FAN302HLMY_F117 [FAIRCHILD]

Battery Charge Controller;
FAN302HLMY_F117
型号: FAN302HLMY_F117
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Battery Charge Controller

电池
文件: 总19页 (文件大小:939K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2013  
FAN302HLMY_F117  
PWM Controller for Low Standby Power Battery-  
Charger Applications — mWSaver™ Technology  
Description  
Features  
The FAN302HLMY_F117 advanced PWM controller  
significantly simplifies isolated power supply design that  
requires CC regulation of the output. The output current  
is precisely estimated with information in the primary  
side of the transformer and controlled with an internal  
compensation circuit. This removes the output current  
sensing loss and eliminates all external Control Circuitry  
(CC). The Green-Mode function, with an extremely low  
operating current (200 µA) in Burst Mode, maximizes  
the light-load efficiency, enabling conformance to  
worldwide Standby Mode efficiency guidelines.  
.
mWSaver™ Technology Provides Industry’s  
Best-in-Class Standby Power  
- Ultra Low Power Consumption at No Load  
(<10 mW at 230 VAC  
)
- Proprietary 500V High-Voltage JFET Startup  
Reduces Startup Resistor Loss  
- Low Operation Current in Burst Mode:  
350 µA Maximum  
.
.
Constant-Current (CC) Control without Secondary-  
Feedback Circuitry  
Integrated protections include two-level pulse-by-pulse  
current limit, Over-Voltage Protection (OVP), brownout  
protection, and Over-Temperature Protection (OTP).  
Fixed PWM Frequency at 85kHz with Frequency  
Hopping to Reduce EMI  
Compared with a conventional approach using an  
external control circuit in the secondary side for CC  
regulation, the FAN302HLMY_F117 can reduce total  
cost, component count, size, and weight; while  
simultaneously increasing efficiency, productivity, and  
system reliability.  
.
.
.
High-Voltage Startup  
Low Operating Current: 3.5 mA  
Peak-Current-Mode Control with Slope  
Compensation  
.
.
.
.
.
.
.
Cycle-by-Cycle Current Limiting  
Maximum  
Typical  
VO  
VDD Over-Voltage Protection (Auto-Restart)  
VS Over-Voltage Protection (Latch Mode)  
VDD Under-Voltage Lockout (UVLO)  
Minimum  
Gate Output Maximum Voltage Clamped at 15 V  
Fixed Over-Temperature Protection (Latch Mode)  
Available in an 8-Lead SOIC Package  
Applications  
IO  
.
Battery Chargers for Cellular Phones, Cordless  
Phones, PDAs, Digital Cameras, and Power Tools  
Figure 1. Typical Output V-I Characteristic  
.
Replaces Linear Regulators and RCC SMPS  
Ordering Information  
Operating  
Temperature Range  
Packing  
Method  
Part Number  
Package  
8-Lead, Small Outline Package (SOIC),  
JEDEC MS-012, .150-Inch Narrow Body  
FAN302HLMY_F117  
Tape & Reel  
-40°C to +105°C  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
Application Diagram  
Figure 2. Typical Application  
Internal Block Diagram  
Figure 3. Functional Block Diagram  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
2
Marking Information  
F- Fairchild Logo  
Z: Assembly Plant Code  
X: Year Code  
Y: Week Code  
TT: Die Run Code  
T: M=SOIC  
P: Y= Green Package  
M: Manufacture Flow Code  
Figure 4.Top Mark  
Pin Configuration  
CS  
GATE  
VDD  
VS  
HV  
NC  
FB  
GND  
Figure 5. Pin Assignments  
Pin Definitions  
Pin #  
Name  
Description  
Current Sense. This pin connects a current-sense resistor to sense the MOSFET current for  
Peak-Current-Mode control for output regulation. The current-sense information is also used to  
estimate the output current for CC regulation.  
1
CS  
PWM Signal Output. This pin has an internal totem-pole output driver to drive the power  
MOSFET. It is internally clamped at 15 V.  
2
3
GATE  
VDD  
Power Supply. IC operating current and MOSFET driving current are supplied through this pin.  
This pin is typically connected to an external VDD capacitor.  
Voltage Sense. This pin detects the output voltage information and diode current discharge  
time based on the voltage of the auxiliary winding.  
4
5
6
VS  
GND  
FB  
Ground  
Feedback. Typically, an opto-coupler is connected to this pin to provide feedback information to  
the internal PWM comparator. This feedback is used to control the duty cycle in CV regulation.  
7
8
NC  
HV  
No Connect  
High Voltage. This pin connects to the DC bus for high-voltage startup.  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
VHV  
Parameter  
Min.  
Max.  
500  
30  
Unit  
V
HV Pin Input Voltage  
DC Supply Voltage(1,2)  
VS Pin Input Voltage  
CS Pin Input Voltage  
