FIN224AC_0611 [FAIRCHILD]

uSerDes 22-Bit Bi-Directional Serializer/Deserializer; uSerDes 22位双向​​串行器/解串器
FIN224AC_0611
型号: FIN224AC_0611
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

uSerDes 22-Bit Bi-Directional Serializer/Deserializer
uSerDes 22位双向​​串行器/解串器

文件: 总23页 (文件大小:497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for this datasheet  
translated into Korean!  
November 2006  
FIN224AC  
µSerDes22-Bit Bi-Directional Serializer/Deserializer  
Features  
FIN224AC to FIN24AC Comparison  
Industry smallest 22-bit Serializer/Deserializer pair  
Up to 20% power reduction  
Low power for minimum impact on battery life  
Double wide CKP pulse on FIN224AC, Mode 3  
– Multiple power-down modes  
Rolled edge rate for deserializer outputs on  
100nA in standby mode, 5mA typical operating  
FIN224AC, for single display applications  
conditions  
Same voltage range  
Highly rolled LVCMOS edge rate option to meet  
Same pinout and package  
regulatory requirements  
Cable reduction: 25:4 or greater  
General Description  
Differential signaling:  
The FIN224AC µSerDes™ is a low-power Serializer/  
Deserializer (SerDes) that can help minimize the cost  
and power of transferring wide signal paths. Through the  
use of serialization, the number of signals transferred  
from one point to another can be significantly reduced.  
Typical reduction is 4:1 to 6:1 for unidirectional paths.  
For bidirectional operation, using half duplex for multiple  
sources, it is possible to reach signal reduction close to  
10:1. Through the use of differential signaling, shielding  
and EMI filters can also be minimized, further reducing  
the cost of serialization. The differential signaling is also  
important for providing a noise-insensitive signal that can  
withstand radio and electrical noise sources. Major  
reduction in power consumption allows minimal impact  
on battery life in ultra-portable applications. A unique  
word boundary technique assures that the actual word  
boundary is identified when the data is deserialized. This  
guarantees that each word is correctly aligned at the  
deserializer on a word-by-word basis through a unique  
sequence of clock and data that is not repeated except  
at the word boundary. It is possible to use a single PLL  
for most applications including bi-directional operation.  
––90dBm EMI when using CTL in lab conditions  
–Minimized shielding  
–Minimized EMI filter  
–Minimum susceptibility to external interference  
Up to 22 bits in either direction  
Up to 26MHz parallel interface operation  
Voltage translation from 1.65V to 3.6V  
High ESD protection: > 15kV HBM  
Parallel I/O power supply (VDDP) range, 1.65V - 3.6V  
Can support Microcontroller or RGB pixel interface  
Applications  
Image sensors  
Small displays  
– LCD, cell phone, digital camera, portable gaming,  
printer, PDA, video camera, automotive  
Ordering Information  
Package  
Order Number  
Number  
Pb-Free  
Package Description  
FIN224ACGFX  
BGA042  
Yes  
42-Ball Ultra Small Scale Ball Grid Array (USS-BGA),  
JEDEC MO-195, 3.5mm Wide (Slow LVCMOS Edge Rate)  
FIN224ACMLX  
MLP040  
Yes  
40-Terminal Molded Leadless Package (MLP), Quad,  
JEDEC MO-220, 6mm Square (Slow LVCMOS Edge Rate)  
Pb-Free package per JEDEC J-STD-020B. BGA and MLP packages available in tape and reel only.  
TM  
µSerDes is a trademark of Fairchild Semiconductor Corporation.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
Basic Concept  
LVCMOS  
22  
LVCMOS  
CTL  
4
FIN224AC  
Serializer  
FIN224AC  
Deserializer  
22  
Figure 1. Conceptual Diagram  
Functional Block Diagram  
+
-
CKS0+  
Word  
PLL  
CKREF  
0
I
Boundary  
Generator  
CKS0-  
STROBE  
cksint  
Serializer  
DP[21:22]  
DP[1:20]  
Control  
DSO+/DSI-  
DSO-/DSI+  
+
-
Serializer  
oe  
100 Gated  
Termination  
+
-
Deserializer  
Deserializer  
Control  
cksint  
+
-
CKSI+  
CKSI-  
DP[23:24]  
CKP  
100  
Termination  
WORD CK  
Generator  
Control Logic  
S1  
DIRO  
Freq  
Direction  
Control  
S2  
Control  
oe  
DIRI  
Power Down  
Control  
Figure 2. Block Diagram  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
2
Terminal Description  
Terminal  
Number of  
I/O Type Terminals  
Name  
DP[1:20]  
DP[21:22]  
DP[23:24]  
CKREF  
STROBE  
CKP  
Description of Signals  
LVCMOS parallel I/O, Direction controlled by DIRI pin  
LVCMOS parallel unidirectional inputs  
I/O  
20  
2
I
O
2
LVCMOS unidirectional parallel outputs  
IN  
1
LVCMOS clock input and PLL reference  
LVCMOS strobe signal for latching data into the serializer  
LVCMOS word clock output  
CTL differential serial I/O data signals(1)  
DSO: Refers to output signal pair  
DSI: Refers to input signal pair  
IN  
1
OUT  
DIFF-I/O  
1
DSO+ / DSI-  
DSO- / DSI+  
2
DSO(I)+: Positive signal of DSO(I) pair  
DSO(I)-: Negative signal of DSO(I) pair  
CKSI+  
CKSI-  
DIFF-IN  
2
2
CTL differential deserializer input bit clock  
CKSI: Refers to signal pair  
CKSI+: Positive signal of CKSI pair  
CKSI-: Negative signal of CKSI pair  
CKSO+  
CKSO-  
DIFF-OUT  
CTL differential serializer output bit clock  
CKSO: Refers to signal pair  
CKSO+: Positive signal of CKSO pair  
CKSO-: Negative signal of CKSO pair  
S1  
S2  
IN  
IN  
IN  
1
1
1
LVCMOS mode selection terminals used to select frequency range for  
the reflect, CKREF  
DIRI  
LVCMOS control input used to control direction of data flow:  
DIRI = “1” Serializer  
DIRI = “0” Deserializer  
DIRO  
VDDP  
VDDS  
