FR9809CPGTR [FITIPOWER]

21V, 5A, 500KHz Synchronous PWM-Buck DC/DC Converter;
FR9809CPGTR
型号: FR9809CPGTR
厂家: Fitipower    Fitipower
描述:

21V, 5A, 500KHz Synchronous PWM-Buck DC/DC Converter

文件: 总13页 (文件大小:1241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
fitipower integrated technology lnc.  
FR9809  
21V, 5A, 500KHz Synchronous PWM-Buck  
DC/DC Converter  
Description  
Features  
FR9809 is a high-efficiency synchronous step-down  
DC/DC converter that employs a special process  
technique to obtain very low RDS(ON) for the internal  
metaloxidesemiconductor field-effect transistor  
(MOSFET). The input operation voltage is in a wide  
range from 4.75V to 21V, and continuous load  
current capability is 5A. Control circuit is designed  
by a particular current mode which provides fast  
transient response and eases loop stabilization.  
High Efficiency up to 90%  
Internal MOSFET RDS(ON): 110mΩꢄ20mΩ  
Internal Compensation  
Input Operation Voltage Range: 4.75V to 21V  
5A Continuous Output Current  
Output Voltage down to 0.805V  
500KHz Oscillation Frequency  
Sync to External Clock from 300KHz to 800KHz  
Cycle-by-Cycle Current Limit  
Under Voltage Lockout  
This product has a very low standby current less  
Over-Temperature Protection with Auto Recovery  
<1μA Shutdown Current  
Thermal Enhanced SOP-8 (Exposed Pad)  
Package  
than 1μA in shutdown mode. When the ꢀꢁꢂꢃꢄꢀ  
pin voltage is less than 0.4V, FR9809 will turn off.  
Fault protection includes over current protection  
(OCP), under voltage lockout protection (UVLO) and  
over temperature protection (OTP) function.  
RoHS Compliant  
Applications  
Networking Equipment  
OLPC, Netbook  
This high-efficiency current mode step-down Green  
Power Converter” offers the standard SOP-8  
package with an exposed pad.  
Distributed Power System  
LCD Monitor, TV, STB  
External HDD  
Security System  
Pin Assignments  
Ordering Information  
FR9809□□□  
SP Package (SOP-8 Exposed Pad)  
TR: Tape/Reel  
G: Green  
C: Green  
8
7
6
5
1
2
VIN  
LX  
GND  
VCC  
9
GND  
Package Type  
SP: SOP-8 (Exposed Pad)  
3
4
FB  
LX  
SHDN/S  
BST  
Figure 1. Pin Assignment of FR9809  
FR9809-Preliminary 0.4-OCT-2012  
1
fitipower integrated technology lnc.  
FR9809  
Typical Application Circuit  
C4  
0.1μF  
5
4
R3  
100KΩ  
SHDN/S  
BST  
L1  
1.8μH  
2,3  
1
VOUT  
1.2V  
VIN  
LX  
VIN  
4.75V to 18V  
R1  
4.99K/1%  
C6  
(optional)  
FR9809  
C2  
47μF/6.3V  
CERAMIC  
C1  
22μF/25V  
CERAMIC  
6
7
FB  
VCC  
C3  
0.1μF  
GND  
8,9  
R2  
10K/1%  
Figure 2. Output 1.2V Application Circuit  
C4  
0.1μF  
5
4
R3  
100KΩ  
L1  
1.8μH  
BST  
SHDN/S  
2,3  
6
1
VIN  
VOUT  
1.2V  
LX  
FB  
VIN  
18V to 21V  
R1  
4.99K/1%  
C1  
22μF/25V  
CERAMIC  
C5  
C6  
(optional)  
FR9809  
330μF/25V  
EC x1  
C2  
47μF/6.3V  
CERAMIC  
7
VCC  
C3  
0.1μF  
GND  
8,9  
R2  
10K/1%  
Figure 3. High Input Voltage Application Circuit  
FR9809-Preliminary 0.4-OCT-2012  
2
fitipower integrated technology lnc.  
FR9809  
Functional Pin Description  
I/O  
Pin Name  
Pin No.  
Pin Function  
Voltage Feedback Input Pin. FB and VOUT are connected by a resistive voltage divider. This  
IC senses feedback voltage via FB and regulates it at 805mV.  
I
I
FB  
6
1
7
Power Supply Input Pin. Drive 4.75V~21V voltage to this pin to power on this chip. A 22µF  
ceramic bypass capacitor is connected between VIN and GND to eliminate noise.  
VIN  
Bias Supply Output Pin. A capacitor rating between 0.001µF~1µF must be connected from this  
pin to GND.  
O
VCC  
This pin provides a digital control to turn the converter on or off. For automatic start-up,  
connect the ꢀꢁꢂꢃꢄꢀ pin to VIN pin with a 100KΩ resistor. An external clock from 300KHz to  
800KHz can be applied to the ꢀꢁꢂꢃꢄꢀ pin to change oscillation frequency.  
I
5
 ꢀꢁꢂꢃ  
Power Switching Output Pin. This is the output pin that internal high-side NMOS switches to  
supply power.  
O
O
I
LX  
BST  
2,3  
4
High-Side Gate-Drive BST Input. A capacitor rating between 0.01µF~0.1µF must be connected  
from this pin to LX. It can boost the gate drive to fully turn on the internal high-side NMOS.  
GND  
8
Ground Pin. This pin is connected to the exposed pad with copper.  
Ground Pin. The exposed pad must be soldered to a large PCB area and connected to GND  
for maximum power dissipation.  
I
Exposed Pad  
9
Block Diagram  
SHDN/S  
1M  
VIN  
SHDN/S  
+
Oscillator  
+
Current Sense  
Amplifier  
CLK  
150KHz / 500KHz  
VCC  
Regulator  
-
+
VCC  
BST  
5V  
-
Vref2  
Current Limit  
Comparator  
High-Side  
MOSFET  
Control  
Logic  
LX  
+
Low-Side  
MOSFET  
-
FB  
-
PWM  
Comparator  
+
+
-
Vref1  
Rcomp  
Ccomp  
Error  
Amplifier  
Current Limit  
Low-Side  
GND  
Figure 4. Block Diagram of FR9809  
FR9809-Preliminary 0.4-OCT-2012  
3
fitipower integrated technology lnc.  
FR9809  
Absolute Maximum Ratings (Note1)  
Input Supply Voltage VIN ---------------------------------------------------------------------------------- -0.3V to +23V  