FB Pin Input Voltage  
VVDD  
VVS  
V
-0.3  
-0.3  
-0.3  
7.0  
V
VCS  
7.0  
V
VFB  
7.0  
V
PD  
660  
150  
mW  
Power Dissipation (TA=25°C)  
θJA  
Thermal Resistance (Junction-to-Air)  
Thermal Resistance (Junction-to-Case)  
Operating Junction Temperature  
°C/W  
°C/W  
°C  
θJC  
TJ  
39  
-40  
-55  
+150  
+150  
+260  
TSTG  
TL  
Storage Temperature Range  
°C  
Lead Temperature, (Wave Soldering or IR, 10 Seconds)  
°C  
Human Body Model,  
JEDEC:JESD22_A114  
5000  
1500  
(Except HV Pin)(3)  
Electrostatic Discharge Capability  
ESD  
V
Charged Device Model,  
JEDEC:JESD22_C101  
(Except HV Pin)(3)  
Notes:  
1. All voltage values, except differential voltages, are given with respect to GND pin.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
3. ESD ratings including the HV pin: HBM=400 V, CDM=750 V.  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
4
Electrical Characteristics  
VDD=15 V and TA=25°C unless noted.  
Symbol  
HV Section  
VHV-MIN  
Parameter  
Condition  
Min. Typ. Max. Unit  
Minimum Startup Voltage on HV Pin  
Supply Current Drawn from HV Pin  
50  
V
V
HV=100 V, VDD=0 V,  
Controller Off  
IHV  
0.8  
1.5  
0.8  
5.0  
mA  
VHV=500 V, VDD=15 V  
(Controller On with Auxiliary  
Supply)  
IHV-LC  
Leakage Current Drawn from HV Pin  
3.0  
μA  
VDD Section  
Limited by VDD Over-Voltage  
Protection (OVP)  
VOP  
Continuous Operation Voltage  
25  
V
VDD-ON  
VDD-OFF  
VDD-LH  
IDD-ST  
Turn-On Threshold Voltage  
Turn-Off Threshold Voltage  
VDD Rising  
VDD Falling  
15  
16  
5.0  
17  
V
V
4.7  
5.3  
Threshold Voltage for Latch-Off Release VDD Falling  
2.5  
V
Startup Current  
VDD=VDD-ON – 0.16 V  
400  
3.5  
450  
4.0  
μA  
mA  
μA  
V
IDD-OP  
Operating Supply Current  
VDD=18 V, f=fOSC, CGATE=1 nF  
VDD=8 V, CGATE=1 nF  
IDD-BURST Burst-Mode Operating Supply Current  
200  
26.5  
350  
28.0  
VDD-OVP  
VDD Over-Voltage Protection Level  
25.0  
82  
VDD Over-Voltage Protection Debounce  
Time  
tD-VDDOVP  
f=85 kHz  
100  
180  
μs  
Oscillator Section  
Center Frequency VCS=5 V, VS=2.5 V, VFB=5 V  
Hopping Range  
85  
88  
fOSC  
Frequency  
kHz  
±3  
Minimum Frequency for Continuous  
fOSC-CM-MIN  
Conduction Mode (CCM) Prevention  
13  
23  
18  
26  
23  
29  
kHz  
kHz  
Circuit(4)  
Minimum Frequency in Constant Current  
(CC) Regulation  
fOSC-CCM  
VCS=5 V, VS=0 V  
Feedback Input Section  
Internal Voltage Scale-Down Ratio of FB  
AV  
1/3.5 1/3.0 1/2.5 V/V  
Pin(5)  
ZFB  
FB Pin Input Impedance  
38  
42  
44  
kΩ  
VFB-OPEN FB Pin Pull-Up Voltage  
FB Threshold to Disable Gate Drive in  
FB Pin Open  
5.3  
V
VFB-L  
VFB Falling,VCS=5 V, VS=0 V  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
V
V
Burst Mode  
FB Threshold to Enable Gate Drive in  
Burst Mode  
VFB-H  
VFB Rising,VCS=5 V, VS=0 V  
Over-Temperature Protection Section  
Threshold for Over-Temperature  
Protection (OVP)  
TOTP  
+130 +140 +150  
°C  
Continued on the following page…  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
5
Electrical Characteristics (Continued)  
VDD=15 V and TA=25°C unless noted.  
Symbol  
Parameter  
Condition  
Min. Typ. Max. Unit  
Voltage-Sense Section  
ITC  
Bias Current  
VS Sampling Voltage to Switch to the  
VCS=5 V  
8.75 10.00 11.25  
0.55  
μA  
VVS-CM-MIN Second Pulse-by-Pulse Current Limit in  
V
Power Limit Mode(6)  
VS Sampling Voltage to Switch Back to the  
VVS-CM-MAX  
0.75  
V
V
V
Normal Pulse-by-Pulse Current Limit(6)  
VS Sampling Voltage to Start Frequency  
Decreasing in CC Mode  
VSN-CC  
V
CS=5 V, fS1=fOSC-2 kHz  
CS=5 V, fS2=fOSC-CCM  
2.05  
0.45  
30  
2.15 2.25  
0.70 0.95  
Vs Sampling Voltage to End Frequency  
Decreasing in CC Mode  
V
VSG-CC  
+2 kHz  
G-CC= (fS1-fS2) / (VSN-CC  
VSG-CC  
Frequency Decreasing Slope of CC  
Regulation  
S
-
kHz/V  
mV  
V
SG-CC  
38  
46  
)
VVS-OFFSET ZCD Comparator Internal Offset Voltage(6)  
200  
Output Over-Voltage Protection with VS  
Sampling Voltage  
VVS-OVP  
2.70  
2.80 2.85  
8
Output Over-Voltage Protection Debounce  
tVS-OVP  
Time  
fOSC=85 kHz  
cycles  
Current-Sense Section  
Internal Reference Voltage for CC  
Regulation  
VVR  
2.475 2.500 2.525  
2.405 2.430 2.455  
V
V
Variation Test Voltage on CS Pin for CC  
Output (Non-Inverting Input of Error  
Amplifier for CC Regulation)  
VCCR  
VCS=0.47 V  
VSTH  
VSTH-VA  
tPD  
Normal Current Limit Threshold Voltage  
Second Current Limit Threshold Voltage,  
0.8  
V
V
VVS=0.3 V  
0.30  
Power Limit Mode (VS<VVS-CM-MAX  
)
GATE Output Turn-Off Delay  
100  
530  
150  
