MB89P915PF-101 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89P915PF-101
型号: MB89P915PF-101
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器和处理器 外围集成电路 可编程只读存储器 时钟
文件: 总53页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12521-3E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89910 Series  
MB89913/915/P915/PV910  
DESCRIPTION  
The MB89910 series has been developed as a general-purpose version of the F2MC*-8L family consisting of  
proprietary 8-bit, single-chip microcontrollers.  
In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as  
dual-clock control system, five operating speed control stages, timers, a serial interface, an A/D converter, a  
buzzer output, a low-voltage detection reset, high-voltage driver, a watch prescaler, and external interrupts.  
The MB89910 series is applicable to a wide range of applications from consumer products to industrial  
equipments.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• Minimum execution time: 0.50 µs/8.0 MHz oscillation  
• Interrupt processing time: 4.50 µs/8.0 MHz oscillation  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• Dual-clock control system  
(Continued)  
PACKAGE  
48-pin Plastic SH-DIP  
48-pin Plastic QFP  
64-pin Ceramic MDIP  
(FPT-48P-M15)  
(DIP-48P-M01)  
(MDP-64C-P02)  
MB89910 Series  
(Continued)  
• High-voltage ports (built-in a pull-down resistor capable)  
8 ports for large current  
10 ports for small current  
• 8-bit PWM timer: 1 channel  
• 16-bit timer/counter: 1 channel  
• 21-bit timebase timer  
• 8-bit serial I/O: 1 channel  
• 8-bit A/D converter: 8 channels  
• External interrupt  
Edge detection function  
Two channels, including one of which voltage can be applied from –0.3 to +7.0 V  
• Low-voltage detection reset (excluding the MB89PV910)  
• Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)  
• Reset output and power-on reset function  
• Watch prescaler  
2
MB89910 Series  
PRODUCT LINEUP  
Partnumber  
Parameter  
MB89915  
MB89913  
MB89P915  
MB89PV910  
Classification  
ROM size  
Piggyback/  
One-time PROM evaluation product  
Mass production product  
(mask ROM product)  
product  
(for evaluation and  
development)  
8 K × 8 bits  
16 K × 8 bits  
(internal mask  
ROM)  
16 K × 8 bits  
32K × 8 bits  
(internal mask  
ROM)  
(internal PROM, (Piggyback)  
programmable with (External ROM)  
general-purpose  
EPROM  
programmer)  
RAM size  
256 × 8 bits  
512 × 8 bits  
1 K × 8 bits  
CPU functions  
Number of instructions:  
Instruction bit length:  
Instruction length:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
Data bit length:  
Minimum execution time:  
0.50 µs/8.0 MHz to 8.00 µs/8.0 MHz, or  
61 µs/32.768 kHz  
Interrupt processing time: 4.5 µs/8.0 MHz to 72.0 µs/8.0 MHz, or  
549.3 µs/32.768 kHz  
Note: The above times depend on the gear  
function.  
Ports  
High-voltage output ports (P-ch open-drain):  
8 (P10 to P17 for large current)  
10 (P20 to P27 and P50 to P51 for small current)  
13 (P00 to P07, P34 to P37, and P40)  
I/O ports (CMOS):  
I/O ports (N-ch open-drain): 6 (P30 to P33, P41, P42)  
Input ports (CMOS):  
Total:  
2 (P60 and P61 also serve as a subclock pin)  
39  
Timebase timer  
(Timer 1)  
Capable of generating four different intervals at 8.0-MHz oscillation: 0.26, 0.51, 1.02,  
and 524.0 ms  
8-bit PWM timer (Timer 2) 8-bit timer operation (square wave output capable. Operation clock: 1, 2, 8, or 16  
instruction cycles)  
8-bit resolution PWM operation (Conversion cycle: 128 µs to 2.0 ms at 8.0 MHz)  
16-bit timer/counter  
(Timer 3)  
16-bit timer operation (operating clock: 1 instruction cycle)  
16-bit event counter operation (Rising/falling/both edges selectable)  
8-bit serial I/O  
8 bits  
LSB first/MSB first selectable  
Transfer clock (external, 4/8/16 instruction cycles)  
8-bit A/D converter  
8-bit resolution × 8 channels  
A/D conversion mode (conversion time of 22.0 µs/8.0 MHz)  
Sense mode (conversion time of 6.0 µs/8.0 MHz)  
Continuous activation enabled by external clock or internal clock  
Reference voltage input (AVR) is provided.  
(Continued)  
3
MB89910 Series  
(Continued)  
Partnumber  
MB89915  
MB89913  
MB89P915  
MB89PPV910  
Parameter  
External interrupt  
2 independent channels (edge selection, interrupt vector, factor flag)  
Rising/ falling/both edges selectable  
Built-in analog noise canceller  
Used also for wake-up stop/sleep modes.  
(Edge detection is also permitted in stop mode.)  
Low-voltage detection  
reset  
Continuous operation  
(detection power supply voltage of 4.0±0.3 V, 3.6±0.3 V or  
3.3±0.3 V)  
Not available  
Intermittent operation  
(Activated for each watch interrupt under the dual-clock sys-  
tem)  
Low-power consumption  
(Standby mode)  
Sleep mode, stop mode, and watch mode  
CMOS  
Process  
Operating voltage*  
3.8 V to 5.5 V  
4.5 V to 5.5 V  
EPROM for use  
MBM27C256A-  
20CZ  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
In the case of the MB89PV910, the voltage varies with the ICE or the EPROM to be connected.  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89913  
Package  
MB89915  
MB89PV910  
MB89P915  
DIP-48P-M01  
FPT-48P-M15  
MDP-64C-P02  
×
×
1
*
2
×
*
: Available  
×: Not available  
*1: Under examination for development  
*2: Available by conversion from MDIP-64 to SH-DIP-48  
64SD-48SD-8L2: For conversion (MDP-64C-P02) DIP-48P-M01  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
Note: For more information about each package, see section “Package Dimensions.”  
4
MB89910 Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
• The stack area, etc., is set at the upper limit of the RAM.  
2. Current Consumption  