VDDA  
GND  
OUT  
1
1
1
1
2
LVCMOS control output inversion of DIRI  
Power supply for parallel I/O and translation circuitry  
Power supply for core and serial I/O  
Supply  
Supply  
Supply  
Supply  
Power supply for analog PLL circuitry  
For ground signals (2 for µBGA, 1 for MLP)  
Notes:  
1. The DSO/DSI serial port pins have been arranged such that if one device is rotated 180 degrees with respect to the  
other device, the serial connections properly align without the need for any traces or cable signals to cross. Other  
layout orientation may require that traces or cables cross.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
3
Connection Diagrams  
1
2
3
4
5
6
7
8
9
10  
DP[9]  
DP[10]  
DP[11]  
DP[12]  
VDDP  
30 DIRO  
29 CKSO+  
28 CKSO-  
27  
DSO+  
26 DSO-  
25 CKSI-  
24 CKSI+  
23 DIRI  
22 S2  
CKP  
DP[13]  
DP[14]  
DP[15]  
DP[16]  
21 VDDS  
Figure 3. Terminal Assignments for µBGA  
(Top View)  
Pin Assignments  
1
2
3
4
5
6
A
B
C
D
E
F
J
DP[9]  
DP[11]  
CKP  
DP[7]  
DP[5]  
DP[6]  
DP[8]  
VDDP  
GND  
DP[3]  
DP[2]  
DP[4]  
GND  
DP[1]  
CKREF  
DIRO  
DP[10]  
DP[12]  
DP[14]  
DP[16]  
DP[18]  
DP[20]  
STROBE  
CKSO+  
CKSO-  
DP[13]  
DP[15]  
DP[17]  
DP[19]  
DSO-/DSI+ DSO+/DSI-  
VDDS  
VDDA  
DP[23]  
CKSI+  
S2  
CKSI-  
DIRI  
S1  
DP[21]  
DP[22]  
DP[24]  
Figure 4. Terminal Assignments for µBGA  
(Top View)  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
4
Turn-Around Functionality  
Control Logic Circuitry  
The device passes and inverts the DIRI signal through  
the device asynchronously to the DIRO signal. Care  
must be taken by the system designer to ensure that no  
contention occurs between the deserializer outputs and  
the other devices on this port. Optimally the peripheral  
device driving the serializer should be put into a HIGH-  
impedance state prior to the DIRI signal being asserted.  
When a device with dedicated data outputs turns from a  
deserializer to a serializer, the dedicated outputs remain  
at the last logical value asserted. This value only  
changes if the device is once again turned around into a  
deserializer and the values are overwritten.  
The FIN224AC has the ability to be used as a 22-bit seri-  
alizer or a 22-bit deserializer. Pins S1 and S2 must be  
set to accommodate the clock reference input frequency  
range of the serializer. Table 1 shows the pin program-  
ming of these options based on the S1 and S2 control  
pins. The DIRI pin controls whether the device is a serial-  
izer or a deserializer. When DIRI is asserted LOW, the  
device is configured as a deserializer. When the DIRI pin  
is asserted HIGH, the device is configured as a serial-  
izer. Changing the state on the DIRI signal reverses the  
direction of the I/O signals and generate the opposite  
state signal on DIRO. For unidirectional operation the  
DIRI pin should be hardwired to the HIGH or LOW state  
and the DIRO pin should be left floating. For bi-direc-  
tional operation, the DIRI of the master device is driven  
by the system and the DIRO signal of the master is used  
to drive the DIRI of the slave device.  
Power-Down Mode: (Mode 0)  
Mode 0 is used for powering down and resetting the  
device. When both of the mode signals are driven to a  
LOW state, the PLL and references are disabled, differ-  
ential input buffers are shut off, differential output buffers  
are placed into a HIGH-impedance state, LVCMOS out-  
puts are placed into a HIGH-impedance state, and LVC-  
MOS inputs are driven to a valid level internally.  
Additionally all internal circuitry is reset. The loss of  
CKREF state is also enabled to ensure that the PLL only  
powers-up if there is a valid CKREF signal.  
Serializer/Deserializer with Dedicated I/O Variation  
The serialization and deserialization circuitry is set up for  
24 bits. Because of the dedicated inputs and outputs,  
only 22 bits of data are ever serialized or deserialized.  
Regardless of the mode of operation, the serializer is  
always sending 24 bits of data plus 2 boundary bits and  
the deserializer is always receiving 24 bits of data and 2  
word boundary bits. Bits 23 and 24 of the serializer  
always contain the value of zero and are discarded by  
the deserializer. DP[21:22] input to the serializer is dese-  
rialized to DP[23:24] respectively.  
In a typical application mode, signals of the device do not  
change states other than between the desired frequency  
range and the power-down mode. This allows for sys-  
tem-level power-down functionality to be implemented  
via a single wire for a SerDes pair. The S1 and S2 selec-  
tion signals that have their operating mode driven to a  
“logic 0” should be hardwired to GND. The S1 and S2  
signals that have their operating mode driven to a “logic  
1” should be connected to a system-level power-down or  
reset signal.  
Table 1. Control Logic Circuitry  
Mode  
Number  
S2  
S1  
DIRI  
Description  
0
1
0
0
x
1
0
1
0
1
Power-Down Mode  
0
1
22-Bit Serializer 2MHz to 5MHz CKREF  
22-Bit Deserializer  
0
1
2
3
1
0
22-Bit Serializer 5MHz to 15MHz CKREF  
22-Bit Deserializer  
1
0
1
1
22-Bit Serializer 10MHz to 26MHz CKREF (Divide by 2 Serial Data)  
(Note: FIN224C required for RGB applications)  
1
1
0
22-Bit Deserializer  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
5
Serializer Operation Mode  
The serializer configurations are described in the following sections. The basic serialization circuitry works essentially  
identically in these modes, but the actual data and clock streams differ depending on if CKREF is the same as the  
STROBE signal or not. When it is stated that CKREF does not equal STROBE, each signal is distinct and CKREF  
must be running at a frequency high enough to avoid any loss of data condition. CKREF must never be a lower fre-  
quency than STROBE.  
The PLL must receive a stable CKREF signal to achieve lock prior to any valid  
data being sent. The CKREF signal can be used as the data STROBE signal  
provided that data can be ignored during the PLL lock phase.  
Serializer Operation: (Figure 5)  
MODE 1 or MODE 2,  
DIRI = 1,  
Once the PLL is stable and locked, the device can begin to capture and serialize  
data. Data is captured on the rising edge of the STROBE signal and then serial-  
ized. The serialized data stream is synchronized and sent source synchronously  
with a bit clock with an embedded word boundary. When operating in this mode,  
the internal deserializer circuitry is disabled, including the serial clock, serial data  
input buffers, the bi-directional parallel outputs, and the CKP word clock. The  
CKP word clock is driven HIGH.  
CKREF = STROBE  
DPI[1:24] WORD n-1  
CKREF/STROBE  
WORD n  
WORD n+1  
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
B
5
DSO  
24 25 26  
1
2
3
4
22 23 24 25 26  
1
2
3
4
CKS0  
WORD n-2  
WORD n-1  
WORD n  
Figure 5. Serializer Timing Diagram (CKREF = STROBE)  
If the same signal is not used for CKREF and STROBE, the CKREF signal must  
be run at a higher frequency than the STROBE rate to serialize the data cor-  
rectly. The actual serial transfer rate remains at 13 times the CKREF frequency.  
A data bit value of zero is sent when no valid data is present in the serial bit  
stream. The operation of the serializer otherwise remains the same.  
Serializer Operation: (Figure 6),  
DIRI = 1,  
CKREF does not = STROBE  
The exact frequency that the reference clock needs to run at depends upon the  
stability of the CKREF and STROBE signal. If the source of the CKREF signal  
implements spread spectrum technology, the max frequency of the spread spec-  
trum clock should be used in calculating the ratio of STROBE frequency to the  
CKREF frequency. Similarly, if the STROBE signal has significant cycle-to-cycle  
variation, the maximum cycle-to-cycle time needs to be factored into the selec-  
tion of the CKREF frequency.  
CKREF  
DP[1:24]  
STROBE  
WORD n-1  
WORD n  
WORD n+1  
DSO  
b
b
b
b
b
b
b
b b b b b  
22 23 24 25 26  
b
b
b
2 3  
1
2
3
4
5
6
7
1
CKS0  
No Data  
No Data  
WORD n-1  
WORD n  
Figure 6. Serializer Timing Diagram (CKREF does not equal STROBE)  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
6
Serializer Operation Mode (Continued)  
When operating in mode 3, the effective serial speed is divided by two. This  
mode has been implemented to accommodate cases where the reference clock  
frequency is high compared to the actual strobe frequency. The actual strobe  
frequency must be less than or equal to 50% of the CKREF frequency for this  
mode to work properly. This mode, in all other ways, operates the same as  
described in the section where CKREF does not equal STROBE.  
Serializer Operation: (Figure 7),  
MODE 3 (S1 = S2 = 1), DIRI = 1,  
CKREF Divide by 2 mode  
CKREF  
DP[1:24]  
WORD n-1  
WORD n  
WORD n+1  
STROBE  
DSO  
b
b
b
b
b
b
b
b
b
b
b
22 23 24 25 26  
b
b
b
b
3
1
2
3
4
5
6
7
1
2
CKS0  
No Data  
WORD n-1  
WORD n  
No Data  
Figure 7. CKREF > 2x STROBE Frequency; Mode 3 Operation (S1 = S2 = 1)  
A third method of serialization can be acheived by providing a free-running bit  
clock on the CKSI signal. This mode is enabled by grounding the CKREF signal  
and driving the DIRI signal HIGH. At power-up, the device is configured to accept  
a serialization clock from CKSI. If a CKREF is received, this device enables the  
CKREF serialization mode. The device remains in this mode even if CKREF is  
stopped. To re-enable this mode, the device must be powered down and then  
powered back up with a “logic 0” on CKREF.  
Serializer Operation: (Figure 8),  
DIRI = 1, No CKREF  
CKSI  
DP[1:24]  
STROBE  
WORD n-1  
WORD n  
WORD n+1  
DSO  
b
b
b
b
b
b
b
b b b b b  
22 23 24 25 26  
b
b
b
2 3  
1
2
3
4
5
6
7
1
CKS0  
WORD n-1  
WORD n  
No Data  
No Data  
Figure 8. Serializer Timing Diagram Using Provided Bit Clock (No CKREF)  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
7
Deserializer Operation Mode  
The operation of the deserializer is only dependent upon the data received on the DSI data signal pair and the CKSI  
clock signal pair. The following two sections describe the operation of the deserializer under two distinct serializer  
source conditions. References to the CKREF and STROBE signals refer to the signals associated with the serializer  
device used in generating the serial data and clock signals that are inputs to the deserializer. When operating in this  
mode, the internal serializer circuitry is disabled, including the parallel data input buffers. If there is a CKREF signal  
provided, the CKSO serial clock continues to transmit bit clocks. Upon device power-up (S1 or S2 = 1), all deserializer  
output data pins are driven LOW until valid data is passed through the deserializer.  
When the DIRI signal is asserted LOW, the device is configured as a deserial-  
izer. Data is captured on the serial port and deserialized through use of the bit  