630  
200  
ns  
ns  
VCS=5 V, VVS=2.5 V,  
tMIN  
Minimum On Time  
430  
100  
VFB=5 V (Test Mode)  
tLEB  
Leading-Edge Blanking Time(6)  
Slope Compensation(6)  
150  
0.3  
ns  
V
VSLOPE  
Maximum Duty Cycle  
GATE Section  
DMAX  
Maximum Duty Cycle  
Output Voltage Low  
64  
0
67  
70  
1.5  
8
%
V
VGATE-L  
VDD=25 V, IO=10 mA  
VDD=8 V, IO=1 mA  
VGATE-H Output Voltage High  
VGATE-H Output Voltage High  
5
V
VDD=5.5 V, IO=1 mA  
VDD=15 V, CGATE=1 nF  
VDD=15 V, CGATE=1 nF  
4.0  
100  
30  
5.5  
180  
70  
V
tr  
tf  
Rising Time  
Falling Time  
140  
50  
ns  
ns  
VGATE-  
CLAMP  
Gate Output Clamping Voltage  
VDD=25 V  
13  
15  
17  
V
Notes:  
4. fOSC-CM-MIN occurs when the power unit enters CCM operation.  
5. AV is a scale-down ratio of the internal voltage divider of the FB pin.  
6. Guaranteed by design; not production tested.  
© 2012 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN302HLMY_F117 • Rev. 1.0.2  
6
Typical Performance Characteristics  
16.8  
16.5  
16.2  
15.9  
15.6  
15.3  
15.0  
5.04  
5.01  
4.98  
4.95  
4.92  
4.89  
4.86  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 6. VDD Turn-On Threshold Voltage (VDD-ON  
)
Figure 7. VDD Turn-Off Threshold Voltage (VDD-OFF  
)
vs. Temperature  
vs. Temperature  
4.0  
3.7  
3.4  
3.1  
2.8  
2.5  
2.2  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 8. Operating Current (IDD-OP) vs. Temperature  
Figure 9. Burst Mode Operating Current (IDD-BURST  
vs. Temperature  
)
28  
27  
26  
25  
24  
23  
22  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 10. CC Regulation Minimum Frequency  
(fOSC-CCM) vs. Temperature  
Figure 11. Enter Zero-Duty Cycle of FB Voltage (VFB-L  
vs. Temperature  
)
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
7
Typical Performance Characteristics  
1.80  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 12. Leave Zero Duty Cycle of FB Voltage  
(VFB-H) vs. Temperature  
Figure 13. VS Over-Voltage Protection (VVS-OVP  
vs. Temperature  
)
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.38  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 14. Reference Voltage of CS (VVR  
)
Figure 15.Variation Voltage on CS Pin for Constant-  
Current Regulation (VCCR) vs. Temperature  
vs. Temperature  
2.18  
2.17  
2.16  
2.15  
2.14  
2.13  
2.12  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 16. Starting Voltage of Frequency Decreasing Figure 17. Ending Voltage of Frequency Decreasing of  
of CC Regulation (VSN-CC) vs. Temperature CC Regulation (VSG-CC) vs. Temperature  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
8
Typical Performance Characteristics  
0.33  
0.32  
0.31  
0.3  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.76  
0.75  
0.29  
0.28  
0.27  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 18. Threshold Voltage for Current Limit (VSTH  
)
Figure 19. Threshold Voltage for Current Limit at  
Power Mode (VSTH-VA) vs. Temperature  
vs. Temperature  
590  
580  
570  
560  
550  
540  
530  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Figure 20. Minimum On Time (tMIN) vs. Temperature  
Figure 21.Leading-Edge Blanking Time (tLEB  
)
vs. Temperature  
67.6  
67.4  
67.2  
67.0  
66.8  
66.6  
66.4  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
-40  
-30  
-15  
0
25  
50  
75  
85  
100  
125  
Temperature (ºC)  
Temperature (ºC)  
Figure 22. Maximum Duty Cycle (DCYMAX  
vs. Temperature  
)
Figure 23. Gate Output Clamp Voltage (VGATE-CLAMP  
vs. Temperature  
)
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
9
Operational Description  
Basic Control Principle  
Figure 24 shows the internal PWM control circuit. The  
constant voltage (CV) regulation is implemented in the  
same way as the conventional isolated power supply,  
where the output voltage is sensed using a voltage  
divider and compared with the internal 2.5 V reference  
of  
a
shunt regulator (KA431) to generate  
a
compensation signal. The compensation signal is  
transferred to the primary side using an opto-coupler  
and scaled down through attenuator Av, generating the  
VEA.V signal. Then the error signal VEA.V is applied to the  
PWM comparator (PWM.V) to determine the duty cycle.  
Meanwhile, the CC regulation is implemented internally  
without directly sensing the output current. The output  
current estimator reconstructs output current information  
(VCCR) using the transformer primary-side current and  
diode current discharge time. Then VCCR is compared  
with a reference voltage (2.5 V) by an internal error  
