MRF6V10250HSR3 [FREESCALE]

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET; 射频功率场效应晶体管N沟道增强模式横向MOSFET
MRF6V10250HSR3
型号: MRF6V10250HSR3
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFET
射频功率场效应晶体管N沟道增强模式横向MOSFET

晶体 晶体管 功率场效应晶体管 射频
文件: 总10页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6V10250HS  
Rev. 0, 2/2008  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistor  
N-Channel Enhancement-Mode Lateral MOSFET  
RF Power transistor designed for applications operating at frequencies  
between 1030 and 1090 MHz, 1% to 20% duty cycle. This device is suitable for  
use in pulsed applications.  
MRF6V10250HSR3  
Typical Pulsed Performance: VDD = 50 Volts, IDQ = 250 mA,  
P
out = 250 Watts Peak, f = 1090 MHz, Pulse Width = 100 μsec,  
Duty Cycle = 10%  
1090 MHz, 250 W, 50 V  
PULSED  
Power Gain — 21 dB  
Drain Efficiency — 60%  
LATERAL N-CHANNEL  
RF POWER MOSFET  
Capable of Handling 10:1 VSWR, @ 50 Vdc, 1090 MHz, 250 Watts Peak  
Power  
Features  
Characterized with Series Equivalent Large-Signal Impedance Parameters  
Internally Matched for Ease of Use  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Greater Negative Gate-Source Voltage Range for Improved Class C  
Operation  
RoHS Compliant  
In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.  
CASE 465A-06, STYLE 1  
NI-780S  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
-0.5, +100  
-6.0, +10  
- 65 to +150  
150  
Unit  
Vdc  
Vdc  
°C  
Drain-Source Voltage  
V
DSS  
Gate-Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
°C  
C
T
200  
°C  
J
Table 2. Thermal Characteristics  
Characteristic  
(1,2)  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 79°C, 250 W Pulsed, 100 μsec Pulse Width, 10% Duty Cycle  
R
θ
JC  
0.10  
°C/W  
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
2 (Minimum)  
B (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Gate-Source Leakage Current  
I
100  
500  
50  
2
nAdc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain-Source Breakdown Voltage  
(V = 0 Vdc, I = 100 mA)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
(V = 90 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 528 μAdc)  
V
V
1
2
1.8  
2.4  
3
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 250 mAdc, Measured in Functional Test)  
DD  
D
Drain-Source On-Voltage  
(V = 10 Vdc, I = 1.32 Adc)  
V
0.25  
GS  
D
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
0.8  
340  
280  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 250 mA, P = 250 W Peak (25 W Avg.), f = 1090 MHz,  
DD  
DQ  
out  
Pulsed, 100 μsec Pulse Width, 10% Duty Cycle  
Power Gain  
G
19  
55  
21  
60  
23  
-9  
dB  
%
ps  
Drain Efficiency  
η
D
Input Return Loss  
IRL  
-12  
dB  
1. Part internally matched both on input and output.  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
2
V
SUPPLY  
+
+
C12  
C15  
C13  
C14  
C7  
C6  
L1  
R2  
V
BIAS  
L2  
RF  
OUTPUT  
R1  
Z6  
Z7  
Z8  
Z9  
Z10  
RF  
INPUT  
C10  
Z1  
Z2  
Z3  
Z4  
Z5  
C8 C9  
C11  
C1  
DUT  
C2  
C3  
C4 C5  
Z1  
0.40x 0.080Microstrip  
1.29x 0.080Microstrip  
0.22x 0.480Microstrip  
Z5, Z6  
Z10  
PCB  
0.625x 0.300Microstrip  
0.430x 0.080Microstrip  
Arlon CuClad 250GX-0300-55-22, 0.030, ε = 2.55  
Z2*, Z9*  
Z3*, Z8*  
Z4, Z7  
r
0.22x 0.625x 0.220Taper  
