stabilization  
from Power-up (cold  
start)  
Assumes full supply voltage reached within 1 ms  
from power-up. Short cycles exist prior to frequency  
stabilization.  
3
ms  
ST  
Z
AC Output Impedance  
Average value during switching transition. Used for  
determining series termination value.  
20  
o
REF Clock Output (Lump Capacitance Test Load = 45 pF)  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max. Unit  
f
14.31818  
MHz  
t
t
t
f
0.5  
0.5  
40  
2
2
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
60  
1.5  
D
FrequencyStabilizationfrom Assumes full supply voltage reached within  
ms  
ST  
Power-up (cold start)  
1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
30  
o
13  
PRELIMINARY  
W212  
48-/24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Frequency, Actual  
Deviation from 48 MHz  
PLL Ratio  
Test Condition/Comments  
Determined by PLL divider ratio (see m/n below)  
(48.008 48)/48  
Min.  
Typ.  
Max. Unit  
f
48.008/24.004  
+167  
MHz  
ppm  
f
D
m/n  
(14.31818 MHz x 57/17 = 48.008 MHz)  
Measured from 0.4V to 2.4V  
57/17, 54/34  
t
t
t
f
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
55  
3
D
Frequency Stabilization  
Assumes full supply voltage reached within 1 ms  
ms  
ST  
from Power-up (cold start) from power-up. Short cycles exist prior to fre-  
quency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
30  
o
24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
SCLOCK Frequency  
Start Hold Time  
Test Condition/Comments  
Normal Mode  
Min.  
0
Typ.  
Max. Unit  
f
100  
kHz  
µs  
SCLOCK  
STHD  
LOW  
t
t
t
t
t
4.0  
4.7  
4.0  
250  
0
µs  
SCLOCK Low Time  
SCLOCK High Time  
Data Set-up Time  
Data Hold Time  
µs  
HIGH  
DSU  
ns  
(Transmitter should provide a 300-ns hold time to  
ensure proper timing at the receiver.)  
ns  
DHD  
t
t
Rise Time, SDATA and  
SCLOCK  
From 0.3V  
to 0.7V  
1000  
300  
ns  
ns  
R
F
DDQ3  
DDQ3  
Fall Time, SDATA and  
SCLOCK  
From 0.7V  
to 0.3V  
DDQ3  
DDQ3  
µs  
µs  
t
t
Stop Setup Time  
4.0  
4.7  
STSU  
Bus Free Time between  
Stop and Start Condition  
SPF  
ns  
t
Allowable Noise Spike  
Pulse Width  
50  
SP  
Ordering Information  
Package  
Name  
Ordering Code  
Package Type  
W212  
H
48-pin SSOP (300 mils)  
Document #: 38-00915-**  
14  
PRELIMINARY  
W212  
Package Diagram  
48-Pin Small Shrink Outline Package (SSOP, 300 mils)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.625  
Body Height: 0.102  
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W2132

A Major Advance in RTD Technology
ETC

W2142

A Major Advance in RTD Technology
ETC

W215

Vitreous Enamelled Wirewound Resistors
TTELEC

W2152

A Major Advance in RTD Technology
ETC

W215B

Notebook PC System Frequency Generator for K6 Processors
CYPRESS

W215BX

Processor Specific Clock Generator, 100MHz, CMOS, PDSO48, 6.10 MM, TSSOP-48
CYPRESS

W216

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
CYPRESS

W218

Clocks and Buffers
ETC

W218H

Processor Specific Clock Generator, 133MHz, CMOS, PDSO56, 0.300 INCH, SSOP-56
CYPRESS

W219

Clocks and Buffers
ETC

W219B

Frequency Generator for Integrated Core Logic with 133MHz FSB
SPECTRALINEAR

W219B

Frequency Generator for Integrated Core Logic with 133-MHz FSB
CYPRESS