amplifier, generating the VEA.I signal to determine the  
duty cycle.  
Figure 25. PWM Operation for CC and CV  
Output Current Estimation  
Figure 26 shows the key waveform of a flyback  
converter operating in Discontinuous Conduction Mode  
(DCM), where the secondary-side diode current reaches  
zero before the next switching cycle begins. Since the  
output current estimator is designed for DCM operation,  
the power stage should be designed such that DCM is  
guaranteed for the entire operating range. The output  
current is obtained by averaging the triangular output  
diode current area over a switching cycle:  
The two error signals, VEA.I and VEA.V, are compared with  
an internal sawtooth waveform (VSAW  
) by PWM  
comparators PWM.I and PWM.V to determine the duty  
cycle. As shown in Figure 25, the outputs of two  
comparators (PWM.I and PWM.V) are combined with an  
OR gate and used as a reset signal of flip-flop to  
determine the MOSFET turn-off instant. The lower  
signal, VEA.V or VEA.I, determines the duty cycle, as  
shown in Figure 25. During CV regulation, VEA.V  
determines the duty cycle while VEA.I is saturated to  
HIGH. During CC regulation, VEA.I determines the duty  
cycle while VEA.V is saturated to HIGH.  
NP tDIS  
IO =< ID >AVG = IPK  
(1)  
NS 2tS  
where IPK is the peak value of the primary-side  
current; NP and NS are the number of turns of  
transformer  
primary-side  
and  
secondary-side,  
respectively; tDIS is the diode current discharge time;  
and tS is the switching period.  
With a given current sensing resistor, the output current  
can be programmed as:  
1.25  
NP  
IO  
=
(2)  
K RSENSE NS  
where K is the design parameter of IC, which is 10.5.  
The peak value of primary-side current is obtained by an  
internal peak detection circuit, while diode current  
discharge time is obtained by detecting the diode  
current zero-crossing instant. Since the diode current  
cannot be sensed directly with primary-side control,  
Zero Crossing Detection (ZCD) is accomplished  
indirectly by monitoring the auxiliary winding voltage.  
When the diode current reaches zero, the transformer  
winding voltage begins to drop by the resonance  
between the MOSFET output capacitance and the  
transformer magnetizing inductance. To detect the  
starting instant of the resonance, the VS is sampled at  
85% of diode current discharge time of the previous  
switching cycle, then compared with the instantaneous  
VS voltage. When instantaneous VS drops below the  
sampled voltage by more than 200 mV, ZCD of diode  
current is obtained, as shown in Figure 27.  
Figure 24. Internal PWM Control Circuit  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
10  
I PK  
NP  
NS  
IPK  
< ID >AVG = IO  
Figure 26. Key Waveforms of DCM Flyback  
Converter  
Figure 28. tDIS Variation in CC Mode  
Figure 29. Frequency Reduction with VSH  
Switching Freq. (kHz)  
Figure 27. Detailed Waveform for ZCD  
Frequency Reduction in CC Mode  
An important design consideration is that the  
transformer guarantee DCM operation across the whole  
range since the output current is properly estimated only  
in DCM operation. As can be seen in Figure 28, the  
discharge time (tDIS) of the diode current increases as  
the output voltage decreases in CC Mode. The  
converter tends to go into CCM as output voltage drops  
in CC Mode when operating at the fixed switching  
frequency. To prevent this CCM operation while  
maintaining good output current estimation in DCM,  
FAN302HLMY_F117 decreases switching frequency as  
output voltage drops, as shown in Figure 28 and Figure  
29. FAN302HLMY_F117 indirectly monitors the output  
voltage by the sample-and-hold voltage (VSH) of VS,  
which is taken at 85% of diode current discharge time of  
the previous switching cycle, as shown in Figure 27.  
Figure 30 shows how the frequency reduces as the  
sample-and-hold voltage of VS decreases.  
2kHz  
85kHz  
83kHz  
Δf  
ΔV  
= SGCC  
2kHz  
28kHz  
26kHz  
VSH  
VSN-CC  
VSG-CC  
Figure 30. Frequency Reduction Curve in  
CC Regulation  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
11  
CCM Prevention Function  
Even if the power supply is designed to operate in DCM,  
it can go into CCM when there is not enough design  
margin to cover all the circuit parameter variations and  
operating conditions. FAN302HLMY_F117 has a CCM-  
prevention function that delays the next cycle turn-on of  
MOSFET until ZCD on the VS pin is obtained, as shown  