• In the case of the MB89PV910, add the current consumed by the EPROM which is connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same. (For more information, see sections  
Electrical Characteristics” and “Example Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• A pull-down resistor for P10 to P17, P20 to P27, and for P50 to P51 cannot be set for the MB89P915 and  
MB89PV910. The MB89915 and MB89913 allow a pull-down resistor to be set for individual pins. Such pins  
on the MB89P915 and MB89PV910 are fixed to have no pull-down resistor.  
• The low-voltage detection reset cannot be used on the MB89PV910. The voltage to be detected by the low-  
voltage detection reset is set by using a register for the MB89P915 and by using a mask option for the MB89915  
and MB89913. If the detection voltage has been set to a lower value than the operating voltage, however, use  
the gear function to operate the device with the faster clock at a lower speed, or operate the device with the  
slower clock. Note that the results of operation are unpredictable if the device is attempted to operate at a  
lower voltage than the operating voltage with the faster clock put in top gear.  
5
MB89910 Series  
PIN ASSIGNMENT  
(Top view)  
1
2
3
4
5
6
7
8
VCC  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AVSS  
AVR  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
VFDP  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P50  
P51/BZ1  
TEST  
X1  
P37/AN7  
P36/AN6  
P35/AN5  
P34/AN4  
P33/AN3  
P32/AN2  
P31/AN1  
P30/AN0  
P07/SCK  
P06/SO  
P05/SI  
P04/PWO  
P03/EC  
P02/ADST  
P01/BZ2  
P00  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P61/X1A  
P60/X0A  
P42  
P41/INT1  
P40/INT0  
RST  
X0  
VSS  
(DIP-48P-M01)  
(Top view)  
P33/AN3  
P32/AN2  
P31/AN1  
P30/AN0  
P07/SCK  
P06/SO  
P05/SI  
P04/PWO  
P03/EC  
P02/ADST  
P01/BZ2  
P00  
1
2
3
4
5
6
7
8
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P15  
P16  
P17  
VFDP  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
Under examination  
for development  
10  
11  
12  
(FPT-48P-M15)  
6
MB89910 Series  
(Top view)  
VCC  
1
2
3
4
5
6
7
8
AVSS  
AVR  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
VFDP  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P50  
P51/BZ1  
TEST  
X1  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
VCC  
A14  
A13  
A8  
VPP  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
P37/AN7  
P36/AN6  
P35/AN5  
P34/AN4  
P33/AN3  
P32/AN2  
P31/AN1  
P30/AN0  
P07/SCK  
P06/SO  
P05/SI  
P04/PWO  
P03/EC  
P02/ADST  
P01/BZ2  
P00  
A9  
A11  
OE  
A10  
CE  
O8  
O7  
O6  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
A0  
O1  
O2  
O3  
VSS  
O5  
O4  
P61/X1A  
P60/X0A  
P42  
P41/INT1  
P40/INT0  
RST  
X0  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
(MDP-64C-P02)  
7
MB89910 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
SH-  
QFP*2  
MDIP*3  
DIP*1  
26  
27  
20  
20  
21  
14  
42  
43  
20  
X0  
A
I
Main clock crystal oscillator pins  
X1  
X0A/P60  
These pins can select either general-purpose CMOS  
inputs or subclock oscillator pins by the mask options.  
When these pins are used as a general-purpose input  
pin, the pin is a hysteresis input with a built-in noise  
canceller.  
19  
24  
13  
18  
19  
24  
X1A/P61  
RST  
C
Reset I/O pin  
This pin is an N-ch open-drain output type with pull-up  
resistor and a hysteresis input type. “L” is output from  
this pin by an internal source. The internal circuit is  
initialized by the input of “L”. This pin is with a noise  
canceller.  
18  
17  
16  
12  
11  
10  
18  
17  
16  
P00  
D
D
D
General-purpose CMOS I/O port  
This port input is a hysteresis input, with a built-in  
noise canceller.  
P01/BZ2  
P02/ADST  
General-purpose CMOS I/O port  
This port input is a hysteresis input, with a built-in  
noise canceller. Also serves as a buzzer output.  
General-purpose CMOS I/O port  
This port input is a hysteresis input, with a built-in  
noise canceller. Also serves as the external activation  
pin for the A/D converter.  
15  
14  
9
8
15  
14  
P03/EC  
D
General-purpose CMOS I/O port  
This port input is a hysteresis input, with a built-in  
noise canceller. Also serves as the external clock input  
for the 16-bit timer/counter.  
P04/PWO  
D
D
D
G
General-purpose CMOS I/O port  
This port input is a hysteresis input, with a built-in  
noise canceller. Also serves as the PWM output for  
the 8-bit PWM timer.  
13,  
12  
7,  
6
13,  
12  
P05/SI,  
P06/SO  
General-purpose CMOS I/O ports  
These port inputs are a hysteresis input, with a built-in  
noise canceller. Also serve as serial data outputs for  
the 8-bit serial interface.  
11  
5
11  
P07/SCK  
General-purpose CMOS I/O port  
This port input is a hysteresis input, with a built-in  
noise canceller. Also serves as the serial transfer  
clock output for the 8-bit serial interface.  
47 to 40 41 to 34 63 to 56 P10 to P17  
P-ch high-voltage open-drain output ports for large  
current  
(Continued)  
*1: DIP-48P-M01  
*2: FPT-48P-M15  
*3: MDP-64C-P02  
8
MB89910 Series  
(Continued)  
Pin no.  
QFP*2  
Circuit  
type  
Pin name  
Function  
SH-  
MDIP*3  
DIP*1  
38 to 31 32 to 25 54 to 47 P20 to P27  
G
H
P-ch high-voltage open-drain output ports for small  
current  
10 to 7  
6 to 3  
4 to 1  
10 to 7 P30/AN0 to  
P33/AN3  
General-purpose N-ch open-drain I/O ports  
These port inputs are a hysteresis input, each with a  
built-in noise canceller. Although the pins are also  
serve as an analog inputs, an analog input does not  
pass through their noise cancellers.  
48 to 45  
6 to 3  
P34/AN4 to  
P37/AN7  