Enable Voltage ꢀꢁꢂꢃꢄꢀ ---------------------------------------------------------------------------------  
-0.3V to +23V  
LX Voltage VLX ---------------------------------------------------------------------------------------------- -0.3V to VIN +1V  
BST Voltage VBST ------------------------------------------------------------------------------------------ VLX -0.3V to VLX +6V  
All Other Pins Voltage ------------------------------------------------------------------------------------- -0.3V to +6V  
Maximum Junction Temperature (TJ) ------------------------------------------------------------------ +150°C  
Storage Temperature (TS) -------------------------------------------------------------------------------- -65°C to +150°C  
Lead Temperature (Soldering, 10sec.) ---------------------------------------------------------------- +260°C  
● Package Thermal Resistance (θJA) (Note2)  
SOP-8 (Exposed Pad) ------------------------------------------------------------------------ 60°C/W  
● Package Thermal Resistance (θJC)  
SOP-8 (Exposed Pad) ------------------------------------------------------------------------ 15°C/W  
Note 1Stresses beyond those listed under “Absolute Maximum Ratings" may cause permanent damage to the device.  
Note 2PCB heat sink copper area = 10mm2.  
Recommended Operating Conditions  
Input Supply Voltage VIN ---------------------------------------------------------------------------------- +4.75V to +21V  
Operation Temperature Range -------------------------------------------------------------------------- -40°C to +85°C  
FR9809-Preliminary 0.4-OCT-2012  
4
fitipower integrated technology lnc.  
FR9809  
Electrical Characteristics  
(VIN=12V, TA=25°C, unless otherwise specified.)  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
Max  
21  
1
Unit  
V
Input Supply Voltage  
4.75  
ꢀꢁꢂꢃ=0V  
VIN Shutdown Supply Current  
VIN Quiescent Supply Current  
Feedback Voltage  
ISD  
μA  
mA  
mV  
mΩ  
mΩ  
μA  
A
ꢀꢁꢂꢃ=2V, VFB=1V  
4.75VVIN21V  
IDDQ  
VFB  
1.5  
805  
110  
20  
780  
830  
10  
High-Side MOSFET RDS(ON) (Note2)  
Low-Side MOSFET RDS(ON) (Note2)  
MOSFET Leakage Current  
HSRDS(ON)  
LSRDS(ON)  
ILX(Leak)  
ILIMIT  
ꢀꢁꢂꢃ=0V, VLX=0V  
0
High-Side MOSFET Current Limit  
(Note2)  
8
Maximum Duty Cycle  
DMAX  
VFB=0.7V  
90  
%
Oscillation frequency  
FLX  
350  
300  
500  
150  
650  
800  
KHz  
KHz  
KHz  
V
Short-Circuit Oscillation Frequency  
Sync Frequency Range  
Input UVLO Threshold  
FLX(Short)  
FSYNC  
VFB=0.3V  
VUVLO(Vth) VIN Rising  
VUVLO(Hys)  
4
Under Voltage Lockout Threshold  
Hysteresis  
200  
mV  
V
ꢀꢁꢂꢃ (L)  
0.4  
ꢀꢁꢂꢃꢄꢀ Input Low Voltage  
ꢀꢁꢂꢃꢄꢀ Input High Voltage  
ꢀꢁꢂꢃꢄꢀ Input Current  
VCC Regulator  
ꢀꢁꢂꢃ (H)  
2.0  
V
ꢀꢁꢂꢃ  
VCC  
TSS  
ꢀꢁꢂꢃ=2V  
2
μA  
V
4.5  
600  
170  
Soft-Start Time  
μs  
Thermal Shutdown Threshold (Note 2)  
TSD  
°C  
Note 2Guarantee by design.  
FR9809-Preliminary 0.4-OCT-2012  
5
fitipower integrated technology lnc.  
FR9809  
Typical Performance Curves  
VIN=12V, VOUT=3.3V, C1=22μF, C2=47μF, L1=1.8μꢁ, TA=+25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN=5V  
VIN=12V  
VIN=12V  
VIN=21V  
VOUT=3.3V  
VOUT=1.2V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Load Current (A)  
Load Current (A)  
Figure 5. Efficiency vs. Loading  
Figure 6. Efficiency vs. Loading  
0.835  
0.83  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.825  
0.82  
0.815  
0.81  
0.805  
0.8  
VIN=12V  
VIN=21V  
VOUT=5V  
0.795  
0.79  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.785  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Load Current (A)  
Case Temperature ( Degrees C )  
Figure 7. Efficiency vs. Loading  
Figure 8. Feedback Voltage vs. Temperature  
650  
625  
600  
575  
550  
525  
500  
475  
450  
425  
400  
375  
350  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
-40 -30 -20 -10  
0
10 20 30 40 50  
60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Temperature ()  
Case Temperature ( Degrees C )  
Figure 9. Frequency vs. Temperature  
Figure 10. Current Limit vs. Temperature  
FR9809-Preliminary 0.4-OCT-2012  
6
fitipower integrated technology lnc.  
FR9809  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=3.3V, C1=22μF, C2=47μF, L1=1.8μꢁ, TA=+25°C, unless otherwise noted.  
IOUT=0A  
IOUT=5A  
VIN  
50mV/div. (AC)  
VIN  
200mV/div. (AC)  
VOUT 50mV/div. (AC)  
VLX 10V/div.  
VOUT 50mV/div. (AC)  
VLX 10V/div.  
ILX 2A/div.  
ILX 5A/div.  
2μs/div.  
2μs/div.  
Figure 11. DC Ripple Waveform  
Figure 12. DC Ripple Waveform  
IOUT=0A  
IOUT=5A  
5V/div.  
2V/div.  
5V/div.  
2V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT  
VOUT  
VLX  
10V/div.  
5A/div.  
VLX  
10V/div.  
5A/div.  
ILX  
ILX  
200μs/div.  
200μs/div.  
Figure 13. Startup Through ꢀꢁꢂꢃ Waveform  
Figure 14. Startup Through ꢀꢁꢂꢃ Waveform  
IOUT=0A  
IOUT=5A  
5V/div.  
2V/div.  
10V/div.  
5V/div.  
2V/div.  
 ꢀꢁꢂ  
 ꢀꢁꢂ  
VOUT  
VOUT  
VLX  
VLX  
10V/div.  
ILX  
5A/div.  
ILX  
5A/div.  
40ms/div.  
80μs/div.  
Figure 16. Shutdown Through ꢀꢁꢂꢃ Waveform  
Figure 15. Shutdown Through ꢀꢁꢂꢃ Waveform  