in Figure 31. To guarantee stable DCM operation,  
FAN302HLMY_F117 prohibits the turn-on of the next  
switching cycle for 10% of its switching period after ZCD  
is obtained. In Figure 31, the first switching cycle has  
ZCD before 90% of its original switching period and,  
therefore, the turn-on instant of the next cycle is  
determined without being affected by the ZCD instant.  
The second switching cycle does not have ZCD by the  
end of the original switching period; thus, the turn-on of  
the third switching cycle occurs after ZCD is obtained,  
with a delay of 10% of its original switching period. The  
minimum switching frequency that CCM prevention  
function allows is 18 kHz (fOSC-CM-MIN). If the ZCD is not  
given until the end of maximum switching period of  
55.6 µs (1/18 kHz), the converter can go into CCM  
operation, losing output regulation.  
Figure 32. Power Limit Mode Operation  
High-Voltage Startup  
Figure 33 shows the high-voltage (HV) startup circuit.  
Internally, JFET is used to implement the high-voltage  
current source, whose characteristics are shown in  
Figure 34. Technically, the HV pin can be directly  
connected to the DC link (VDL). To improve reliability  
and surge immunity; it is typical to use about a 100 kꢀ  
resistor between the HV pin and the DC link. The actual  
HV current with given DC link voltage and startup  
resistor is determined by the intersection of V-I  
characteristics line and load line, as shown in Figure 34.  
During startup, the internal startup circuit is enabled and  
the DC link supplies the current, IHV, to charge the hold-  
up capacitor, CVDD, through RSTART. When the VDD  
voltage reaches VDD-ON, the internal HV startup circuit is  
disabled and the IC starts PWM switching. Once the HV  
startup circuit is disabled, the energy stored in CVDD  
should supply the IC operating current until the  
transformer auxiliary winding voltage reaches the  
nominal value. Therefore, CVDD should be designed to  
prevent VDD from dropping to VDD-OFF before the auxiliary  
winding builds up enough voltage to supply VDD  
Capacitance tolerance is an important factor to consider  
for CDD selection. Connecting 22 μF capacitor  
.
a
between the VDD and GND pins is recommended to  
ensure system stability across the wide operation  
temperature range.  
Figure 31. CCM Prevention Function  
Power Limit Mode  
When the sampled voltage of VS (VSH) drops below VS-  
(0.55 V), FAN302HLMY_F117 enters constant  
CM-MIN  
Power Limit Mode, where the primary-side current-limit  
voltage (VCS) changes from VSTH (0.8 V) to VSTH-VA  
(0.3 V) to avoid VS sampling and ZCD, as shown in  
Figure 32. Once VS sampling voltage is higher than VS-  
(0.75 V), the VCS returns to VSTH. This mode  
CM-MAX  
prevents the power supply from going into CCM and  
losing output regulation when the output voltage is too  
low. This effectively protects the power supply when  
there is a fault condition in the load, such as output  
short or overload. This mode also implements soft-start  
by limiting the transformer current until VS sampling  
voltage reaches VS-CM-MAX (0.75 V).  
Figure 33. HV Startup Circuit  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
12  
VDL VHV  
IHV  
=
RHV  
VDL  
RHV  
Figure 36. Burst-Mode Operation  
VDL  
Figure 34.V-I Characteristics of HV Pin  
Slope Compensation  
The sensed voltage across the current-sense resistor is  
used for Current-Mode control and pulse-by-pulse  
Frequency Hopping  
EMI reduction is accomplished by frequency hopping,  
which spreads the energy over a wider frequency range  
than the bandwidth of the EMI test equipment. The  
frequency-hopping circuit changes the switching  
frequency progressively between 82 kHz and 88 kHz  
with a period of tp, as shown in Figure 35.  
current limiting.  
A synchronized ramp signal with  
positive slope is added to the current sense information  
at each switching cycle, improving noise immunity of  
Current-Mode control.  
Protections  
The self-protection functions include VDD Over-Voltage  
Protection (OVP), internal Over-Temperature Protection  
(OTP), VS Over-Voltage Protection (OVP), and  
brownout protection. VDD OVP and brownout protection  
are implemented as Auto-Restart Mode, while the VS  
OVP and internal OTP are implemented as Latch Mode.  
When an Auto-Restart Mode protection is triggered,  
switching is terminated and the MOSFET remains off,  
causing VDD to drop. When VDD drops to the VDD turn-  
off voltage of 5 V; the protection is reset, the internal  