* Line length includes microstrip bends  
Figure 1. MRF6V10250HSR3 Test Circuit Schematic  
Table 5. MRF6V10250HSR3 Test Circuit Component Designations and Values  
Part  
Description  
Part Number  
ATC100B241JT500XT  
ATC100B1R8CT500XT  
ATC100B3R3CT500XT  
ATC100B5R1CT500XT  
ATC100B390JT500XT  
C1825C225J5RAC  
ATC100B4R7CT500XT  
EKME633ELL471MK25S  
A02TKLC  
Manufacturer  
ATC  
C1  
240 pF Chip Capacitor  
C2, C9, C11  
1.8 pF Chip Capacitors  
3.3 pF Chip Capacitor  
ATC  
C3  
ATC  
C4, C5  
5.1 pF Chip Capacitors  
39 pF Chip Capacitors  
2.2 μF, 50 V Chip Capacitors  
4.7 pF Chip Capacitor  
ATC  
C6, C10, C12  
ATC  
C7, C15  
C8  
Kemet  
ATC  
C13, C14  
L1  
470 μF, 63 V Electrolytic Capacitors  
5 nH, 2 Turn Inductor  
Multicomp  
Coilcraft  
Freescale  
Vishay  
Vishay  
L2  
7 nH, Hand Wound  
2T, 18awg  
R1  
10 Ω, 1/4 W Chip Resistor  
20 Ω, 1 W Chip Resistor  
CRCW120610R0FKEA  
CRCW251220R0FKEA  
R2  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
3
C7  
R2  
C6  
C13  
C14  
C15  
C12  
L1  
R1  
C10  
C1  
C2  
C5  
C4  
L2  
C8  
C9  
C11  
C3  
MRF6V10250H Rev. 3  
Figure 2. MRF6V10250HSR3 Test Circuit Component Layout  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
50  
C
oss  
C
iss  
Measured with 30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
10  
V
GS  
T = 150°C  
J
10  
1
T = 175°C  
J
C
rss  
T = 200°C  
J
T = 25°C  
C
0.1  
1
0
10  
V
20  
30  
40  
50  
1
10  
100  
300  
, DRAIN−SOURCE VOLTAGE (VOLTS)  
V
, DRAIN−SOURCE VOLTAGE (VOLTS)  
DS  
DS  
Figure 3. Capacitance versus Drain-Source Voltage  
Figure 4. DC Safe Operating Area  
24  
70  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
P3dB = 54.94 dBm (311 W)  
P1dB = 54.55 dBm (285 W)  
Ideal  
22  
60  
50  
40  
30  
Actual  
G
ps  
20  
18  
16  
η
D
V
= 50 Vdc, I = 250 mA, f = 1090 MHz  
DQ  
V
= 50 Vdc, I = 250 mA, f = 1090 MHz  
DQ  
DD  
DD  
Pulse Width = 100 μsec, Duty Cycle = 10%  
Pulse Width = 100 μsec, Duty Cycle = 10%  
50  
100  
, OUTPUT POWER (WATTS) PULSED  
400  
26  
28  
30  
32  
34  
36  
38  
P
P , INPUT POWER (dBm) PULSED  
in  
out  
Figure 5. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 6. Pulsed Output Power versus  
Input Power  
23  
22  
22  
21  
20  
19  
18  
17  
16  
15  
14  
I
= 1 A  
DQ  
750 mA  
500 mA  
21  
20  
19  
18  
17  
250 mA  
50 V  
45 V  
40 V  
35 V  
V
= 50 Vdc, f = 1090 MHz  
DD  
V
= 30 V  
I
= 250 mA, f = 1090 MHz  
DD  
DQ  
Pulse Width = 100 μsec, Duty Cycle = 10%  
Pulse Width = 100 μsec  
Duty Cycle = 10%  
50  
100  
400  
50  
100  
, OUTPUT POWER (WATTS) PULSED  
400  
P
, OUTPUT POWER (WATTS) PULSED  
P
out  
out  
Figure 8. Pulsed Power Gain versus  
Output Power  
Figure 7. Pulsed Power Gain versus  
Output Power  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
400  
300  
200  
100  
0
24  
70  
60  
T = −30_C  
C
G
ps  
25_C  
85_C  
T = −30_C  
C
22  
20  
18  
18  
25_C  
85_C  
50  
40  
55_C  
V
= 50 Vdc  
= 250 mA  
DD  
η
D
I
DQ  
f = 1090 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 10%  
V
= 50 Vdc, I = 250 mA, f = 1090 MHz  
DQ  
DD  
Pulse Width = 100 μsec, Duty Cycle = 10%  
100  
, OUTPUT POWER (WATTS) PULSED  
30  
0
1
2
3
4
5
6
50  
400  
P , INPUT POWER (WATTS) PULSED  
in  
P
out  
Figure 9. Pulsed Power Output versus  
Power Input  