FR9809-Preliminary 0.4-OCT-2012  
7
fitipower integrated technology lnc.  
FR9809  
Typical Performance Curves (Continued)  
VIN=12V, VOUT=3.3V, C1=22μF, C2=47μF, L1=1.8μꢁ, TA=+25°C, unless otherwise noted.  
IOUT=0A  
IOUT=5A  
VIN 5V/div.  
VOUT 2V/div.  
VIN 5V/div.  
VOUT 2V/div.  
VLX 10V/div.  
ILX 5A/div.  
VLX 10V/div.  
ILX 5A/div.  
2ms/div.  
Figure 17. Startup Through VIN Waveform  
2ms/div.  
Figure 18. Startup Through VIN Waveform  
IOUT=5A  
IOUT=0A  
VIN 5V/div.  
VIN  
5V/div.  
VOUT 2V/div.  
VOUT 2V/div.  
VLX 10V/div.  
VLX 10V/div.  
ILX 5A/div.  
ILX  
5A/div.  
200ms/div.  
200ms/div.  
Figure 19. Shutdown Through VIN Waveform  
Figure 20. Shutdown Through VIN Waveform  
IOUT = 0A to 5A  
VOUT 200mV/div.  
VOUT 2V/div.  
VLX 10V/div.  
ILX 5A/div.  
ILX  
5A/div.  
20μs/div.  
400μs/div.  
Figure 21. Load Transient Waveform  
Figure 22. Short Protect Waveform  
FR9809-Preliminary 0.4-OCT-2012  
8
fitipower integrated technology lnc.  
FR9809  
Function Description  
Introduction  
Device Protection:  
1. Input Under Voltage Lockout  
FR9809 is  
step-down synchronous DC/DC converter.  
regulates input voltage from 4.75V to 21V and  
provides 5A of continuous load current.  
a
constant-frequency current-mode  
It  
When the power of FR9809 is on, the internal  
circuits will be held inactive until VIN exceeds the  
input UVLO threshold voltage. The regulator will  
be disabled when VIN falls below the input UVLO  
threshold voltage. The hysteretic of the UVLO  
comparator is 200mV.  
To achieve bias power supply, FR9809 contains an  
internal voltage regulator to support the internal  
circuits. For applications in which VIN is less than  
4.5V, output decreases and a 0.1µF ceramic  
capacitor are required for decoupling. If VIN is  
greater than 4.5V, the output of the regulator will be  
in full regulation.  
2. Short Circuit Protection  
The FR9809 provides short circuit protection  
function to prevent the device damaged from short  
condition. When the short condition occurs and  
the feedback voltage drops lower than 40% of the  
reference, the oscillator frequency will be reduced  
to 150KHz to prevent the inductor current  
The error amplifier compares the FB voltage with the  
internal 0.805V reference. And the voltage of error  
amplifier output is compared to the switch current to  
control the RS flip-flop. At the beginning of each  
clock cycle, the high-side NMOS turns on when the  
oscillator sets the RS flip-flop, and turns off when  
current comparator resets the RS flip-flop. Then the  
low-side NMOS will turn on until the clock period  
ends.  
increasing beyond the current limit.  
In the  
meantime, the current limit will also be reduced to  
lower the short current. Once the short condition  
is removed, the frequency and current limit will  
return to normal.  
3. Over Current Protection  
Internal Soft-Start  
The FR9809 over current protection function is  
implemented using cycle-by-cycle current limit  
architecture. The inductor current is monitored by  
measuring the high-side MOSFET series sense  
resistor voltage. When the load current increases,  
the inductor current will also increase. When the  
peak inductor current reaches the current limit  
threshold, the output voltage will start to drop.  
When the over current condition is removed, the  
output voltage will return to the regulated value.  
The internal soft-start function is used to eliminate  
the output voltage overshooting during start-up.  
When the chip initiates, the internal reference  
voltage will rise slowly to 0.805V and the internal  
COMP signal will rise slowly to achieve output  
voltage. The soft-start time is approximate 600μs.  
 ꢀꢁꢂꢃ  
VIN  
R3  
FR9809  
4. Over Temperature Protection  
SHDN/S  
The FR9809 incorporates an over temperature  
protection circuit to protect itself from overheating.  
When the junction temperature exceeds the thermal  
shutdown threshold temperature, the regulator will  
shutdown. When the junction temperature is less  
than the recovery threshold temperature, the chip  
will re-enable.  
The FR9809 ꢀꢁꢂꢃꢄꢀ pin provides digital control to  
turn on/turn off the regulator.  
For automatic  
start-up, tie ꢀꢁꢂꢃꢄꢀ and VIN with a resister, as  
shown in the figure. The recommended value of R3  
is 100KΩ. The FR9809 can be synchronized with  
an external clock from 300KHz to 800KHz by using  
the ꢀꢁꢂꢃꢄꢀ pin.  
FR9809-Preliminary 0.4-OCT-2012  
9
fitipower integrated technology lnc.  
FR9809  
Application Information  
Output Voltage Setting  
A low ESR capacitor is required to keep the noise  
minimum.  
Ceramic capacitors are better, but  
The output voltage VOUT is set by using a resistive  
divider from the output to FB. The FB pin regulated  
voltage is 0.805V. Thus the output voltage is:  
tantalum or low ESR electrolytic capacitors may  
also suffice. When using tantalum or electrolytic  
capacitors, a 0.1μF ceramic capacitor should be  
placed as close to the IC as possible.  
R1  
 