startup circuit is enabled, and the supply current drawn  
from the HV pin charges the hold-up capacitor. When  
VDD reaches the turn-on voltage of 16 V, normal  
operation resumes. In this manner, auto-restart  
alternately enables and disables MOSFET switching  
until the abnormal condition is eliminated, as shown in  
Figure 37.  
When a Latch Mode protection is triggered, PWM  
switching is terminated and the MOSFET remains off,  
causing VDD to drop. When VDD drops to the VDD turn-off  
voltage of 5 V, the internal startup circuit is enabled  
without resetting the protection and the supply current  
drawn from HV pin charges the hold-up capacitor. Since  
the protection is not reset, the IC does not resume PWM  
switching even when VDD reaches the turn-on voltage of  
16 V, disabling HV startup circuit. Then VDD drops down  
to 5 V. In this manner, the Latch Mode protection  
alternately charges and discharges VDD until there is no  
more energy in the DC link capacitor. The protection is  
reset when VDD drops to 2.5 V, which is allowed only  
after the power supply is unplugged from the AC line, as  
shown in Figure 38.  
Figure 35. Frequency Hopping  
Burst-Mode Operation  
The power supply enters Burst Mode at no-load or  
extremely light-load conditions. As shown in Figure 36,  
when VFB drops below VFBL; the PWM output shuts off  
and the output voltage drops at a rate dependent on  
load current. This causes the feedback voltage to rise.  
Once VFB exceeds VFBH, the internal circuit starts to  
provide switching pulse. The feedback voltage then falls  
and the process repeats. Burst Mode operation  
alternately enables and disables switching of the  
MOSFET, reducing the switching losses in Standby  
Mode. Once FAN302HLMY_F117 enters Burst Mode,  
the operating current is reduced from 3.5 mA to 200 μA  
to minimize power consumption.  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
13  
Input Voltage Sensing  
Power On  
The FAN302HL indirectly senses input voltage using the  
VS pin current while the MOSFET is turned on. Since  
the VS pin voltage is clamped at 0.7 V when the  
MOSFET is turned on, the current flowing out of the VS  
pin is approximately proportional to the input voltage as:  
VDS  
NA  
(
VDL + 0.7)  
Fault  
Occurs  
VDD  
NP  
0.7 NA VDL  
+ ≅  
(3)  
IVS.ON  
=
VDD-OVP  
RVS1  
RVS 2 NP RVS1  
VDD-ON  
Fault  
Removed  
VDD-OFF  
Operating Current  
IDD-OP  
IDD-ST  
Figure 37. Auto-Restart Mode Operation  
Figure 39. Vs Pin Current Sensing  
FAN302HL modulates the minimum on time of the  
MOSFET such that it reduces as input voltage  
increases, as shown Figure 40. This allows smaller  
minimum on time for high line condition, ensuring Burst  
Mode operation occurs at almost same power level  
regardless of line voltage variation. The minimum on  
time is related to the bundle frequency of Burst Mode.  
When selecting RVS1 and RVS2, 150 µA is the VS current  
level to consider seriously. If the VS current is lower  
than 150 µA, ton_min won’t be larger.  
tON.MIN (µs)  
Figure 38. Latch-Mode Operation  
Over-Temperature Protection (OTP)  
The temperature-sensing circuit shuts down PWM  
output if the junction temperature exceeds 140°C (tOTP).  
150 µA, Minimum value  
VDD Over-Voltage Protection  
VDD over-voltage protection prevents IC damage from  
over-voltage exceeding the IC voltage rating. When the  
VDD voltage exceeds 26.5 V due to an abnormal  
condition, the protection is triggered. This protection is  
typically caused by open circuit in the secondary-side  
feedback network.  
IVS (µA)  
Figure 40. Minimum On Time vs. VS Pin Current  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
14  
VS Over-Voltage Protection (OVP)  
VS over-voltage protection prevents damage due to  
output over-voltage conditions. Figure 41 shows the  
VS OVP protection method. The OVP is triggered  
when the VS sampling voltage is above 2.8 V (VVS_OVP  
)
for longer than eight switching cycles. Then PWM  
pulses are disabled and FAN302HL enters Latch  
Mode. The protection is reset and normal operation  
resumes when VDD drops below VDD-LH. VS over-  
voltage conditions are usually caused by an open  
circuit in the secondary-side feedback network or  
abnormal behavior by the VS pin divider resistor.  
Figure 41. VS OVP Protection  
Leading-Edge Blanking (LEB)  
When the secondary-side feedback circuit is opened,  
no current flows through the opto-coupler diode, which  
pulls up the feedback voltage, commanding maximum  