clock sent with the data. The word boundary is defined in the actual clock and  
data signal. Parallel data is generated at the time the word boundary is defined  
in the actual clock and data signal. Parallel data is generated at the time the  
word boundary is detected. The falling edge of CKP occurs approximately six bit  
times after the falling edge of CKSI. The rising edge of CKP goes HIGH approxi-  
mately 13 bit times after CKP goes LOW. The rising edge of CKP is generated  
approximately 13 bit times later. When no embedded word boundary occurs, no  
pulse on CKP is generated and CKP remains HIGH.  
Deserializer Operation: DIRI = 0  
(Serializer Source:  
CKREF = STROBE)  
WORD n-1  
WORD n  
WORD n+1  
b
b
b
25 26  
bj bj+1  
bj+13 bj+14  
b
b b  
25 26  
0
0
0
0
DSI  
24  
24  
CKSI  
13 bit times  
WORD n-1  
CKPO  
6 bit times  
DP[1:24]  
WORD n-2  
WORD n  
Figure 9. Deserializer Timing Diagram (Serializer Source: CKREF equals STROBE)  
The logical operation of the deserializer remains the same if the CKREF is equal  
in frequency to the STROBE or at a higher frequency than the STROBE. The  
Deserializer Operation: DIRI = 0  
(Serializer Source:  
CKREF does not = STROBE)  
actual serial data stream presented to the deserializer is different because it has  
non-valid data bits sent between words. The duty cycle of CKP varies based on  
the ratio of the frequency of the CKREF signal to the STROBE signal. The fre-  
quency of the CKP signal is equal to the STROBE frequency. The falling edge of  
CKP occurs six bit times after the data transition. The LOW time of the CKP sig-  
nal is equal to 13 serial bit times. In modes 1 and 2, the CKP LOW time equals  
half of the CKREF period of the serializer. In mode 3, the CKP LOW is equal to  
the CKREF period. The CKP HIGH time is approximately equal to the STROBE  
period, minus the CKP LOW time. Figure 10 is representative of a waveform that  
could be seen when CKREF is not equal to STROBE. If CKREF was significantly  
faster, additional non-valid data bits would occur between data words.  
WORD n-1  
WORD n  
WORD n+1  
DSI  
b
b
b
25 26  
b
b
b
b
b
b
b
b
b
b
25 26  
b
b
2
24  
1
6
7
8
9
19  
20  
24  
1
CKSI  
CKPO  
DP[1:24]  
WORD n-2  
WORD n-1  
WORD n  
Figure 10. Deserializer Timing Diagram (Serializer Source: CKREF does not equal STROBE)  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
8
LVCMOS Data I/O  
The LVCMOS input buffers have a nominal threshold  
value equal to half VDD. The input buffers are only oper-  
ational when the device is operating as a serializer.  
When the device is operating as a deserializer, the inputs  
are gated off to conserve power.  
tive greater sensitivity of the current sense receiver of  
CTL allows it to work at much lower current drive and a  
much lower voltage.  
During power down mode, the differential inputs are dis-  
abled and powered down and the differential outputs are  
placed in a HIGH-Z state. CTL inputs have an inherent  
failsafe capability that supports floating inputs. When the  
CKSI input pair of the serializer is unused, it can reliably  
be left floating. Alternately both of the inputs can be con-  
nected to ground. CTL inputs should never be connected  
to VDD. When the CKSO output of the deserializer is  
unused, it should be allowed to float.  
The LVCMOS 3-STATE output buffers are rated for a  
source / sink current of approximately 0.5mA at 1.8V.  
The outputs are active when the DIRI signal and either  
S1 or S2 is asserted HIGH. When the DIRI signal and  
either S1 or S2 is asserted LOW, the bi-directional LVC-  
MOS I/Os is in a HIGH-Z state. Under purely capacitive  
load conditions, the output swings between GND and  
VDDP. When S1 or S2 initially transitions HIGH, the initial  
state of the deserializer LVCMOS outputs is zero.  
+
DS+  
DS-  
From  
Serializer  
Unused LVCMOS input buffers must be either tied off to  
a valid logic LOW or a valid logic HIGH level to prevent  
static current draw due to a floating input. Unused LVC-  
MOS output should be left floating. Unused bi-directional  
pins should be connected to GND through a high-value  
resistor. If a FIN224AC device is configured as an unidi-  
rectional serializer, unused data I/O can be treated as  
unused inputs. If the FIN224AC is hardwired as a deseri-  
alizer, unused data I/O can be treated as unused outputs.  
From  
Control  
Gated  
Termination  
(DS Pins Only)  
+
To  
Deserializer  
Figure 11. Bi-Directional Differential  
I/O Circuitry  
The FIN224AC family offers fast and slow LVCMOS  
edge rates to meet emissions and loading requirements.  
Phase-Locked Loop (PLL) Circuitry  
Differential I/O Circuitry  
The CKREF input signal is used to provide a reference to  
the PLL. The PLL generates internal timing signals capa-  
ble of transferring data at 13 times the incoming CKREF  
signal. The output of the PLL is a bit clock that is used to  
serialize the data. The bit clock is also sent source syn-  
chronously with the serial data stream. There are two  
ways to disable the PLL. The PLL can be disabled by  
entering the Mode 0 state (S1 = S2 = 0). The PLL dis-  
ables immediately upon detecting a LOW on both the S1  
and S2 signals. When any of the other modes are  
entered by asserting either S1 or S2 HIGH and by pro-  
viding a CKREF signal, the PLL powers-up and goes  
through a lock sequence. One must wait the specified  
number of clock cycles prior to capturing valid data into  
the parallel port.  
The FIN224AC employs FSC proprietary Current Tran-  
sistor Logic (CTL) Input / Output (I/O) technology. CTL is  
a low-power, low-EMI differential swing I/O technology.  
The CTL output driver generates a constant output  
source and sink current. The CTL input receiver senses  
the current difference and direction from the correspond-  
ing output buffer to which it is connected. This differs  
from LVDS, which uses a constant current source output,  
but a voltage sense receiver. Like LVDS, an input source  
termination resistor is required to properly terminate the  
transmission line. The FIN224AC device incorporates an  
internal termination resistor on the CKSI receiver and a  
gated internal termination resistor on the DS input  
receiver. The gated termination resistor ensures proper  
termination regardless of direction of data flow. The rela-  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
9
Application Mode Diagrams  
µSerDes Serializer  
U20  
µSerDes DeSerializer  
U22  
FIN224AC  
FIN224AC  
TP6  
VDDP  
A6  
B5  
PIXCLK_M  
CKREF  
STROBE  
J6  
F5  
F6  
S2  
F6  
F5  
J6  
DIRI  
S2  
S1  
S1  
TP5  
GPIO_MODE  
DIRI  
C1  
PIXCLK_S  
CKP  
J5  
J4  
J5  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
J4  
LCD_ENABLE_S  
J3  
B5  
A6  
J3  
STROBE  
CKREF  
F3  
J2  
J1  
F3  
J2  
LCD_ENABLE_M  
LCD_VSYNC_M  
LCD_HSYNC_M  
LCD17_M  
B6  
C1  
LCD_VSYNC_S  
LCD_HSYNC_S  
LCD17_S  
LCD16_S  
LCD15_S  
LCD14_S  
LCD13_S  
LCD12_S  
LCD11_S  
LCD10_S  
LCD9_S  
DIRO  
CKP  
B6  
J1  
DIRO  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
LCD16_M  
LCD15_M  
LCD14_M  
D6  
D5  
D5  
D6  
LCD13_M  
DSO+/DSI-  
DSO-/DSI+  
DSO-/DSI+  
DSO+/DSI-  
LCD12_M  
LCD  
Controller  
Out  
LCD11_M  
C6  
C5  
E6  
E5  
LCD10_M  
CKSO-  
CKSO+  
CKSI-  
CKSI+  
LCD  
Display  
In  
LCD9_M  
LCD8_M  
LCD7_M  
LCD6_M  
LCD5_M  
LCD4_M  
LCD3_M  
LCD2_M  
LCD1_M  
LCD0_M  
LCD8_S  
E6  
E5  
C6  
C5  
LCD7_S  
DP8  
CKSI-  
CKSI+  
CKSO-  
CKSO+  
DP8  
LCD6_S  
DP7  
DP7  
LCD5_S  
DP6  
DP6  
2.8V  
2.8V  
LCD4_S  
DP5  
DP5  
F4  
E4  
D3  
1.8V  
2.8V  
F4  
E4  
D3  
LCD3_S  
DP4  
VDDA  
VDDS  
VDDP  
VDDA  
VDDS  
VDDP  
DP4  
LCD2_S  
DP3  
DP3  
LCD1_S  
DP2  
DP2  
LCD0_S  
DP1  
DP1  
C12  
.01µF  
C10  
1nF  
C11  
C6  
1nF  
C3  
.01µF  
2.2µF  
Assumptions:  
1) 18-bit Unidirectional RGB Application  
2) Mode 2 Operation (5Mhz to 15Mhz CKREF)  
3) VDDP= (1.65V to 3.6V)  
Figure 12. FIN224AC RGB  
µSerDes Serializer  
µSerDes DeSerializer  
U21  
FIN224AC  
U23  
FIN224AC  
TP2  
VDDP  
A6  
REFCLK  
CKREF  
B5  
LCD_/WRITE_ENABLE_M  
STROBE  
J6  
S1  
S2  
F6  
F5  
J6  
F5  
F6  
DIRI  
S2  
TP1  
TP3  
GPIO_MODE  
DIRI  
C1  
LCD_/WRITE_ENABLE_S  
S1  
CKP  
J5  
J4  
J5  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
DP24  
DP23  
DP22  
DP21  
DP20  
DP19  
DP18  
DP17  
DP16  
DP15  
DP14  
DP13  
DP12  
DP11  
DP10  
DP9  
J4  
J3  
B5  
A6  
J3  
STROBE  
CKREF  
F3  
J2  
F3  
J2  
B6  
C1  
LCD_/CS_M  
LCD_/CS_S  
LCD_ADDRESS_S  
LCD17_S  
DIRO  
CKP  
J1  
B6  
J1  
LCD_ADDRESS_M  
LCD17_M  
DIRO  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
B1  
B2  
A1  
C3  
A2  
B3  
A3  
C4  
A4  
B4  
A5  
LCD16_M  
LCD16_S  
LCD15_M  
LCD15_S  
LCD14_M  
LCD14_S  
D6  
D5  
D5  
D6  
LCD13_M  
LCD13_S  
DSO+/DSI-  
DSO-/DSI+  
DSO-/DSI+  
DSO+/DSI-  
LCD12_M  
LCD12_S  
LCD  
Controller  
Out  
LCD11_M  
LCD11_S  
C6  
C5  
E6  
E5  
LCD10_M  
LCD10_S  
CKSO-  
CKSO+  
CKSI-  
CKSI+  
LCD  
Display  
LCD9_M  
LCD8_M  
LCD7_M  
LCD6_M  
LCD5_M  
LCD4_M  
LCD3_M  
LCD2_M  
LCD1_M  
LCD0_M  
LCD9_S  
LCD8_S  
E6  
E5  
C6  
C5  
LCD7_S  
In  
DP8  
CKSI-  
CKSI+  
CKSO-  
CKSO+  
DP8  
LCD6_S  
DP7  
DP7  
LCD5_S  
LCD4_S  
LCD3_S  
LCD2_S  
LCD1_S  
LCD0_S  
DP6  
DP6  
2.8V  
2.8V  
DP5  
DP5  
1.8V  
2.8V  
F4  
E4  
D3  
F4  
E4  
D3  
DP4  
VDDA  
VDDS  
VDDP  
VDDA  
VDDS  
VDDP  
DP4  
DP3  
DP3  
DP2  
DP2  
DP1  
DP1  
C9  
.01uµF  
C7  
1nF  
C8  
C5  
1nF  
C2  
.01uµF  
2.2uµF  
Assumptions:  
1) 18-bit Unidirectional µController Application  
2) Mode 3 Operation (10 Mhz to 20Mhz CKREF)  
3) VDDP= (1.65V to 3.6V)  
4) REFCLK is a continously running clock with a frequency  
greater than /WRITE_ENABLE.  
Figure 13. FIN224AC Microcontroller  
Flex Circuit Design Guidelines  
The serial I/O information is transmitted at a high serial rate. Care must be taken implementing this serial I/O flex  
cable. The following best practices should be used when developing the flex cabling or Flex PCB:  
Keep all four differential wires the same length.  
Allow no noisy signals over or near differential serial wires. Example: No LVCMOS traces over differential wires.  
Use only one ground plane or wire over the differential serial wires. Do not run ground over top and bottom.  
Do not place test points on differential serial wires.  
Use differential serial wires a minimum of 2cm away from the antenna.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
10  
Absolute Maximum Ratings  
The “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed.  
The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics  
tables are not guaranteed at the absolute maximum ratings. The “Recommended Operating Conditions” table defines  
the conditions for actual device operation.  
Symbol  
Parameter  
Min.  
-0.5  
Max.  
+4.6  
+4.6  
Unit  
V
VDD  
Supply Voltage  
ALL input/Output Voltage  