ꢇꢈT=0.805ꢉ 1+  
R2  
It is recommended that the input EC capacitor  
should be added for applications if the FR9809  
suffers high spike input voltage (ex. hot plug test).  
It can eliminate the spike voltage and induce the IC  
damage from high input voltage stress.  
Table 1 lists recommended values of R1 and R2 for  
most used output voltage.  
Table 1 Recommended Resistance Values  
VOUT  
R1 (1%)  
R2 (1%)  
VIN  
VIN  
5V  
30.9kΩ  
30.9kΩ  
4.99kΩ  
4.99kΩ  
4.99kΩ  
5.76kΩ  
9.76kΩ  
2.32kΩ  
3.92kΩ  
10kΩ  
18V to 21V  
FR9809  
C5  
330μF/25V 22μF/25V  
EC x1 MLCC x1  
C1  
3.3V  
2.5V  
1.8V  
1.2V  
Output Capacitor Selection  
The output capacitor is used to keep the DC output  
voltage and supply the load transient current.  
When operating in constant current mode, the  
output ripple is determined by four components:  
Resistors R1 and R2 should be placed close to the  
FB pin to prevent stray pickup.  
Input Capacitor Selection  
The use of the input capacitor is filtering the input  
voltage ripple and the MOSFETS switching spike  
voltage. Because the input current to the step-down  
converter is discontinuous, the input capacitor is  
required to supply the current to the converter to keep  
the DC input voltage. The capacitor voltage rating  
should be 1.25 to 1.5 times greater than the  
maximum input voltage. The input capacitor ripple  
current RMS value is calculated as:  
   