power be delivered to the load. Since more power than  
the load demand is delivered, the output voltage rises  
until the OVP is triggered.  
Each time the power MOSFET is switched on, a turn-on  
spike occurs at the sense resistor. To avoid premature  
termination of the switching pulse, a 150 ns leading-  
edge blanking time is built in. Conventional RC filtering  
can therefore be omitted. During this blanking period,  
the current-limit comparator is disabled and it cannot  
switch off the gate driver.  
The worst-case OVP trip point at no load is calculated as:  
2  
Noise Immunity  
NS R +R  
2ESURPLUS  
VOOVP  
=
V
+
VS1  
VS 2   
Noise from the current sense or the control signal can  
cause significant pulse-width jitter. While slope  
compensation helps alleviate these problems, further  
precautions should still be taken. Good placement and  
layout practices should be followed. Avoid long PCB  
traces and component leads. Locate bypass filter  
components near the PWM IC.  
(4)  
VS_OVP NA  
R
CO  
VS2  
where ESURPLUS is the surplus energy delivered to the  
load during the debounce time.  
The ESURPLUS can be defined as:  
2  
L
VSTH  
RCS  
V
m   
DL (tDLY.OFF  
Lm  
)
×8  
(5)  
ESURPLUS  
=
+
2
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
15  
Typical Application Circuit (Flyback Charger)  
Application  
Fairchild Device  
Input Voltage Range  
Output  
Cell Phone Charger  
FAN302HLMY_F117  
90~265 VAC  
5 V/1.2 A (6 W)  
Features  
.
.
High Efficiency (>71% Avg.), Meets Energy Star V2.0 Standard (Avg. 68.17%)  
Ultra-Low Standby Power Consumption, <10 mW at 230 VAC (Pin=6.3 mW for 115 VAC and Pin=7.3 mW  
for 230 VAC  
Output Regulation: CV= ±5%, CC= ±15%  
)
.
Figure 42. Measured Efficiency and Output Regulation  
C6  
R12  
1mH  
L1  
EI12.5 93T/7T/11T  
1.8µH  
L3  
VO  
IO  
10  
1nF  
D7  
R1  
10Ω  
+
VDL  
-
C4  
R10  
270KΩ  
3A/40V  
NS  
NP  
C1  
470pF  
C2  
C9  
330µF  
C8  
330µF  
6.8µF  
6.8µF  
AC Line  
R3  
0Ω  
D1~D4  
FFM107M*4  
D6  
FFM107M  
47Ω  
R5  
D9  
R11  
5.6KΩ  
R20  
1KΩ  
R2  
10Ω  
4A/650V  
Q1  
1N4148  
D5  
R18  
FAN302HLMY_F11  
7
64.9KΩ  
R4  
100Ω  
R9  
FOD817S  
TL431  
IN4935  
C7  
1
2
3
4
CS  
8
7
6
5
HV  
NA  
R6 0Ω  
10nF  
GATE  
VDD  
VS  
NC  
1.3  
FB  
R17  
63.4KΩ  
C3  
C10  
1nF  
R7  
33µF  
GND  
91KΩ  
C11  
U1  
470pF  
R8  
C5  
40.2KΩ  
20pF  
Figure 43.Schematic of Typical Application Circuit  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
16  
Typical Application Circuit (Continued)  
Transformer Specification  
.
.
Core: EI12.5  
Bobbin: EI12.5  
Figure 44.Transformer  
Notes:  
7. W1 consists of four layers with different number of turns. The number of turns of each layer is specified in Table  
1. Add one insulation tape between the second and third layers.  
8. W2 consists of two layers with triple-insulated wire. The leads of positive and negative fly lines are 3.5 cm and  
2.5 cm, respectively.  
9. W3 is space winding in one layer.  
Table 1. Transformer Winding Specifications  
Terminal  
Insulation  
NO.  
Wire  
Turns  
Start Pin  
End Pin  
Turns  
26  
25  
24  
18  
7
0
1
0
2
2
2
3
0
2
W1  
4
5
2UEW 0.1*1  
W2  
W3  
Fly+  
1
Fly-  
2
TEX-E 0.45*1  
2UEW 0.18*1  
Core Rounding Tape  
Core  
11  
W4  
2
2UEW 0.18*1  
5
Note:  
10. W4 is the outermost and space winding.  
Pin  
Specifications  
Remark  
Primary-Side Inductance  
45  
45  
100 kHz, 1 V  
Short One of the Secondary-Side Windings  
700 μH ±7%  
130 μH ±7%  
Primary-Side Leakage Inductance  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
17  
Physical Dimensions  
5.00  
4.80  
A
0.65  
3.81  
8
5
B
1.75  
6.20  
5.80  
4.00  
3.80  
5.60  
1
4
PIN ONE  
INDICATOR  
1.27  
1.27  
(0.33)  
M
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
0.25  
0.10  
0.25  
0.19  
C
1.75 MAX  
0.10  
C
0.51  
0.33  
OPTION A - BEVEL EDGE  
0.50  
0.25  
x 45°  
R0.10  
R0.10  
GAGE PLANE  
OPTION B - NO BEVEL EDGE  
0.36  
NOTES: UNLESS OTHERWISE SPECIFIED  
8°  
0°  
0.90  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-012, VARIATION AA, ISSUE C,  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
SEATING PLANE  
(1.04)  
0.406  
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.  
E) DRAWING FILENAME: M08AREV13  
DETAIL A  
SCALE: 2:1  
Figure 45. 8-Lead, Small Outline Package (SOIC), JEDEC MS-012, .150-Inch, Narrow Body  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
18  
© 2012 Fairchild Semiconductor Corporation  
FAN302HLMY_F117 • Rev. 1.0.2  
www.fairchildsemi.com  
19  