F
General-purpose CMOS I/O ports  
These port inputs are a hysteresis input, each with a  
built-in noise canceller. Although the pins are also serve  
as an analog inputs, an analog input does not pass  
through their noise cancellers.  
23  
22  
21  
17  
16  
15  
23  
22  
21  
P40/INT0  
P41/INT1  
P42  
D
E
E
General-purpose CMOS I/O port  
This port input is a hysteresis input, with a built-in noise  
canceller. Also serves as an external interrupt. External  
interrupt input passes through the noise canceller.  
General-purpose N-ch open-drain I/O port  
This port input is a hysteresis input, with a built-in noise  
canceller. Also serves as an external interrupt. External  
interrupt input passes through the noise canceller.  
General-purpose N-ch open-drain I/O port  
This port input is a hysteresis input, with a built-in noise  
canceller.  
30  
29  
24  
23  
46  
45  
P50  
G
G
P-ch high-voltage open-drain output ports for small  
current  
P51/BZ1  
P-ch high-voltage open-drain output port for small  
current  
Also serves as a buzzer output.  
28  
39  
22  
33  
44  
55  
TEST  
VFDP  
B
Operating mode selection pin  
Usually, connect to VSS directly. On the product with an  
EPROM, the pin is the VPP pin.  
Voltage supply pin connected to a pull-down resistor for  
ports 1, 2, and 5 In products without a pull-down  
resistor, in the MB89P915, and in the MB89PV910, this  
pin should be left open.  
(Continued)  
*1: IP-48P-M01  
*2: FPT-48P-M15  
*3: MDP-64C-P02  
9
MB89910 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
Function  
SH-  
QFP*2  
MDIP*3  
DIP*1  
48  
25  
1
42  
19  
43  
64  
32,41  
1
VCC  
VSS  
Power supply pin  
Power supply (GND) pin  
AVSS  
A/D converter power supply pin  
Use this pin at the same voltage as VSS.  
2
44  
2
AVR  
A/D converter reference voltage input pin  
*1: IP-48P-M01  
*2: FPT-48P-M15  
*3: MDP-64C-P02  
10  
MB89910 Series  
• External EPROM pins (MDIP only)  
Pin no.  
Pin name  
I/O  
Function  
MDIP*  
65  
VPP  
O
O
“H” level output pin  
Address output pins  
66  
67  
68  
69  
70  
71  
72  
73  
74  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
75  
76  
77  
O1  
O2  
O3  
I
Data input pins  
78  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
79  
80  
81  
82  
83  
O4  
O5  
O6  
O7  
O8  
84  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
85  
86  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
87  
88  
89  
A11  
A9  
A8  
O
Address output pin  
90  
91  
92  
A13  
A14  
VCC  
O
O
O
EPROM power supply pin  
* : MDP-64C-P02  
11  
MB89910 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• Main clock  
X1  
X0  
At an oscillation feedback resistor of approximately  
1 M/5.0 V  
N-ch  
P-ch  
Main clock control signal  
B
C
• At an output pull-up resistor (P-ch) of approximately  
50 k/5.0 V  
• CMOS hysteresis input (with a noise canceller)  
R
P-ch  
N-ch  
Hysteresis input (with a noise canceller)  
D
• CMOS I/O  
• CMOS hysteresis input (with a noise canceller)  
P-ch  
N-ch  
Hysteresis input (with a noise canceller)  
E
• N-ch open-drain I/O  
• CMOS hysteresis input (with a noise canceller)  
N-ch  
Hysteresis input (with a noise canceller)  
(Continued)  
12  
MB89910 Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS output  
P-ch  
• CMOS hysteresis input (with a noise canceller  
excluding analog inputs)  
N-ch  
Port  
Hysteresis input (with a noise canceller)  
Analog input  
G
• P-ch high-voltage open-drain output  
• At an output pull-down resistor of approximately  
100 k/5.0 V  
P-ch  
VFDP  
H
• N-ch open-drain output  
• CMOS hysteresis input (with a noise canceller  
excluding analog inputs)  
N-ch  
Hysteresis input (with a noise canceller)  
Analog input  
I
• Subclock  
Port  
The oscillation feedback resistor is built only in the  
MB89PV910.  
• CMOS hysteresis input (with a noise canceller)  
when no subclock is being used  
Hysteresis input (with a noise canceller)  
X1A  
X0A  
N-ch  
P-ch  
Subclock control signal  
Port  
Hysteresis input (with a noise canceller)  
13  
MB89910 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuationratewillbelessthan0.1V/msatthetimeofamomentaryfluctuationsuchaswhenpowerisswitched.  
6. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and  
wake-up from stop mode.  
14  
MB89910 Series  
PROGRAMMING TO EPROM ON THE MB89P915  
The MB89P915 is an OTPROM version of the MP89910 series.  
1. Features  
• 16-Kbyte PROM on chip  
2. Memory Space  
Memory space in each mode such as 16-Kbyte PROM mode is diagrammed below.  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
MB89P915  
I/O  
0000H  
0080H  
RAM  
0280H  
8000H  
Not available  
0000H  
Not available  
(Read value FFH)  
Free space  
(Read value FFH)  
4000H  
C000H  
Program area  
(PROM)  
Program area  
(PROM)  
16 KB  
16 KB  
FFFFH  
7FFFH  
3. Programming to the EPROM  
Since the MB89P915 requires a special method for programming to its PROM, the types of general-purpose  
EPROM programmers applicable to the MB89P915 are limited. Programming to the PROM on the MB89P915  
requires an EPROM programmer applicable to the MB89P915 and a dedicated adapter.  
When the operating ROM area for a single chip is 16 Kbytes (C000H to FFFFH) the PROM can be programmed  
as follows:  
• Programming procedure  
(1) Set the EPROM programmer to the MB89P195.  
(2) Load program data into the EPROM programmer at 4000H to 7FFFH. (note that addresses 0C000H to 0FFFFH  
in the operation mode correspond to 4000H to 7FFFH in EPROM mode.)  
(3) Program with the EPROM programmer.  
15  
MB89910 Series  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer  