   
RꢆPPLꢌ t =ꢅRꢆPPLꢌ(ꢍꢊ t +ꢅRꢆPPLꢌ(ꢌꢀR(tꢊ  
+ꢅRꢆPPLꢌ(ꢌꢀLꢊ(tꢊ+ꢅꢃꢇꢆꢀꢌ(tꢊ  
The following figures show the form of the ripple  
contributions.  
VRIPPLE(ESR)(t)  
ꢆꢃ(RMꢀ=ꢆꢇꢈTꢉ ꢂꢉ 1ꢋꢂ  
ꢇꢈT  
ꢂ=  
(t)  
+
ꢆꢃ  
VRIPPLE(ESL) (t)  
Where D is the duty cycle of the power MOSFET.  
This function reaches the maximum value at D=0.5  
and the equivalent RMS current is equal to IOUT/2.  
The following diagram is the graphical representation  
of above equation.  
(t)  
(t)  
+
VRIPPLE(C) (t)  
5A  
4.5A  
4A  
3.5A  
FR9809-Preliminary 0.4-OCT-2012  
10  
fitipower integrated technology lnc.  
FR9809  
Application Information (Continued)  
+
Inductor Selection  
VNOISE (t)  
The output inductor is used for storing energy and  
filtering output ripple current. But the trade-off  
condition often happens between maximum energy  
storage and the physical size of the inductor. The  
first consideration for selecting the output inductor  
is to make sure that the inductance is large enough  
to keep the converter in the continuous current  
mode. That will lower ripple current and result in  
lower output ripple voltage. The ΔꢆL is inductor  
peak-to-peak ripple current:  
=
VRIPPLE(t)  
(t)  
ꢇꢈT  
 