CTL Output Short Circuit Duration  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Temperature  
-0.5  
V
Continuous  
-65  
TSTG  
TJ  
+150  
+150  
+260  
°C  
°C  
°C  
TL  
Human Body Model, 1.5KΩ, 100pF  
All Pins  
>2  
kV  
kV  
ESD  
S1, S2, CKSO, CKSI, DSO, DSI, VDDA, VDDS, VDDP  
(as specified in IEC61000-4-2)  
>15  
Recommended Operating Conditions  
Symbol  
Parameter  
Min.  
2.5  
Max.  
3.3  
Unit  
V
VDDA, VDDS Supply Voltage  
VDDP  
TA  
Supply Voltage  
Operating Temperature(2)  
1.65  
-30  
3.60  
+70  
100  
V
°C  
VDDA-PP  
Supply Noise Voltage  
mVp-p  
Notes:  
2. Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired.  
The datasheet specification should be met, without exception, to ensure that the system design is reliable over its  
power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside  
datasheet specifications.  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
11  
DC Electrical Characteristics  
Over-supply voltage and operating temperature ranges, unless otherwise specified.  
Symbol  
(3)  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
LVCMOS I/O  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
0.65 x VDDP  
GND  
VDDP  
0.35 x VDDP  
V
V
I
I
OH = 2.0mA VDDP = 3.3±0.30  
VDDP = 2.5±-0.20  
0.75 x VDDP  
VOH  
VDDP = 1.8±0.18  
Output Low Voltage  
Input Current  
OL = 2.0mA VDDP = 3.3±0.30  
VDDP = 2.5±0.20  
0.25 x VDDP  
V
VOL  
VDDP = 1.8±0.18  
IIN  
VIN = 0V to 3.6V  
-5.0  
5.0  
µA  
DIFFERENTIAL I/O  
IODH Output HIGH source current VOS = 1.0V  
-1.75  
µA  
µA  
mA  
µA  
µA  
IODL  
Output LOW sink current  
VOS = 1.0V  
VOUT = 0V  
0.950  
Short-Circuit Output  
Current  
Driver Enabled  
Driver Disabled  
IOS  
±5  
±5  
Disabled Output  
Leakage Current  
CKSO, DSO = 0V to VDDS  
S2 = S1 = 0V  
±1  
IOZ  
ITH  
ITL  
Differential Input Threshold See Figure 6 and Table 2  
High Current  
50  
µA  
µA  
uA  
Differential Input Threshold See Figure 6 and Table 2  
Low Current  
-50  
±5  
Disabled Input Leakage  
Current  
CKSI, DSI = 0V to VDDS  
S2 = S1 = 0V  
±1  
IIZ  
IIS  
Short-Circuit Input Current Vout =VDDS  
mA  
V
Input Common Mode  
Range  
VDDS = 2.775 ±5%  
0.5  
VDDS-1  
VICM  
CKSI, DS Internal Receiver VID = 50mV, VIC = 925mV, DIRI = 0  
Termination Resistor  
100  
Ω
RTRM  
| CKSI+ – CKSI| = VID  
Notes:  
3. Typical values are given for VDD = 2.775V and TA = 25°C. Positive current values refer to the current flowing into the  
device and negative values refer to the current flowing out of the pins. Voltages are referenced to GROUND unless  
otherwise specified (except ΔVOD and VOD).  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
12  
Power Supply Currents  
Symbol  
Parameter  
Test Conditions  
Min. Typ.(4) Max. Unit  
IDDA1  
VDDA Serializer Static Supply Cur-  
rent  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 1  
450  
550  
4
µA  
IDDA2  
IDDS1  
IDDS2  
IDD_PD  
VDDA Deserializer Static Supply  
Current  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 0  
µA  
VDDS Serializer Static Supply Cur-  
rent  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 1  
mA  
mA  
µA  
VDDS Deserializer Static Supply  
Current  
All DP and Control Inputs at 0V or  
NOCKREF, S2 = 0, S1 = 1, DIR = 0  
4.5  
0.1  
VDD Power-Down Supply Current  
IDD_PD = IDDA  
S1 = S2 = 0 All Inputs at GND or VDD  
IDD_SER1 26:1 Dynamic Serializer  
Power Supply Current  
CKREF = STROBE S2 = 0 2MHz  
9
14  
9
mA  
DIRI = H  
S1 = 1  
5MHz  
IDD_SER1 = IDDA+IDDS+IDDP  
S2 = 1 5MHz  
S1 = 0  
15MHz  
17  
9
S2 = 1 10MHz  
S1 = 1  
26MHz  
16  
5
IDD_DES1 26:1 Dynamic Deserializer  
Power Supply Current  
CKREF = STROBE S2 = 0 2MHz  
mA  
mA  
DIRI = L  
S1 = 1  
5MHz  
6
IDD_DES1 = IDDA+IDDS+IDDP  
S2 = 1 5MHz  
S1 = 0  
4
15MHz  
5
S2 = 1 10MHz  
S1 = 1  
7
26MHz  
11  
8
IDD_SER2 26:1 Dynamic Serializer  
Power Supply Current  
NO CKREF  
STROBE Active  
CKSI = 15x STROBE  
DIRI = H  
2MHz  
5MHz  
8
IDD_SES2 = IDDA+IDDS+IDDP  
10MHz  
15MHz  
10  
12  
Notes:  
4. Typical values are given for VDD = 2.775V and TA = 25°C. Positive current values refer to the current flowing into the  
device and negative values refer to the current flowing out of the pins. Voltages are referenced to GROUND unless  
otherwise specified (except ΔVOD and VOD).  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
13  
AC Electrical Characteristics  
Characteristics at recommended over-supply voltage and operating temperature ranges, unless otherwise specified.  
(5)  
Symbol  
Parameter  
Test Conditions  
Min. Typ.  
Max. Unit  
Serializer Input Operating Conditions  
CKREF = STROBE S2=0 S1=1  
200  
66  
500  
200  
100.00  
CKREF Clock Period  
tTCP  
See Figure 14  
S2=1 S1=0  
T
ns  
(2MHz – 26MHz)  
S2=1S1=1 38.46  
CKREF Frequency Relative to  
STROBE  
CKREF does not = S2=0S1=1 2.25 x  
fREF  
MHz  
STROBE  
fSTROBE  
tCPWH CKREF Clock High Time  
0.2  
0.5  
0.5  
T
T
tCPWL  
tCLKT  
tSPWH  
CKREF Clock Low Time  
0.2  
LVCMOS Input Transition Time  
STROBE Pulse Width HIGH/LOW  
See Figure 16  
See Figure 16  
CKREF x 26  
90.0  
ns  
(Tx4)/26  
(Tx22)/26 ns  
S2=0S1=1  
S2=1S1=0  
S2=1S1=1  
52  
130  
260  
130  
390  
676  
fMAX  
Maximum Serial Data Rate  
Mb/s  
tSTC  
tHTC  
DP(n) Setup to STROBE  
DP(n) Hold to STROBE  
DIRI = 1  
2.5  
2.0  
ns  
ns  
Serializer AC Electrical Characteristics  
Transmitter Clock Input to Clock  
Output Delay  
CKREF = STROBE  
tTCCD  
33a+1.5  
-50.0  
35a+6.5  
250.0  
ns  
ps  
tSPOS  
CKSO Position Relative to DS(6)  
PLL AC Electrical Characteristics  
Serializer Phase Lock Loop  
tTPLLS0  
See Figure 18  
200  
µs  
Stabilization Time  
tTPLLD0 PLL Disable Time Loss of Clock  
tTPLLD1 PLL Power-Down Time(7)  
See Figure 21  
See Figure 22  
30.0  
20.0  
µs  
ns  
Deserializer Input Operating Conditions  
Serial Port Setup Time,  
tS_DS  
1.4  
ns  
ps  
DS-to-CKSI(8)  
Serial Port Hold Time,  
tH_DS  
-250  
DS-to-CKS(8)  
Deserializer AC Electrical Characteristics  
Deserializer Clock Output  
tRCOP  
See Figure 17  
See Figure 17  
50.0  
T
500.0  
ns  
(CKP OUT) Period(9)  
tRCOL  
tRCOH  
CKP OUT Low Time  
CKP OUT High Time  
13a-3  
13a-3  
13a+3  
13a+3  
ns  
ns  
(Rising Edge STROBE)(9) Serial-  
izer source STROBE = CKREF  
Data Valid to CKP LOW  
See Figure 17  
(Rising Edge STROBE)  
tPDV  
8a-6  
8a+1  
ns  
ns  
ns  
CL = 8pF  
See Figure 14  
tROLH  
(FIN224AC)  
Output Rise Time (20% to 80%)  
Output Fall Time (20% to 80%)  
18  
18  
CL = 8pF  
See Figure 14  
tROHL  
(FIN224AC)  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
14  
Notes:  
5. Typical values are given for VDD = 2.775V and TA = 25°C. Positive current values refer to the current flowing into  
device and negative values means current flowing out of the pins. Voltages are referenced to GROUND unless  
otherwise specified (except DVOD and VOD).  
6. Skew is measured from either the rising or falling edge of CKSO clock to the rising or falling edge of data (DSO).  
Signals are edge aligned. Both outputs should have identical load conditions for this test to be valid.  
7. The power-down time is a function of the CKREF frequency prior to CKREF being stopped HIGH or LOW and the  
state of the S1/S2 mode pins. The specific number of clock cycles required for the PLL to be disabled varies  
dependent upon the operating mode of the device.  
8. Signals are transmitted from the serializer source synchronously. Note that, in some cases, data is transmitted when  
the clock remains at a HIGH state. Skew should only be measured when data and clock are transitioning at the same  
time. Total measured input skew would be a combination of output skew from the serializer, load variations, and ISI  
and jitter effects.  
9. (a = (1/f)/13) Rising edge of CKP appears approximately 13 bit times after the falling edge of the CKP output. Falling  
edge of CKP occurs approximately eight bit times after a data transition or six bit times after the falling edge of  
CKSO. Variation of the data with respect to the CKP signal is due to internal propagation delay differences of the  
data and CKP path and propagation delay differences on the various data pins. Note that if the CKREF is not equal  
to STROBE for the serializer, the CKP signal does not maintain a 50% duty cycle.The low time of CKP remains 13  
bit times.  
Control Logic Timing Controls  
Symbol  
tPHL_DIR  
tPLH_DIR  
Parameter  
Test Conditions  
Min. Typ. Max. Units  
,
Propagation Delay  
DIRI-to-DIRO  
DIRI LOW-to-HIGH or HIGH-to-LOW  
17.0  
25.0  
25.0  
25.0  
2.0  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
tPLZ, tPHZ Propagation Delay  
DIRI LOW-to-HIGH  
DIRI HIGH-to-LOW  
DIRI-to-DP  
tPZL, tPZH Propagation Delay  
DIRI-to-DP  
tPLZ, tPHZ Deserializer Disable Time: DIRI = 0,  
S0 or S1 to DP  
S1(2) = 0 and S2(1) = LOW-to-HIGH Figure 23  
t
PZL, tPZH Deserializer Enable Time: DIRI = 0,(10)  
S0 or S1 to DP  
S1(2) = 0 and S2(1) = LOW-to-HIGH Figure 23  
tPLZ, tPHZ Serializer Disable Time:  
S0 or S1 to CKSO, DS  
DIRI = 1,  
25.0  
65.0  
S1(2) = 0 and S2(1) = HIGH-to-LOW Figure 22  
tPZL, tPZH Serializer Enable Time:  
S0 or S1 to CKSO, DS  
DIRI = 1,  
S1(2) and S2(1) = LOW-to-HIGH Figure 22  
Notes:  
10. Deserializer Enable Time includes the time required for internal voltage and current references to stabilize. This time  
is significantly less than the PLL Lock Time and therefore does not limit overall system startup time.  
Capacitance  
Symbol  
CIN  
Parameter  
Capacitance of Input Only Signals, DIRI = 1, S1 = S2 = 0,  
CKREF, STROBE, S1, S2, DIRI VDD = 2.5V  
Capacitance of Parallel Port Pins DIRI = 1, S1 = S2 = 0,  
DP1:12 VDD = 2.5V  
Capacitance of Differential I/O Sig- DIRI = 0, S1 = S2 = 0,  
Test Conditions  
Min. Typ. Max. Units  
2.0  
2.0  
2.0  
pF  
pF  
pF  
CIO  
CIO-DIFF  
nals  
VDD = 2.775V  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
15  
AC Loading and Waveforms  
Setup Time  
t
STC  
STROBE  
DP[1:12]  
t
t
ROHL  
ROLH  
80%  
80%  
Data  
20%  
20%  
DPn  
t
Hold Time  
HTC  
DPn  
STROBE  
DP[1:12]  
Data  
8pF  
Setup: MODE0 = “0” or “1”, MODE1 = “1”, SER/DES = “1”  
Figure 14. LVCMOS Output Load  
and Transition Times  
Figure 15. Serial Setup and Hold Time  
Data Time  
t
PDV  
t
t
CLKT  
CLKT  
90%  
90%  
CKP  
Data  
DP[1:12]  
10%  
10%  
t
RCOP  
t
TCP  
75%  
50%  
25%  
50%  
CKREF  
V
IH  
CKREF  
50%  
50%  
V
IL  
t
t
RCOL  
RCOH  
t
t
CPWL  
CPWH  
EN_DES = “1”, CKSI and DSI are valid signals  
Setup:  
Figure 16. LVCMOS Clock Parameters  
Figure 17. Deserializer Data Valid Window  
Time and Clock Output Parameters  
t
TPLS0  
V
/V  
DD DDA  
t
TCCD  
S1 or S2  
STROBE  
V
DD/2  
CKREF  
CKS0  
CKS0-  
CKS0+  
V
= 0  
DIFF  
Note: STROBE = CKREF  
Note: CKREF Signal is free running.  
Figure 18. Serializer PLL Lock Time  
Figure 19. Serializer Clock Propagation Delay  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
16  
AC Loading and Waveforms (Continued)  
t
TPPLD0  
CKREF  
CKS0  
t
RCCD  
CKSI-  
CKSI+  
V
= 0  
DIFF  
CKP  
V
Note: CKREF Signal can be stopped either High or LOW  
DD/2  
Figure 20. Deserializer Clock Propagation Delay  
Figure 21. PLL Loss of Clock Disable Time  
t
t
PZL(ZH)  
PLZ(HZ)  
S1 or S2  
t
TPPLD1  
DS+,CKS0+  
DS+,CKS0-  
S1 or S2  
CKS0  
HIGHZ  
Note: CKREF must be active and PLL must be stable  
Figure 22. PLL Power-Down Time  
Figure 23. Serializer Enable and Disable Time  
t
t
PLZ(HZ)  
PZL(ZH)  
S1 or S2  
DP  
Note: If S1(2) transitioning then S2(1) must = 0 for test to be valid  
Figure 24. Deserializer Enable and Disable Times  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
17  
Tape and Reel Specification  
BGA Embossed Tape Dimension  
Dimensions are in millimeters.  
D
P
0
P
2
T
E
F
K
0
W
W
c
B
0
Tc  
A
0
D
1
P
1
User Direction of Feed  
Package  
A0  
B0  
D
D1  
E
F
K0  
1.1  
P1  
8.0  
P0  
P2  
T
TC  
W
WC  
3.5 x 4.5 TBD TBD 1.55  
1.5  
1.75  
5.5  
4.0  
2.0  
0.3  
0.07  
12.0 9.3  
±0.1 ±0.1 ±0.05 Min. ±0.1 ±0.1 ±0.1 Typ. Typ. ±0/05 Typ. ±0.005 ±0.3 Typ.  
Notes:  
A0, B0, and K0 dimensions are determined with respect to the EIA/JEDEC RS-481 rotational and lateral movement  
requirements (see sketches A, B, and C).  
Shipping Reel Dimensions  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
18  
Dimensions are in millimeters.  
1.0mm  
maximum  
10° maximum  
Typical component  
cavity center line  
1.0mm  
maximum  
B0  
Typical component  
center line  
10° maximum component rotation  
Sketch A (Side or Front Sectional View)  
Sketch C (Top View)  
A0  
Component Rotation  
Component lateral movement  
Sketch B (Top View)  
Component Rotation  
W1 Measured at Hub  
W2 max Measured at Hub  
B Min  
Dia C  
Dia D  
min  
Dia A  
max  
Dia N  
DETAIL AA  
See detail AA  
W3  
Tape  
Dim W3  
Width  
Dia A  
Dim B  
Dia C  
Dia D  
Dim N  
Dim W1  
Dim W2  
14.4 Max.  
18.4 Max.  
22.4 Max.  
(LSL–USL)  
8
7.9 ~ 10.4  
11.9 ~ 15.4  
15.9 ~ 19.4  
13.0  
+0.5/–0.2  
8.4  
+2.0/–0  
12  
330 Max.  
1.5 Min.  
20.2 Min.  
178 Min.  
16  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
19  
Tape and Reel Specification (Continued)  
MLP Embossed Tape Dimension  
Dimensions are in millimeters.  
D
P
0
P
2
T
E
F
K
0
W
W
c
B
0
Tc  
A
0
D
1
P
1
User Direction of Feed  
Package  
A0  
B0  
D
D1  
E
F
K0  
P1  
P0  
P2  
T
TC  
W
WC  
5 x 5  
5.35 5.35  
±0.1 ±0.1  
1.55  
1.5  
1.75  
5.5  
1.4  
2.0  
0.3  
0.07  
12  
9.3  
8 Typ. 4 Typ.  
±0.05 Min. ±0.1 ±0.1 ±0.1  
±0.05 Typ. ±0.005 ±0.3 Typ.  
6 x 6  
6.30 6.30  
±0.1 ±0.1  
Notes:  
Ao, Bo, and Ko dimensions are determined with respect to the EIA/JEDEC RS-481 rotational and lateral movement  
requirements (see sketches A, B, and C).  
Shipping Reel Dimension  
Dimensions are in millimeters.  
1.0mm  
maximum  
10° maximum  
Typical component  
cavity center line  
1.0mm  
maximum  
B0  
Typical component  
center line  
10°maximum component rotation  
Sketch A (Side or Front Sectional View)  
Sketch C (Top View)  
A0  
Sketch B (Top View)  
Component Rotation  
Component lateral movement  
Component Rotation  
W1 Measured at Hub  
W2 max Measured at Hub  
B Min  
Dia C  
Dia D  
min  
Dia A  
max  
Dia N  
DETAIL AA  
See detail AA  
W3  
Tape  
Dim W3  
Width  
Dia A  
Dim B  
Dia C  
Dia D  
Dim N  
Dim W1  
Dim W2  
14.4 Max.  
18.4 Max.  
22.4 Max.  
(LSL–USL)  
8
7.9 ~ 10.4  
11.9 ~ 15.4  
15.9 ~ 19.4  
13.0  
+0.5/–0.2  
8.4  
+2.0/–0  
12  
330 Max.  
1.5 Min.  
20.2 Min.  
178 Min.  
16  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
20  
Physical Dimensions  
Dimensions are in millimeters unless otherwise noted.  
2X  
0.10  
C
3.50  
2X  
(0.35)  
(0.5)  
0.10  
C
(0.6)  
2.5  
(0.75)  
TERMINAL  
A1 CORNER  
INDEX AREA  
4.50  
3.0  
0.5  
0.5  
Ø0.3±0.05  
X42  
BOTTOM VIEW  
0.15  
C
C
A B  
0.05  
0.89±0.082  
0.45±0.05  
(QA CONTROL VALUE)  
1.00 MAX  
0.21±0.04  
0.10  
C
0.08  
C
+0.1  
0.2  
C
0.23±0.05  
-0.0  
SEATING PLANE  
LAND PATTERN  
RECOMMENDATION  
Figure 25. Pb-Free 42-Ball Ultra Small Scale Ball Grid Array (USS-BGA), JEDEC MO-195, 3.5mm Wide  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
21  
Physical Dimensions (Continued)  
Dimensions are in millimeters unless otherwise noted.  
(DATUM A)  
Figure 26. Pb-Free 40-Terminal Molded Leadless Package (MLP), Quad, JEDEC MO-220, 6mm Square  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
22  
© 2006 Fairchild Semiconductor Corporation  
FIN224AC Rev.1.1.2  
www.fairchildsemi.com  
23  

相关型号:

FIN224AC_08

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN224AC_11

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN224C

24-Bit Low-Power Serializer/Deserializer
FAIRCHILD

FIN224CMLX

24-Bit Low-Power Serializer/Deserializer
FAIRCHILD

FIN24A

Low Voltage 24-Bit Bi-Directional Serializer/Deserializer with Multiple Frequency Ranges (Preliminary)
FAIRCHILD

FIN24AC

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24ACGFX

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24ACMLX

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24AC_07

22-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD

FIN24AGFX

Low Voltage 24-Bit Bi-Directional Serializer/Deserializer with Multiple Frequency Ranges (Preliminary)
FAIRCHILD

FIN24AMLX

Low Voltage 24-Bit Bi-Directional Serializer/Deserializer with Multiple Frequency Ranges (Preliminary)
FAIRCHILD

FIN24C

uSerDes Low Voltage 24-Bit Bi-Directional Serializer/Deserializer
FAIRCHILD