相关型号:

FAN302UL

PWM Controller for Low Standby Power Battery-Charger Applications
FAIRCHILD

FAN302ULMY

PWM Controller for Low Standby Power Battery-Charger Applications
FAIRCHILD

FAN302ULMY

初级侧调节 PWM 控制器
ONSEMI

FAN3100

Single 2A High-Speed, Low-Side Gate Driver
FAIRCHILD

FAN3100C

Application Review and Comparative Evaluation of Low-Side Gate Drivers
FAIRCHILD

FAN3100CMPX

Single 2A High-Speed, Low-Side Gate Driver
FAIRCHILD

FAN3100CMPX

CMOS 输入、单通道反相或同相输出、3 A 峰值灌电流、3 A 源电流低端栅极驱动器
ONSEMI

FAN3100CSX

Single 2A High-Speed, Low-Side Gate Driver
FAIRCHILD

FAN3100CSX

CMOS 输入、单通道反相或同相输出、3 A 峰值灌电流、3 A 源电流低端栅极驱动器
ONSEMI

FAN3100T

Application Review and Comparative Evaluation of Low-Side Gate Drivers
FAIRCHILD

FAN3100TMPX

Single 2A High-Speed, Low-Side Gate Driver
FAIRCHILD

FAN3100TMPX

TTL 输入,单反向或非反向输出,峰值 3A 汲电流,3A 源电流,低侧门极驱动器
ONSEMI