ꢇꢈT  
ꢎꢆL=  
ꢉ 1ꢋ  
ꢇꢈT  
FꢇꢀꢍꢉL  
ꢆꢃ  
 
ꢇꢈT  
RꢆPPLꢌ(ꢌꢀR, pꢋpꢊ  
=
ꢉ 1ꢋ  
ꢉꢌꢀR  
FꢇꢀꢍꢉL  
ꢆꢃ  
The following diagram is an example to graphical  
represent ΔꢆL equation.  
ꢌꢀL  
RꢆPPLꢌ(ꢌꢀL, pꢋpꢊ  
=
ꢉꢅꢆꢃ  
L+ꢌꢀL  
ꢇꢈT  
8ꢉFꢇꢀꢍ2ꢉLꢉꢍꢇꢈT  
L=1.8μꢀ  
 
ꢇꢈT  
RꢆPPLꢌ(ꢍ, pꢋpꢊ  
=
ꢉ 1ꢋ  
ꢆꢃ  
L=2.2μꢀ  
L=4.7μꢀ  
Where FOSC is the switching frequency, L is the  
inductance value, VIN is the input voltage, ESR is the  
equivalent series resistance value of the output  
capacitor, ESL is the equivalent series inductance  
value of the output capacitor and the COUT is the  
output capacitor.  
VIN=12V, FOSC=500KHz  
Low ESR capacitors are preferred to use. Ceramic,  
tantalum or low ESR electrolytic capacitors can be  
used depending on the output ripple requirements.  
When using the ceramic capacitors, the ESL  
component is usually negligible.  
A good compromise value between size and  
efficiency is to set the peak-to-peak inductor ripple  
current ΔꢆL equal to 30% of the maximum load  
current. But setting the peak-to-peak inductor  
ripple current ΔꢆL between 20%~50% of the  
maximum load current is also acceptable. Then  
the inductance can be calculated with the following  
equation:  
It is important to use the proper method to eliminate  
high frequency noise when measuring the output  
ripple. The figure shows how to locate the probe  
across the capacitor when measuring output ripple.  
Remove the scope probe plastic jacket in order to  
expose the ground at the tip of the probe. It gives a  
very short connection from the probe ground to the  
capacitor and eliminates noise.  
ꢎꢆL=0.ꢏꢉꢆꢇꢈT(MAꢐꢊ  
ꢋꢅꢇꢈT ꢉꢅꢇꢈT  
L=  
ꢉFꢇꢀꢍꢉꢎꢆL  
To guarantee sufficient output current, peak inductor  
current must be lower than the FR9809 high-side  
MOSFET current limit. The peak inductor current  
is shown as below:  
Probe Ground  
ꢎꢆL  
PꢌAK=ꢆꢇꢈT(MAꢐꢊ  
+
2
VOUT  
GND  
Ceramic Capacitor  
FR9809-Preliminary 0.4-OCT-2012  
11  
fitipower integrated technology lnc.  
FR9809  
Application Information (Continued)  
Feedforward Capacitor Selection  
PCB Layout Recommendation  
The device’s performance and stability are  
dramatically affected by PCB layout. It is  
recommended to follow these general guidelines  
shown as below:  
Internal compensation function allows users saving  
time in design and saving cost by reducing the  
number of external components. The use of a  
feedforward capacitor C6 in the feedback network is  
recommended to improve the transient response or  
higher phase margin.  
1. Place the input capacitors and output capacitors  
as close to the device as possible. The traces  
which connect to these capacitors should be as  
short and wide as possible to minimize parasitic  
inductance and resistance.  
VOUT  
R1  
R2  
C6  
FR9809  
2. Place feedback resistors close to the FB pin.  
FB  
3. Keep the sensitive signal (FB) away from the  
switching signal (LX).  
4. The exposed pad of the package should be  
soldered to an equivalent area of metal on the  
PCB. This area should connect to the GND  
plane and have multiple via connections to the  
back of the PCB as well as connections to  
intermediate PCB layers. The GND plane area  
connecting to the exposed pad should be  
maximized to improve thermal performance.  
For optimizing the feedforward capacitor, knowing the  
cross frequency is the first thing. The cross  
frequency (or the converter bandwidth) can be  
determined by using a network analyzer. When  
getting the cross frequency with no feedforward  
capacitor identified, the value of feedforward  
capacitor C6 can be calculated with the following  
equation:  
5. Multi-layer PCB design is recommended.  
1
1
1
1
R1  
R2  
C3  
 
ꢍꢑ=  
+
2 ꢉFꢍRꢇꢀꢀ  
R1 R1 R2  
8
1
7
6
5
4
Where FCROSS is the cross frequency.  
To reduce transient ripple, the feedforward capacitor  
value can be increased to push the cross frequency  
Exposed  
GND  
Pad  
to higher region.  
Although this can improve  
transient response, it also decreases phase margin  
and causes more ringing. In the other hand, if more  
phase margin is desired, the feedforward capacitor  
value can be decreased to push the cross frequency  
C1  
C5  
+
C2  
2
3
VIN  
LX  
VOUT  
L1  
to lower region.  
In general, the feedforward  
capacitor range is between 10pF to 1nF.  
Figure 23. Recommended PCB Layout Diagram  
External Diode Selection  
For 5V input applications, it is recommended to add  
an external bootstrap diode. This helps improving  
efficiency. The bootstrap diode can be a low cost  
one such as 1N4148.  
D1  
1N4148  
VIN  
BST  
LX  
VIN  
5V  
FR9809  
C4  
FR9809-Preliminary 0.4-OCT-2012  
12  
fitipower integrated technology lnc.  
FR9809  
Outline Information  
SOP-8 (Exposed Pad) Package (Unit: mm)  
DIMENSION IN MILLIMETER  
SYMBOLS  
UNIT  
MIN  
1.25  
0.00  
1.25  
0.31  
4.80  
MAX  
1.70  
0.15  
1.55  
0.51  
5.00  
A
A1  
A2  
B
D
D1  
E
3.04  
3.80  
2.15  
1.20  
5.80  
0.40  
3.50  
4.00  
2.41  
1.34  
6.20  
1.27  
E1  
e
H
L
NoteFollowed From JEDEC MO-012-E.  
Carrier Dimensions  
Life Support Policy  
Fitipower’s products are not authorized for use as critical components in life support devices or other medical systems.  
FR9809-Preliminary 0.4-OCT-2012  
13  

相关型号:

FR9809SPCTR

21V, 5A, 500KHz Synchronous PWM-Buck DC/DC Converter
FITIPOWER

FR9855

18V, 5.5A Synchronous Step-Downn DC/DC Converter
FITIPOWER

FR9855DA

18V, 5.5A Synchronous Step-Downn DC/DC Converter
FITIPOWER

FR9855SP

18V, 5.5A Synchronous Step-Downn DC/DC Converter
FITIPOWER

FR9886C

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886CSOCTR

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886CSPCTR

21V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886D

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886DSOCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9886DSPCTR

23V, 2A/2.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888C

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER

FR9888CSECTR

23V, 3.5A, 340KHz Synchronous Step-Down DC/DC Converter
FITIPOWER