Recommended programmer manufac-  
turer  
and programmer name  
Compatible socket adapter  
Part no.  
Package  
Data I/O Co., Ltd.  
Sun Hayato Co., Ltd.  
UNISITE  
(ver.5.0 or  
later)  
3900  
(ver.2.8 or  
later)  
2900  
(ver.3.8 or  
later)  
MB89P915P-SH SH-DIP-48 ROM-48QF2-28DP-8L  
Recommended  
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403  
FAX: (81)-3-5396-9106  
Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444  
EUROPE (49)-8-985-8580  
16  
MB89910 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20CZ  
2. Programming Socket Adapter  
Any special programming adapter is not required since the package for the EPROM to be used is DIP-28.  
3. Memory Space  
EPROM memory space and the memory space on the MB89PV910 are diagrammed below.  
MB89PV910  
0000H  
I/O  
0080H  
RAM  
0480H  
Not available  
MBM27C256A-20CZ  
0000H  
8000H  
Program area  
(EPROM)  
32 KB  
Program area  
32 KB  
FFFFH  
7FFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A-20CZ.  
(2) Load program data into the EPROM programmer at 0000H to 7FFFH. (note that addresses 08000H to 0FFFFH  
in the operation mode correspond to 0000H to 7FFFH in the EPROM mode.)  
(3) Program with the EPROM programmer.  
17  
MB89910 Series  
BLOCK DIAGRAM  
Timebase timer  
Main clock  
oscillator  
X0  
X1  
Reset circuit  
(Watchdog timer)  
RST  
VFDP  
Clock controller  
8
8
High-voltage output  
P10 to P17  
P20 to P27  
port 1  
X0A/P60  
X1A/P61  
Subclock oscillator  
(32.768 kHz)  
High-voltage output  
port 2  
CMOS input port  
High-voltage output  
port 5  
P50  
P51/BZ1  
Watch prescaler  
Buzzer output  
P01/BZ2  
P02/ADST  
Low-voltage  
detection reset  
CMOS I/O port  
P00  
N-ch open-drain I/O port  
P07/SCK  
P06/SO  
P05/SI  
P30/AN0 to  
P33/AN3  
8-bit serial I/O  
4
4
8-bit A/D  
converter  
AVR  
AVSS  
8-bit PWM timer  
P04/PWO  
P03/EC  
P34/AN4 to  
P37/AN7  
16-bit timer/counter  
CMOS I/O port  
RAM  
N-ch open-drain output port  
P42  
F2MC-8L  
CPU  
P41/INT1  
External interrupt  
CMOS I/O port  
P40/INT0  
ROM  
Other pins  
VCC, VSS, TEST  
18  
MB89910 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89910 series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located the lowest address. The data area is provided immediately above the I/  
O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area.  
Memory Space  
MB89P915  
MB89915  
MB89PV910  
I / O  
MB89913  
I / O  
0000 H  
0080 H  
0000 H  
0080 H  
0100 H  
0000 H  
0080 H  
I / O  
RAM  
1 KB  
RAM  
512 B  
0100 H  
0200 H  
0100 H  
0180 H  
Register  
Register  
Register  
0200 H  
0280 H  
0480 H  
8000 H  
Not available  
Not available  
Not available  
C000 H  
External ROM  
32 KB  
E000 H  
FFFF H  
ROM*  
16 KB  
ROM  
8 KB  
FFFF H  
FFFF H  
*: This is an internal PROM on the MB89P915.  
19  
MB89910 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
Whentheinstructionisan8-bitdataprocessinginstruction, thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
16 bits  
PC  
Initial value  
FFFDH  
: Program counter  
: Accumulator  
A
T
Indeterminate  
: Temporary accumulator Indeterminate  
IX  
: Index register  
: Extra pointer  
: Stack pointer  
: Program status  
Indeterminate  
Indeterminate  
Indeterminate  
EP  
SP  
PS  
I-flag = 0, IL1, 0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
20  
MB89910 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
Lower OP codes  
RP  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interruptisenabledwhenthisflagissetto1’. Interruptisdisabledwhentheflagisclearedto0’. Cleared  
to ‘0’ at the reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag: Set to ‘1’ if the MSB becomes to ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ when the bit  
is cleared to ‘0’.  
Z-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise.  
V-flag: Set to ‘1’ if the complement on 2 overflows as a result of an arithmetic operation. Cleared to to ‘0’ if the  
overflow does not occur.  
C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to  
‘0’ otherwise. Set to the shift-out value in the case of a shift instruction.  
21  
MB89910 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit resister for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used on the MB89915. The bank currently in use is indicated  
by the register bank pointer (RP).  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
22  
MB89910 Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
Register name  
PDR0  
Register description  
Port 0 data register  
(W)  
DDR0  
Port 0 data direction register  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
SYCC  
STBC  
WDTC  
TBCR  
WPCR  
PDR3  
DDR3  
BUZR  
EIC  
System clock control register  
Standby control register  
Watchdog timer control register  
Time-base timer control register  
Watch prescaler control register  
Port 3 data register  
Port 3 direction register  
Buzzer register  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
External interrupt control register  
Port 1 data register  
PDR1  
PDR2  
PDR5  
PDR6  
PDR4  
DDR4  
COMR  
CNTR  
TMCR  
TCHR  
TCLR  
Port 2 data register  
Port 5 data register  
Port 6 data register  
(R/W)  
(W)  
Port 4 data register  
Port 4 direction register  
PWM compare register  
PWM control register  
16-bit timer control register  
16-bit timer control register (H)  
16-bit timer control register (L)  
Vacancy  
(W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
SMR  
SDR  
Serial mode register  
Serial data register  
ADC1  
ADC2  
A/D converter control register 1  
A/D converter control register 2  
(Continued)  
23  
MB89910 Series  
(Continued)  
Address  
20H  
Read/write  
Register name  
Register description  
A/D converter data register  
(R/W)  
ADCD  
21H  
Vacancy  
22H  
(W)  
PCR  
Port input control register  
Low-voltage detection reset control register  
Vacancy  
23H  
(R/W)  
LVRC  
24H to 7BH  
7CH  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
7DH  
7EH  
7FH  
Note: Do not use vacancies.  
24  
MB89910 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
AVR VCC + 0.3*1  
Parameter  
Min.  
Max.  
VCC  
AVR  
VSS – 0.3  
VSS + 7.0  
V
Power supply voltage  
VPP  
– 0.6  
13.0  
VCC + 0.3  
VCC + 0.3  
7.0  
V
V
V
V
VFDP  
VI1  
VCC – 40  
VSS – 0.3  
VSS – 0.3  
Except P41*2  
P41  
Input voltage  
VI2  
Except P10 to P17,  
VO1  
VSS – 0.3  
VCC + 0.3  
VCC + 0.3  
–120  
V
V
P20 to P27, P50, P51*2  
Output voltage  
P10 to P17, P20 to P27  
P50, P51  
VO2  
VCC – 40.0  
“H” level total maximum output  
current  
IOH  
IOHAV  
mA  
mA  
“H” level total average output  
current  
Average value (operating  
current × operating rate)  
–90  
–12  
–20  
–36  
mA P00 to P07, P34 to P37, P40  
mA P20 to P27, P50, P51  
mA P10 to P17  
“H” level maximum output current IOH  
P00 to P07, P34 to P37, P40  
mA Average value (operating  
current × operating rate)  
–6  
P20 to P27, P50, P51  
mA Average value (operating  
current × operating rate)  
“H” level average output current  
IOHAV  
–10  
–20  
P10 to P17  
mA Average value (operating  
current × operating rate)  
“L” level total maximum output  
current  
IOL  
36  
20  
mA  
“L” level total average output  
current  
Average value (operating  
mA  
IOLAV  
current × operating rate)  
“L” level maximum output current IOL  
“L” level average output current  
10  
4
mA  
P00 to P07, P30 to P37,  
P40 to P47  
IOLAV  
mA  
(Continued)  
25  
MB89910 Series  
(Continued)  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
440  
mW SH-DIP: DIP-48-M01  
Power consumption  
PD  
360  
mW QFP: FPT-48-M15  
Operating temperature  
Storage temperature  
TA  
–40  
–55  
+85  
°C  
°C  
Tstg  
+150  
*1: Take care so that AVR does not exceed VCC + 0.3 V and VCC does not exceed VCC, such as when power is turned  
on.  
*2: VI and VO must not exceed VCC + 0.3 V.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, tem-  
perature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
Normal operation assurance  
range*(MB89PV910)  
4.5*  
5.5*  
V
Normal operation assurance  
range*(MB89P915/915/913)  
3.8*  
2.7  
1.5  
5.5*  
5.5  
5.5  
V
V
V
Power supply voltage  
VCC  
Watch mode, sub-RUN mode  
Retains the RAM state in stop  
mode  
A/D converter reference  
input voltage  
AVR  
0.0  
VCC  
V
High-voltage pull-down  
resistor supply voltage  
VFDP  
TA  
VCC – 35.0  
–40  
VCC + 0.3  
+85  
V
Operating temperature  
°C  
* : These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1  
and “5. A/D Converter Electrical Characteristics.”  
26  
MB89910 Series  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
6
5
Operation assurance range  
4
3
2
1
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz)  
(µs)  
2.0 1.3 1.0 0.8 0.66 0.57 0.5 0.44 0.4  
Minimum execution time (instruction cycle)  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All  
the device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
27  
MB89910 Series  
3. DC Characteristics  
(AVR = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
P00 to P07,  
P30 to P37,  
P40 to P42,  
P60, P61  
VCC +  
0.3  
“H” level  
input voltage  
VIHS  
0.8 VCC  
V
X0, RST  
X1, TEST  
P00 to P07,  
P30 to P37,  
P40 to P42,  
P60, P61  
VSS −  
0.3  
“L” level  
input voltage  
VILS  
0.2 VCC  
V
X0, RST  
X1, TEST  
VSS −  
0.3  
VCC +  
0.3  
P30 to P33,  
P42  
Open-drain  
output pin  
application  
voltage  
VD1  
VD2  
V
V
VSS −  
0.3  
P41  
7.0  
P00 to P07,  
P30 to P37,  
P40 to P42,  
P60, P61  
Excluding  
P30 to P33 and  
P41, P42  
VOH1  
IOH = –2.0 mA  
IOH = –10 mA  
2.4  
V
“H” level  
output voltage  
P20 to P27,  
P50, P51  
VOH2  
VOH3  
3.0  
3.0  
V
V
P10 to P17 IOH = –20 mA  
P00 to P07,  
P30 to P37,  
IOL = 1.8 mA  
P40 to P42,  
P60, P61  
VOL1  
VOL2  
ILI1  
0.4  
0.6  
±5  
V
V
“L” level  
output voltage  
RST,  
IOL = 4.0 mA  
0 < VI < VCC  
P00 to P07,  
P30 to P37,  
P40 to P42,  
P60, P61  
Input leakage  
current  
µA  
VFDP = VCC –  
35.0 V  
P20 to P27,  
P50, P51  
ILO1  
VI = VFDP  
25  
50  
–10  
–20  
100  
µA  
µA  
kΩ  
Output leakage  
current  
VFDP = VCC –  
35.0 V  
ILO2  
P10 to P17 VI = VFDP  
Pull-up  
resistance  
RPULL  
RST,  
VIN = 0.0 V  
Assuming the  
pull-down  
resistor option  
selected  
P10 to P17,  
P20 to P27, VIN = 5.0 V  
P50, P51  
Pull-down  
resistance  
RPD  
50  
100  
150  
kΩ  
(Continued)  
28  
MB89910 Series  
(Continued)  
(AVR = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
FCH = 8 MHz  
10.0  
18.0  
mA MB89P915  
VCC = 5.0 V  
*2  
ICC1  
tinst = 0.5 µs  
MB89913/  
mA  
when A/D conversion  
is stopped  
9
15  
6.0  
2.4  
915/PV910  
FCH = 8 MHz  
VCC = 3.8 V  
tinst*2 = 8.0 µs  
when A/D conversion  
is stopped  
3.0  
1.8  
mA MB89P915  
ICC2  
MB89913/  
mA  
915/PV910  
FCH = 8 MHz  
VCC = 5.0 V  
*2  
tinst = 0.5 µs  
ICS1  
3
7
mA  
when A/D  
conversion is  
stopped  
Power supply  
current*1  
FCH = 8 MHz  
VCC = 3.8 V  
*2  
When low-  
voltage  
tinst = 8.0 µs  
ICS2  
1.2  
1.8  
mA  
when A/D  
conversion is  
stopped  
detection reset  
operation is  
enabled, ILVD is  
added to each  
power supply  
current.  
VCC  
1.2  
60  
3.6  
mA MB89P915  
FCL = 32 kHz  
VCC = 3.0 V  
Subclock mode  
ICSB  
MB89913/  
µA  
180  
915/PV910  
FCL = 32 kHz  
VCC = 3.0 V  
Subclock sleep mode  
ICS3  
32  
4
64  
20  
µA  
µA  
FCL = 32 kHz  
VCC = 3.0 V  
Watch mode  
Main clock stop  
mode at dual- clock  
system  
ICCT  
FCH = 8 MHz  
TA = +25°C  
VCC = 5.0 V  
ICCA  
12.5  
22.5  
mA  
*2  
tinst = 0.5 µs  
when A/D conversion  
is activated  
(Continued)  
29  
MB89910 Series  
(Continued)  
(AVR = VCC = +5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
bol  
Parameter  
Pin name  
Condition  
Unit  
Remarks  
Min.  
Typ.  
Max.  
FCL = 32.678 kHz,  
VCC = 3.0 V  
TA = +25°C,  
Subclock stop  
mode  
ICCH  
10  
µA  
Main clock stop  
mode at single  
clock system  
Power supply  
current*1  
VCC  
VCC = 5.0 V  
TA = +25°C,  
Subclock stop  
mode  
Main clock stop  
mode at single  
clock system  
When low-  
voltage  
Power  
consumption  
µA of low-voltage  
detection  
ILVD  
60  
120  
detection reset  
operation is  
enabled, ILVD is  
added to each  
power supply  
current.  
reset  
FCH = 8 MHz,  
TA = +25°C,  
when A/D conversion  
is activated  
IR  
AVR  
200  
µA  
FCH = 8 MHz,  
TA = +25°C,  
when A/D conversion  
is stopped  
IRH  
AVR  
10  
µA  
Other than  
Input  
capacitance  
CIN  
AVSS, AVR, f = 1 MHz  
VCC, and VSS  
10  
pF  
*1: The power supply current is measured at external clock.  
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
30  
MB89910 Series  
4. AC Characteristics  
(1) Reset Timing  
(AVR = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
48 tXCYL  
30  
Typ.  
Max.  
RST “L” pulse width  
RST noise limit width  
tZLZH  
tZLNC  
ns  
ns  
50  
80  
Note: tXCYL is the oscillation period (1/FCH) to input to the X0.  
tZLZH  
tZLNC  
RST  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
50  
Power supply rising time  
Power supply cut-off time  
tR  
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
1
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is  
recommended.  
tOFF  
tR  
2.0 V  
0.2 V  
VCC  
0.2 V  
0.2 V  
31  
MB89910 Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Min.  
2
Max.  
8
FCH  
X0, X1  
MHz  
kHz  
ns  
Clock frequency  
FCL  
X0A, X1A  
X0, X1  
32.768  
tXCYL  
tLXCYL  
125  
500  
Clock cycle time  
X0A, X1A  
30.5  
µs  
PWH  
PWL  
X0  
30  
15.2  
10  
ns  
Input clock pulse width  
External clock  
PWHL  
PWLL  
X0A  
µs  
tCR  
tCF  
Input clock rising/falling time  
X0, X0A  
ns External clock  
X0 and X1 Timing and Conditions  
tXCYL  
tCF  
PWH  
PWL  
tCR  
0.8 VCC  
0.8 VCC  
X 0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Main Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
C 0  
C 1  
32  
MB89910 Series  
X0A and X1A Timing and Conditions  
tLXCYL  
PWLL  
PWHL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0A  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Subclock Conditions  
When a crystal  
or  
When a crystal  
or  
ceramic resonator is used  
ceramic resonator is used  
When an external clock is used  
MB89PV910  
MB89913/915/P915  
X0A  
X1A  
X0A  
X1A  
X0A  
X1A  
Open  
RF  
RD  
C0  
C1  
C0  
C1  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
Operation at FCH = 8 MHz;  
(4/FCH)tinst = 0.5 µs  
4/FCH, 8/FCH, 16/FCH, 32/FCH  
2/FCL  
µs  
Instruction cycle  
(minimum execution time)  
tinst  
Operation at FCL = 32.768 kHz;  
(4/FCH)tinst = 61.036 µs  
µs  
Note: When operating at 8 MHz, the cycle varies with the execution time.  
33  
MB89910 Series  
(5) Low-voltage Detection Reset  
(AVSS = VSS 0.0 V, TA = –40°C to +85°C)  
Value  
Min.  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Max.  
3.60  
3.90  
4.40  
3.80  
4.10  
4.60  
VDL1  
VDL2  
VDL3  
VDH1  
VDH2  
VDH3  
V  
3.00  
3.30  
3.70  
3.10  
3.40  
3.80  
0.10  
0.3  
V
V
Detection voltage at power  
supply voltage fall  
VDH and VDL are set for  
the MB89913/915 by  
mask options and for  
the MB89P915 by a  
register.  
V
V
Detection voltage at power  
supply voltage rise  
V
V
Hysteresis width  
V
Reset insensitive time  
Reset sensitive width  
Reset detection delay time  
Voltage regulation (V/t)  
tL  
µs  
ns  
µs  
V/µs  
tLW  
16 tXCYL  
tD  
2.0  
VCR  
0.10  
Power supply voltage  
t ∆  
VCC  
VDH  
V ∆  
V  
VDL  
tOSC  
tD  
tOSC  
tD  
RUN  
RESET  
tOSC oscillation stabilization time 218 = 32.8 ms (FCH = 8 MHz)  
Power supply voltage  
VCC  
t LW or less  
t L or less  
VDH  
VDL  
t
t
RUN  
RESET  
Reset not applied  
Reset applied  
34  
MB89910 Series  
(6) Serial I/O Timing  
Parameter  
(AVR = VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name  
Condition  
Unit Remarks  
Min.  
2 tinst*  
–200  
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
SCK  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
SCK, SO  
SI, SCK  
SCK, SI  
SCK  
200  
Internal shift  
clock mode  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
1 tinst*  
0
SCK ↑ → valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
SCK  
External shift  
clock mode  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
SCK ↑ → valid SI hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
35  
MB89910 Series  
Internal Shift Clock Mode  
tSCYC  
SCK  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
0.8 V  
SO  
tIVSH  
tSHIX  
SI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
External Shift Clock Mode  
tSLSH  
tSHSL  
SCK  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
SO  
2.4 V  
0.8 V  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI  
36  
MB89910 Series  
(7) Peripheral Input Timing  
Parameter  
(AVR = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
tILIH  
tIHIL  
Pin name  
Condition  
Unit Remarks  
Min.  
Max.  
Peripheral input “H” level pulse  
width  
EC, ADST  
INT0, INT1  
2 tinst*  
µs  
µs  
Peripheral input “L” level pulse  
width  
EC, ADST  
INT0, INT1  
2 tinst*  
* : For information on tinst, see “(4) Instruction Cycle.”  
tIHIL  
tILIH  
INT0, INT1  
EC  
0.8 VCC  
0.8 VCC  
ADST  
0.2 VCC  
0.2 VCC  
(8) Peripheral input noise limit width  
(AVR = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Unit  
Remarks  
Parameter  
Min.  
Typ. Max.  
MB89PV910  
MB89P915  
7
15  
30  
30  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Peripheral input “H” level  
noise limit width 1  
All inputs excluding  
INT1 and INT0  
tIHNC1  
MB89913/  
915  
15  
7
MB89PV910  
MB89P915  
15  
30  
Peripheral input “L” level  
noise limit width 1  
All inputs excluding  
INT1 and INT0  
tILNC1  
tIHNC2  
tILNC2  
MB89913/  
915  
15  
30  
50  
30  
50  
30  
60  
MB89PV910  
MB89P915  
50  
100  
250  
100  
250  
Peripheral input “H” level  
noise limit width 2  
INT1, INT0  
INT1, INT0  
MB89913/  
915  
100  
50  
MB89PV910  
MB89P915  
Peripheral input “L” level  
noise limit width 2  
MB89913/  
915  
100  
Note: The minimum rating is always cancelled, while values equal to or greater than maximum ratings are not  
cancelled.  
P00 to P07,  
P30 to P37,  
P40 to P42,  
P60, P61,  
SCK, SI, EC  
INT0, INT1  
ADST  
tIHNC1  
tIHNC2  
tILNC1  
tILNC2  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
37  
MB89910 Series  
5. A/D Converter Electrical Characteristics  
(VCC = +3.8 V to +5.5 V, F = 8 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Sym-  
bol  
Remar  
ks  
Parameter  
Resolution  
Pin name  
Condition  
Unit  
Min.  
Max.  
8
bit  
Total error  
±3.0  
±1.0  
LSB  
LSB  
Linearity error  
Differential linearity  
error  
±0.9  
LSB  
mV  
AN0 to  
AN7  
AVSS – 1.5  
LSB  
AVSS +0.5  
LSB  
AVSS + 2.5  
LSB  
Zero transition voltage  
VOT  
AN0 to  
AN7  
Full-scale transition  
voltage  
AVR – 3.5  
LSB  
AVR – 1.5  
LSB  
AVR +0.5  
LSB  
VFST  
mV  
LSB  
µs  
Interchannel disparity  
1.0  
A/D mode conversion  
time  
44 tinst*  
Sense mode  
conversion time  
12 tinst*  
µs  
Analog port input  
current  
AN0 to  
AN7  
AVR = VCC = 5.0  
V
IAIN  
IR  
10  
µA  
AN0 to  
AN7  
Analog input voltage  
Reference voltage  
0.0  
3.4  
AVR  
AVCC  
V
V
AVR  
AVR  
Reference voltage  
supply current  
AVR = 5.0 V  
200  
µA  
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter  
When the number of bits is 8, analog voltage can be divided into 28 = 256.  
• Linearity error (unit: LSB)  
The deviation of the straight line drawn connecting the zero transition point (“0000 0000 ” “0000 0001”) with  
the full-scale transition point (“1111 1111 ” “1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
38  
MB89910 Series  
Digital output  
Theoretical conversion value  
Actual conversion value  
1111 1111  
1111 1110  
(1 LSB × N + VOT)  
AVR  
256  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T – VNT  
– 1  
Differential linearity error =  
Total error =  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 0.5 LSB)  
1 LSB  
0000 0010  
0000 0001  
0000 0000  
VOT  
VNT V(N + 1)T  
VFST  
Analog input  
7. Notes on Using A/D Converter  
• Input impedance of the analog input pins  
The A/D converter used for the MB89910 series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low. If a higher accurancy is required, set the output impedance in this series  
to 2 kor less.  
Note that if the impedance cannot be kept low output impedance, it is recommended either to use the software  
to continuously activate the A/D converter for simulating longer sampling time or to connect an external  
capacitor of approx. 0.1 µF to the analog input pin.  
Sample hold circuit  
Analog Input Equivalent Circuit  
.
C = 33 pF  
.
Analog input pin  
Comparator  
If the output  
impedance of external  
circuit is high, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
.
R = 6 kΩ  
.
Close for 8 instruction cycles after activating  
A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
39  
MB89910 Series  
EXAMPLE CHARACTERISTICS  
(1) “L” Level Output Voltage  
(2) “H” Level Output Voltage  
VOL vs. IOL  
VCC – VOH vs. IOH  
VCC – VOH (V)  
1.0  
VOL (V)  
VCC = 2.5 V  
TA = +25°C  
TA = +25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
VCC = 3.0 V  
0.5  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOL (mA)  
(3) “H” Level Input Voltage/“L” Level Input Voltage (Hysteresis Input)  
CMOS hysteresis input  
VIN (V)  
5.0  
TA = +25°C  
4.5  
4.0  
3.5  
VIHS  
3.0  
2.5  
VILS  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
VCC (V)  
VIHS: Threshold when input voltage in hysteresis characteristics is set to “H” level  
VILS: Threshold when input voltage in hysteresis characteristics is set to “L” level  
40  
MB89910 Series  
(4) Power Supply Current (External Clock)  
ICC1 vs. VCC, ICC2 vs. VCC  
ICC1,ICC2 (mA)  
ICS1 vs. VCC, ICS2 vs. VCC  
ICS, ICS2 (mA)  
FCH = 8 MHz  
FCH = 8 MHz  
TA = +25°C  
16  
4.0  
3.0  
2.0  
TA = +25°C  
14  
Divide by 4 (ICC1)  
Divide by 4 (ICS1)  
Divide by 64 (ICS2)  
12  
10  
8
6
Divide by 64 (ICC2)  
4
1.0  
0
2
0
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
VCC (V)  
VCC (V)  
ICSB vs. VCC  
ICS3 vs. VCC  
ICSB (µA)  
ICS3 (µA)  
50  
200  
180  
160  
140  
120  
100  
80  
TA = +25°C  
TA = +25°C  
40  
30  
20  
10  
60  
40  
20  
0
0
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
VCC (V)  
VCC (V)  
(Continued)  
41  
MB89910 Series  
(Continued)  
ICCT vs. VCC  
ICCH vs. VCC  
ICCT (µA)  
ICCH (µA)  
36  
32  
28  
1.8  
TA = +25°C  
TA = +25°C  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
24  
20  
16  
12  
8
4
0
0
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
VCC (V)  
VCC (V)  
(5) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1,000  
500  
100  
50  
TA = +85°C  
TA = +25°C  
TA = –40°C  
10  
1
2
3
4
5
6
7
VCC (V)  
42  
MB89910 Series  
INSTRUCTIONS  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
#vct  
#d8  
#d16  
dir: b  
rel  
@
Register indirect (Example: @A, @IX, @EP)  
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the  
instruction in use.)  
T
TH  
TL  
IX  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
(Continued)  
43  
MB89910 Series  
(Continued)  
Symbol  
Meaning  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
CCR  
RP  
Ri  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
Number of instructions  
Number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
“–” indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH immediately before the instruction  
is executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
44  
MB89910 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
45  
MB89910 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
A
C
C A  
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
46  
MB89910 Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
47  
MB89910 Series  
INSTRUCTION MAP  
48  
MB89910 Series  
MASK OPTIONS  
MB89PV910  
–101 –102  
Setting not Setting not  
MB89P915  
MB89913  
Part number  
MB89915  
–101  
–102  
No.  
Specify when  
Setting not Setting not  
Specifying procedure  
possible  
possible ordering masking possible  
possible  
Selection either single or  
dual clock  
Single-clock mode  
Dual-clock mode  
1
2
Single clock Dual clock  
Selectable  
Single clock Dual clock  
Pull-down resistors  
P17 to P10  
All pins fixed to without  
pull-down resistor  
Can be selected  
per pin.  
All pins fixed to without  
pull-down resistor  
P27 to P20  
P51, P50  
Voltage to be detected for low-  
voltage detection reset  
3.3 ± 0.3 V  
3
Cannot be used.  
Selectable  
Can be set by register.  
3.6 ± 0.3 V  
4.0 ± 0.3 V  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89913P-SH  
MB89915P-SH  
MB89P915P-101-SH  
MB89P915P-102-SH  
48-pin Plastic SH-DIP  
(DIP-48P-M01)  
MB89913PF  
MB89915PF  
MB89P915PF-101  
MB89P915PF-102  
48-pin Plastic QFP  
(FPT-48P-M15)  
MB89PV910C-101-ES-SH  
MB89PV910C-102-ES-SH  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
49  
MB89910 Series  
PACKAGE DIMENSIONS  
48-pin Plastic SH-DIP  
(DIP-48P-M01)  
43.69+00..3200  
1.720 +..001028  
INDEX-1  
INDEX-2  
13.80±0.25  
(.543±.010)  
0.51(.020)MIN  
5.25(.207)  
MAX  
0.25±0.05  
(.010±.002)  
3.00(.118)  
MIN  
1.00+00.50  
.039 +0.020  
0.45±0.10  
(.018±.004)  
15.24(.600)  
TYP  
15°MAX  
1.778±0.18  
(.070±.007)  
1.778(.070)  
MAX  
40.894(1.610)REF  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED D48002S-3C-3  
50  
MB89910 Series  
(Continued)  
48-pin Plastic QFP  
(FPT-48P-M15)  
15.30±0.40SQ  
(.602±.016)  
2.70(.106)MAX  
12.00+00..1300 SQ  
.472+..001024  
0.05(.002)MIN  
(STAND OFF)  
36  
25  
Details of "A" part  
0.15(.006)  
37  
24  
8.80  
(.346)  
REF  
13.60±0.40  
(.535±.016)  
0.20(.008)  
0.15(.006)MAX  
0.50(.020)MAX  
INDEX  
"A"  
48  
13  
Details of "B" part  
1
12  
LEAD No.  
0.80(.0315)TYP  
0.15+00..0015  
.006+..0000024  
0.30±0.06  
(.012±.002)  
M
0.16(.006)  
0~10°  
0.85±0.30  
(.033±.012)  
"B"  
0.10(.004)  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED F48025S-1C-1  
51  
MB89910 Series  
(Continued)  
64-pin Ceramic MDIP  
(MDP-64C-P02)  
0°~9°  
56.90±0.64  
(2.240±.025)  
15.24(.600)  
TYP  
18.75±0.30  
(.738±.012)  
19.05±0.30  
(.750±.012)  
INDEX AREA  
2.54±0.25  
(.100±.010)  
0.25±0.05  
(.010±.002)  
33.02(1.300)REF  
1.27±0.25  
(.050±.010)  
10.16(.400)MAX  
0.46+00..0183  
0.90±0.13  
(.035±.005)  
3.43±0.38  
(.135±.015)  
1.778±0.25  
(.070±.010)  
.018+..000035  
55.12(2.170)REF  
C
Dimensions in mm (inches)  
1994 FUJITSU LIMITED M64002SC-1-4  
52  
MB89910 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-88, Japan  
Tel: (044) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: (044) 754-3329  
The information and circuit diagrams in this document presented  
as examples of semiconductor device applications, and are not  
intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the  
use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, U.S.A.  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and measurement  
equipment, personal or household devices, etc.).  
CAUTION:  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded (such  
as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
Fax: (408) 432-9044/9045  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
Any semiconductor devices have inherently a certain rate of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required  
for export of those products from Japan.  
F9703  
FUJITSU LIMITED Printed in Japan  
53  

相关型号:

MB89P915PF-102

8-bit Proprietary Microcontroller
FUJITSU

MB89P928

8-bit Proprietary Microcontroller
FUJITSU

MB89P928PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P935A

8-bit Proprietary Microcontroller
FUJITSU

MB89P935APFV

8-bit Proprietary Microcontroller
FUJITSU

MB89P935APFV

Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PDSO30, PLASTIC, SSOP-30
SPANSION

MB89P935B

8-bit Proprietary Microcontroller
FUJITSU

MB89P935BPFV

8-bit Proprietary Microcontroller
FUJITSU

MB89P945

8-bit Proprietary Microcontroller
FUJITSU

MB89P945PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P945PF

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 8MHz, CMOS, PQFP48, 12 X 12 MM, 2.70 MM HEIGHT, 0.80 MM PITCH, PLASTIC, QFP-48
CYPRESS

MB89P955

8-bit Proprietary Microcontroller
FUJITSU