Figure 10. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
7
10  
6
10  
5
10  
4
10  
3
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 250 W Peak, Pulse Width = 100 μsec,  
DD  
out  
Duty Cycle = 10%, and η = 60%.  
D
MTTF calculator available at http:/www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 11. MTTF versus Junction Temperature  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
6
Z = 10 Ω  
o
Z
f = 1090 MHz  
load  
f = 978 MHz  
f = 978 MHz  
Z
source  
f = 1090 MHz  
V
= 50 Vdc, I = 250 mA, P = 250 W Peak  
DQ out  
DD  
f
Z
Z
load  
W
source  
W
MHz  
978  
1.67 - j2.04  
2.39 - j2.23  
3.26 - j3.72  
4.3 - j2.72  
5.66 - j2.42  
5.85 - j2.39  
1030  
1090  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 12. Series Equivalent Source and Load Impedance  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
4X U  
(FLANGE)  
4X Z  
(LID)  
B
1
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M−1994.  
2. CONTROLLING DIMENSION: INCH.  
3. DELETED  
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY  
FROM PACKAGE BODY.  
2X K  
2
B
(FLANGE)  
D
INCHES  
DIM MIN MAX  
MILLIMETERS  
M
M
M
bbb  
T A  
B
MIN  
20.45  
9.65  
3.18  
12.57  
0.89  
0.08  
1.45  
4.32  
19.61  
19.61  
9.27  
9.27  
−−−  
MAX  
20.70  
9.91  
4.32  
12.83  
1.14  
0.15  
1.70  
5.33  
20.02  
20.02  
9.53  
9.52  
1.02  
0.76  
A
B
0.805  
0.380  
0.125  
0.495  
0.035  
0.003  
0.057  
0.170  
0.774  
0.772  
0.365  
0.365  
−−− 0.040  
−−− 0.030  
0.005 REF  
0.010 REF  
0.015 REF  
0.815  
0.390  
0.170  
0.505  
0.045  
0.006  
0.067  
0.210  
0.786  
0.788  
0.375  
0.375  
C
D
E
(LID)  
N
(LID)  
R
F
M
M
M
M
M
ccc  
T A  
B
B
M
M
M
M
B
H
ccc  
T A  
T A  
K
(INSULATOR)  
S
M
(INSULATOR)  
M
N
M
M
M
aaa  
B
bbb  
T A  
R
S
H
U
Z
−−−  
C
aaa  
bbb  
ccc  
0.127 REF  
0.254 REF  
0.381 REF  
3
F
SEATING  
PLANE  
E
A
STYLE 1:  
T
PIN 1. DRAIN  
2. GATE  
5. SOURCE  
A
(FLANGE)  
CASE 465A-06  
ISSUE H  
NI-780S  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
8
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
Feb. 2008  
Initial Release of Data Sheet  
MRF6V10250HSR3  
RF Device Data  
Freescale Semiconductor  
9
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2008. All rights reserved.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6V10250HS  
Rev. 0, 2/2008  

相关型号:

MRF6V12250HR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V12250HR3

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, CASE 465-06, NI-780, 2 PIN
NXP

MRF6V12250HR5

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, NI-780, CASE 465-06, 2 PIN
NXP

MRF6V12250HSR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V12250HSR5

Pulsed Lateral N-Channel RF Power MOSFET, 960-1215 MHz, 275 W, 50 V
NXP

MRF6V12500GSR5

RF Power Field-Effect Transistor, 1-Element, L Band, Silicon, N-Channel, Metal-oxide Semiconductor FET
NXP

MRF6V12500H

RF Power Field Effect Transistors
FREESCALE

MRF6V12500HR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF6V12500HR3_10

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF6V12500HR5

RF Power Field Effect Transis
FREESCALE

MRF6V12500HR5

L BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, NI-780, CASE 465-06, 2 PIN
NXP

MRF6V12500HSR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE