IC-MQTSSOP20 [ICHAUS]

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER; 可编程的9位正弦/余弦插值用IC RS422驱动器
IC-MQTSSOP20
型号: IC-MQTSSOP20
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
可编程的9位正弦/余弦插值用IC RS422驱动器

驱动器
文件: 总39页 (文件大小:816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 1/39  
FEATURES  
APPLICATIONS  
Optical and magnetic position  
sensors  
Angle encoders  
Linear scales  
Latency-free sine-to-digital conversion to 400 angle steps  
500 kHz input frequency for interpolation factors of x1 and x2  
(10 kHz for x100)  
Flexible pin assignment due to signal path multiplexers  
PGA inputs for differential and single-ended signals  
Variable input resistance for current/voltage conversion  
Signal conditioning for offset, amplitude and phase  
Controlled 50 mA current source for LED or MR sensor supply  
Fault-tolerant RS422 outputs with 50 mA sink/source drive  
current  
Preselectable minimum phase distance for spike-proof counter  
stimulus  
PACKAGES  
Zero signal conditioning and electronic index pulse generation  
Signal and operation monitoring with configurable alarm  
output, output shutdown and error storage  
I2C multimaster interface for in-circuit calibration and  
parameters (EEPROM)  
Adjustable overtemperature alarm and shutdown  
Supply from 4.3 to 5.5 V, operation from -25(-40) to +100 °C  
Reverse polarity proof including the sub-system  
TSSOP20  
BLOCK DIAGRAM  
VDDS  
VDD  
GND  
REVERSE POLARITY  
PROTECTION  
iC-MQ  
GNDS  
SCL  
MONITORING  
ERR  
C
SERIAL I2C  
INTERFACE  
CONFIGURATION  
REGISTER  
SINE-TO-DIGITAL  
CONVERSION  
Tw  
LineCount  
Monitor  
Sin/Cos  
Monitor  
PWRon  
Toff  
SDA  
PHI  
PGA INPUT  
I/V  
SIGNAL PATH MUX  
CALIBRATION  
DIGITAL DRIVER  
OUTPUT  
X1  
PZ  
NZ  
PB  
NB  
PA  
NA  
x
ZIN  
CH0  
-
-
-
X2  
I/V  
I/V  
I/V  
I/V  
I/U  
x
SIGNAL LEVEL  
CONTROLLER  
X3  
x
CH1  
x
x
+
X4  
+
-
x
X5  
x
ADJ  
CH2  
x
X6  
x
ACO  
Copyright © 2006, 2010 iC-Haus  
http://www.ichaus.com  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 2/39  
DESCRIPTION  
Interpolator iC-MQ is a non-linear A/D converter A control signal is generated from the conditioned  
which digitizes sine/cosine sensor signals using a signals which can track the transmitting LED of op-  
count-safe tracking conversion principle with se- tical encoders via the integrated 50 mA driver stage  
lectable resolution and hysteresis. The angle reso- (output ACO). If MR sensors are connected this  
lution per sine period can be set using SELRES; up driver stage can also track the power supply of the  
to 400 angle steps are possible (see page 26).  
measuring bridges. By tracking the sensor energy  
supply any temperature and aging effects are com-  
The angle position is output incrementally by differ- pensated for, the input signals stabilized and the ex-  
ential RS422 drivers as an encoder quadrature signal act calibration of the input signals is maintained. This  
with a zero pulse or, if selected, as a counter signal enables a constant accuracy of the interpolation cir-  
for devices compatible with 74HC191 or 74HC193.  
cuit across the entire operating temperature range.  
The zero pulse is generated electronically when an When control limits are reached, these can be indi-  
enable has been set by the X1/X2 inputs. This pulse cated at the maskable error pin ERR. Faults such as  
can be configured extensively: both in its relative po- overdrive, wire breakage, short circuiting, dirt or ag-  
sition to the input signal with regard to the logic gating ing, for example, are logged.  
with A and/or B and in its width from 90° to 360° (1/4  
to 1 T).  
iC-MQ includes extensive self-test and system diag-  
nosis functions which check whether the sensor is  
A preselectable minimum transition distance permits working properly or not. For all error events the user  
glitch-free output signals and prevents counting er- can select whether the fault be displayed at error pin  
rors which in turn boosts the noise immunity of the ERR or the outputs shutdown. At the same time er-  
position encoder.  
rors can be stored in the EEPROM to enable failures  
to be diagnosed at a later stage. For encoder ap-  
Programmable instrumentation amplifiers with se- plications the line count of the code disc, the sensor  
lectable gain levels allow differential or single-ended, signal regarding signal level and frequency and the  
referenced input signals; via input X2 the external ref- operating temperature can be monitored, for exam-  
erence can be used as reference voltage for the off- ple, the latter using an adjustable on-chip sensor.  
set correction.  
Display error pin ERR is bidirectional; a system fault  
The modes of operation differentiate between high recognized externally can be recorded and also reg-  
impedance (V modes) and low impedance (I modes). istered in the error memory.  
This adaptation of the iC to voltage or current signals  
enables MR sensor bridges or photosensors to be di- iC-MQ is protected against reverse polarity and of-  
rectly connected up to the device. The optical scan- fers its monitored supply voltage to the external cir-  
ning of low resolution code discs is also supported by cuit, thus extending the protection to the system (for  
the reference function of input X2; these discs do not load currents to 20 mA). Reverse polarity protection  
evaluate tracks differentially but in comparison with a also covers the short-circuit-proof line drivers so that  
reference photodiode.  
an unintentional faulty wiring during initial operation  
is tolerated.  
The integrated signal conditioning unit allows signal  
amplitudes and offset voltages to be calibrated accu- On being activated the device configuration is loaded  
rately and also any phase error between the sine and via the serial configuration interface from an exter-  
cosine signals to be corrected. The channel for the nal EEPROM and verified by a CRC. A microcon-  
zero signal can be configured separately.  
troller can also configure iC-MQ; the implemented in-  
terface is multimaster-competent and enables direct  
RAM access.  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 3/39  
CONTENTS  
PACKAGES  
4
5
1. Photodiode array connected to current  
inputs, LED supply with constant  
current source . . . . . . . . . . . . . . 23  
ABSOLUTE MAXIMUM RATINGS  
THERMAL DATA  
2. Encoder supplying 100 mVpp to voltage  
inputs . . . . . . . . . . . . . . . . . . . 23  
5
SIGNAL CONDITIONING CH0  
24  
ELECTRICAL CHARACTERISTICS  
PROGRAMMING  
6
Gain Settings CH0 . . . . . . . . . . . . . . . 24  
Offset Calibration CH0 . . . . . . . . . . . . . 24  
11  
12  
14  
SIGNAL LEVEL CONTROL and SIGNAL  
REGISTER MAP  
MONITORING  
25  
26  
27  
SERIAL CONFIGURATION INTERFACE  
SINE-TO-DIGITAL CONVERSION  
OUTPUT SETTINGS AND ZERO SIGNAL  
Example of CRC Calculation Routine . . . . . 14  
EEPROM Selection . . . . . . . . . . . . . . 14  
I2C Slave Mode (ENSL = 1) . . . . . . . . . . 15  
Zero Signal Generation . . . . . . . . . . . . 27  
Description Of CFGABZ Setup . . . . . . . . 28  
Setup Example 1 . . . . . . . . . . . . . . . . 28  
Setup Example 2 . . . . . . . . . . . . . . . . 28  
Output Driver Configuration . . . . . . . . . . 29  
Minimum Phase Distance . . . . . . . . . . . 29  
BIAS CURRENT SOURCE AND  
TEMPERATURE SENSOR CALIBRATION  
16  
Bias Current . . . . . . . . . . . . . . . . . . 16  
Temperature Sensor . . . . . . . . . . . . . . 16  
OPERATING MODES  
17  
ERROR MONITORING AND ALARM OUTPUT  
30  
Mode ABZ . . . . . . . . . . . . . . . . . . . 17  
Mode 191/193 . . . . . . . . . . . . . . . . . 17  
Calibration 1, 2, 3 . . . . . . . . . . . . . . . 17  
TEST 6 . . . . . . . . . . . . . . . . . . . . . 18  
System Test . . . . . . . . . . . . . . . . . . 18  
Error Protocol . . . . . . . . . . . . . . . . . . 31  
Line Count Error . . . . . . . . . . . . . . . . 31  
Temperature Monitoring . . . . . . . . . . . . 31  
REVERSE POLARITY PROTECTION  
32  
33  
TEST MODE  
INPUT CONFIGURATION  
19  
Quick programming in the  
Current Signals . . . . . . . . . . . . . . . . . 19  
Voltage Signals . . . . . . . . . . . . . . . . . 19  
single master system . . . . . . . . . . . 34  
Quick programming in the  
multimaster system . . . . . . . . . . . . 34  
SIGNAL PATH MULTIPLEXING  
20  
21  
EXAMPLE APPLICATIONS  
APPLICATION HINTS  
35  
37  
SIGNAL CONDITIONING CH1, CH2  
Gain Settings . . . . . . . . . . . . . . . . . . 21  
Offset Calibration CH1, CH2 . . . . . . . . . 22  
Phase Correction CH1 vs. CH2 . . . . . . . . 22  
Signal Conditioning Examples . . . . . . . . 23  
In-circuit programming of the EEPROM . . . 37  
Absolute angle accuracy and edge jitter . . . 37  
Information on the demo board . . . . . . . . 37  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 4/39  
PACKAGES  
PIN CONFIGURATION TSSOP20  
PIN FUNCTIONS  
No. Name Function  
1 X1  
2 X2  
3 X3  
4 X4  
Signal Input 1 (Index +)  
Signal Input 2 (Index -)  
Signal Input 3  
Signal Input 4  
5 VDDS Switched Supply Output  
(reverse polarity proof, load to 20 mA  
max.)  
6 GNDS Switched Ground  
(reverse polarity proof)  
7 X5  
8 X6  
Signal Input 5  
Signal Input 6  
9 ACO Signal Level Controller,  
high-side current source output  
10 SDA Serial Configuration Interface,  
data line  
11 SCL  
Serial Configuration Interface,  
clock line  
12 NB  
13 PB  
14 NA  
15 PA  
Incremental Output B-  
Incremental Output B+  
Incremental Output A-  
Incremental Output A+  
16 GND Ground  
17 VDD +4.3...5.5 V Supply Voltage  
18 NZ  
19 PZ  
Incremental Output Z-  
Incremental Output Z+  
20 ERR Error Signal (In/Out) / Test Mode Trigger  
Input  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 5/39  
ABSOLUTE MAXIMUM RATINGS  
These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
G001 V()  
Voltage at VDD, PA, NA, PB, NB, PZ,  
NZ, SCL, SDA, ACO  
-6  
6
V
G002 V()  
G003 V()  
G004 V()  
Voltage at ERR  
-6  
8
6
V
V
V
Pin-Pin Voltage  
Voltage at X1...X6, SCL, SDA  
-0.3  
VDDS +  
0.3  
G005 I(VDD)  
G006 I()  
Current in VDD  
-20  
-50  
400  
50  
mA  
mA  
mA  
mA  
mA  
kV  
Current in VDDS, GNDS  
Current in X1...X6, SCL, SDA, ERR  
Current in PA, NA, PB, NB, PZ, NZ  
Current in ACO  
G007 I()  
-20  
20  
G008 I()  
-100  
-100  
100  
20  
G009 I(ACO)  
G010 Vd()  
G011 Ptot  
G012 Tj  
ESD Susceptibility at all pins  
Permissible Power Dissipation  
Junction Temperature  
HBM 100 pF discharged through 1.5 k  
2
300  
150  
150  
mW  
°C  
-40  
-40  
G013 Ts  
Storage Temperature  
°C  
THERMAL DATA  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
°C  
Min. Typ. Max.  
-25 100  
T01 Ta  
Operating Ambient Temperature Range  
(extended range to -40 °C on request)  
T02 Rthja  
Thermal Resistance Chip to Ambient  
80  
K/W  
All voltages are referenced to pin GNDS unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 6/39  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Total Device  
001  
V(VDD)  
Permissible Supply Voltage  
Supply Current  
Load current I(VDDS) to 10 mA  
Load current I(VDDS) to 20 mA  
4.3  
4.5  
5.5  
5.5  
V
V
002  
I(VDD)  
Tj = -40...125 °C, no load  
Tj = 27 °C, no load  
25  
mA  
mA  
12  
003 I(VDDS)  
004 Vcz()hi  
005 Vc()hi  
Permissible Load Current VDDS  
Clamp-Voltage hi at all pins  
-20  
0
mA  
V
11  
1.5  
Clamp-Voltage hi at Inputs SCL, Vc()hi = V() - V(VDD), I() = 1 mA  
SDA  
0.4  
0.3  
V
006 Vc()hi  
007 Vc()lo  
Clamp-Voltage hi at Inputs  
X1...X6  
Vc()hi = V() - V(VDD), I() = 4 mA  
1.2  
V
V
Clamp-Voltage lo at all pins  
I() = -4 mA  
-1.2  
-0.3  
Signal Conditioning, Inputs X1...X6 (CH1, CH2: i = 12, CH0: I = 0)  
101  
Vin()sig  
Permissible Input Voltage Range  
RINi() = 0x01  
0.75  
0
VDDS  
1.5  
VDDS  
V
V
RINi() = 0x09  
102  
Iin()sig  
Permissible Input Current Range  
RINi(0) = 0; BIASi = 0  
RINi(0) = 0; BIASi = 1  
-300  
10  
-10  
300  
µA  
µA  
103 Iin()  
104  
Input Current  
RINi() = 0x01  
-10  
10  
µA  
Rin()  
Input Resistance vs. VREFin  
Tj = 27 °C;  
RINi(3:0) = 0x09  
RINi(3:0) = 0x00  
RINi(3:0) = 0x02  
RINi(3:0) = 0x04  
RINi(3:0) = 0x06  
16  
1.1  
1.6  
2.2  
3.2  
20  
1.6  
2.3  
3.2  
4.6  
24  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
105 TC(Rin)  
Temperature Coefficient of Rin  
0.15  
%/K  
106  
VREFin() Reference Voltages  
RINi(0) = 0, BIASi = 1  
RINi(0) = 0, BIASi = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
VREFin0, VREFin12  
107  
G0, G12  
Selectable Gain Factors  
RINi(3) = 0, GRi and GFi = 0x0  
RINi(3) = 0, GRi and GFi = max.  
2
100  
RINi(3) = 1, GRi and GFi = 0x0  
RINi(3) = 1, GRi and GFi = max.  
0.5  
25  
108  
109  
Gdiff  
Relative Gain Ratio CH1 vs. CH2  
GF2 = 0x10, GF1 = 0x0  
GF2 = 0x10, GF1 = 0x7F  
39  
255  
%
%
G  
Step Width Of Fine Gain  
Adjustment  
for CH0  
for CH1  
for CH2  
1.06  
1.015  
1.06  
110 INL(Gi)  
111  
Integral Linearity Error of Gain  
Adjustment  
-1.06  
1.06  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(PCHx) - V(NCHx);  
RINi(3) = 0  
RINi(3) = 1  
10  
40  
500  
2000  
mVpp  
mVpp  
112 Vin()os  
113  
Input Offset Voltage  
referred to side of input  
25  
µV  
VOScal  
Offset Calibration Range  
referenced to the selected source (VOS0 resp.  
VOS12), mode Calibration 2;  
ORi = 00  
ORi = 01  
ORi = 10  
ORi = 11  
±100  
±200  
±600  
±1200  
%V()  
%V()  
%V()  
%V()  
114 OF0  
115 OF12  
116 INL(OFi)  
117 PHI12  
CH0 Offset Calibration Step  
Width  
referenced to the selected source VOS0;  
OR0 = 0x0  
3.2  
%
CH1/2 Offset Calibration Step  
Width  
referenced to the selected source VOS12;  
OR12 = 0x0  
0.79  
%
Integral Linearity Error of Offset limited test coverage (guaranteed by design)  
Calibration  
-5  
5
LSB  
°
Phase Error Calibration Range  
CH1 vs. CH2  
±20.2  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 7/39  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
0.8  
118 PHI12  
Phase Error Calibration Step  
Width  
0.63  
°
°
119 INL(PHI12) Integral Linearity Error of Phase limited test coverage (guaranteed by design)  
Calibration  
-0.8  
120 fin()  
Permissible Maximum Input Freq. analog signal path  
Output Voltage at X2 BIASEX = 10, I(X2) = 0, referenced to VRE-  
Fin12  
200  
95  
kHz  
%
121 Vout(X2)  
100  
105  
122 Vin(X2)  
123 Rin(X2)  
Permissible Input Voltage Range BIASEX = 11  
at X2  
0.5  
20  
VDDS  
2  
30  
V
Input Resistance at X2  
BIASEX = 11, RIN0(3:0) = 0x01, RIN12(3:0) =  
27  
kΩ  
0x01  
Sine-To-Digital Conversion  
201 AAabs Absolute Angle Accuracy  
referenced to 360° input signal, ideal waveform,  
quasi static signals, adjusted signal condition-  
ing, SELHYS = 0  
0.9  
1.8  
°
202  
AArel  
Relative Angle Accuracy  
referenced to output period T (see Fig. 1), ideal  
waveform, quasi static signals;  
at 4 edges per period  
10  
10  
10  
10  
%
%
%
%
at 100 edges per period  
at 384 edges per period  
at 400 edges per period  
<0.5  
<2  
203 AAR  
Repeatability  
see 201; VDD = const., Tj = const.  
0.1  
°
Line Driver Outputs PA, NA, PB, NB, PZ, NZ  
501  
Vs()hi  
Saturation Voltage hi  
Vs() = VDD - V();  
SIK(1:0) = 00, I() = -1.2 mA  
SIK(1:0) = 01, I() = -4 mA  
SIK(1:0) = 10, I() = -20 mA  
SIK(1:0) = 11, I() = -50 mA  
200  
200  
400  
700  
mV  
mV  
mV  
mV  
502  
503  
Vs()lo  
Isc()hi  
Saturation Voltage lo  
SIK(1:0) = 00, I() = 1.2 mA  
SIK(1:0) = 01, I() = 4 mA  
SIK(1:0) = 10, I() = 20 mA  
SIK(1:0) = 11, I() = 50 mA  
200  
200  
400  
700  
mV  
mV  
mV  
mV  
Short-Circuit Current hi  
V() = 0 V;  
SIK(1:0) = 00  
SIK(1:0) = 01  
SIK(1:0) = 10  
SIK(1:0) = 11  
-4  
-12  
-60  
-150  
-1.2  
-4  
-20  
-50  
mA  
mA  
mA  
mA  
504  
505  
506  
Isc()lo  
tr()  
Short-Circuit Current lo  
Rise Time  
V() = VDD;  
SIK(1:0) = 00  
SIK(1:0) = 01  
SIK(1:0) = 10  
SIK(1:0) = 11  
1.2  
4
20  
50  
4
12  
60  
150  
mA  
mA  
mA  
mA  
RL = 100 to GND;  
SSR(1:0) = 00  
SSR(1:0) = 01  
SSR(1:0) = 10  
SSR(1:0) = 11  
5
5
20  
50  
20  
40  
140  
350  
ns  
ns  
ns  
ns  
tf()  
Fall Time  
RL = 100 to VDD;  
SSR(1:0) = 00  
SSR(1:0) = 01  
SSR(1:0) = 10  
SSR(1:0) = 11  
5
5
30  
50  
20  
40  
140  
350  
ns  
ns  
ns  
ns  
507 Ilk()tri  
508 IIk()rev  
509 Rin()cal  
510 I()cal  
Leakage Current  
TRIHL(1:0) = 11 (tristate)  
reversed supply voltage  
20  
100  
2.5  
100  
µA  
µA  
kΩ  
µA  
Leakage Current  
Test Signal Source Impedance  
Permissible Test Signal Load  
Op. modes Calibration 1, 2, 3  
Op. modes Calibration 1, 2, 3  
4
3
-3  
511  
tclk()lo  
Clock Signal Low-Pulse Duration  
for CP, CPD, CPU  
Op. mode Mode 191/193;  
MTD = 0x0  
110  
800  
ns  
ns  
MTD = 0x7  
512 tw()hi  
Duty Cycle  
referenced to output period T, see Fig. 1  
50  
%
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 8/39  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
513 tAB  
Phase Shift A vs. B  
see Fig. 1  
25  
%
514  
tMTD  
Minimum Phase Distance  
edge to edge, see Fig. 1;  
MTD = 0x0, IBN calibrated to 200 µA  
MTD = 0x0, IBN calibrated to 220 µA  
220  
200  
ns  
ns  
515 t()MTD Minimum Phase Distance Toler- nominal values in Table 52  
-18  
13.5  
%
ance  
516 t()MTD Minimum Phase Distance Varia- variation versus VDD = 5 V, Tj = 27 °C due to  
+/- 2  
%
tion  
VDD = 4.3...5.5 V or Tj = -40...125 °C  
Signal Level Controller ACO  
601  
Vs()hi  
Saturation Voltage hi  
Vs() = VDD - V();  
ADJ(8:0) = 0x11F, I(ACO) = -5 mA  
ADJ(8:0) = 0x13F, I(ACO) = -10 mA  
ADJ(8:0) = 0x15F, I(ACO) = -25 mA  
ADJ(8:0) = 0x17F, I(ACO) = -50 mA  
1
1
1
V
V
V
V
1.2  
602  
Isc()hi  
Short-Circuit Current hi  
V() = 0 ... VDD - 1 V;  
ADJ(8:0) = 0x11F  
ADJ(8:0) = 0x13F  
ADJ(8:0) = 0x15F  
V() = 0 ... VDD - 1.2 V;  
ADJ(8:0) = 0x17F  
-10  
-20  
-50  
-5  
-10  
-25  
mA  
mA  
mA  
-100  
-50  
mA  
603 It()min  
604 It()max  
605 Vt()min  
606 Vt()max  
Control Range Monitoring 1:  
lower limit  
referenced to range ADJ(6:5)  
referenced to range ADJ(6:5)  
referenced to Vscq()  
3
%Isc  
Control Range Monitoring 2:  
upper limit  
90  
%Isc  
%Vpp  
%Vpp  
Signal Level Monitoring 1:  
lower limit  
40  
Signal Level Monitoring 2:  
upper limit  
referenced to Vscq()  
130  
Bias Current Source and Reference Voltages  
801  
IBN  
Bias Current Source  
Calibration 1, I(NB) vs. VDDS;  
CFGIBN = 0x0  
110  
µA  
µA  
µA  
CFGIBN = 0xF  
IBN calibrated at T = 25 °C  
370  
220  
180  
1.2  
45  
200  
1.25  
50  
802 VBG  
Internal Bandgap Reference  
Reference Voltage  
1.3  
55  
V
803 VPAH  
804 V05  
%VDDS  
mV  
Reference Voltage V05  
Reference Voltage V025  
450  
500  
50  
550  
805 V025  
%V05  
Power-Down-Reset  
901 VDDon  
Turn-on Threshold VDD, Power- increasing voltage at VDD  
Up-Enable  
3.6  
3.0  
0.4  
4.0  
3.5  
4.3  
3.8  
V
V
V
902 VDDoff  
Turn-off Threshold VDD, Power- decreasing voltage at VDD  
Down-Reset  
903 VDDhys  
Hysteresis  
Error Signal Input/Output, Pin ERR  
B01 Vs()lo  
B02 Isc()lo  
Saturation Voltage lo  
versus GND, I() = 4 mA  
0.4  
8
V
Short-Circuit Current lo  
versus GND, V(ERR) VDD  
versus GND, V(ERR) > VTMon  
L state  
Z state  
4
5
mA  
B03  
Isc()  
Low-Side Current Source For  
Data Output  
2
0
mA  
mA  
B04 Vt()hi  
B05 Vt()lo  
B06 Vt()hys  
B07 Ipu()  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
versus GND  
2
V
V
versus GND  
0.8  
300  
-400  
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDD 1 V, EPU = 1  
Vpu() = VDD V(), I() = -5 µA, EPU = 1  
increasing voltage at ERR  
500  
mV  
µA  
V
Input-Pull-Up-Current  
Pull-Up-Voltage  
-300  
-200  
0.4  
B08 Vpu()  
B09 VTMon  
Test Mode Turn-on Threshold  
VDD +  
2
V
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 9/39  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3...5.5 V, Tj = -40 °C...125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
B10 VTMoff  
Test Mode Turn-off Threshold  
decreasing voltage at ERR  
VDD +  
0.5  
V
B11 VTMhys  
Test Mode Threshold Hysteresis VTMhys = VTMon VTMoff  
0.15  
0.3  
V
B12  
fclk()  
Data Output Signal Frequency  
ENFAST = 0  
ENFAST = 1  
120  
480  
160  
640  
200  
800  
kHz  
kHz  
B13 tp(ERR)in Process Delay for System Error upon power up (VDD > VDDon)  
Message at ERR  
10  
ms  
Reverse Polarity Protection and Supply Switches VDDS, GNDS  
C01  
Vs()  
Saturation Voltage vs. VDD  
Vs(VDDS) = VDD V(VDDS);  
I(VDDS) = -10...0 mA  
150  
250  
mV  
mV  
I(VDDS) = -20...-10 mA  
C02  
Vs()  
Saturation Voltage vs. GND  
Vs(GNDS) = V(GNDS) GND;  
I(GNDS) = 0...10 mA  
150  
200  
mV  
mV  
I(GNDS) = 10...20 mA  
C03 Irev(VDD) Reversed Polarity Current  
V(VDD) = 5.5V...4.3 V  
-1  
4
0
mA  
Serial Configuration Interface SCL, SDA  
D01 Vs()lo  
D02 Isc()lo  
D03 Vt()hi  
D04 Vt()lo  
D05 Vt()hys  
D06 Ipu()  
D07 Vpu()  
Saturation Voltage lo  
Short-Circuit Current lo  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
I = 4 mA  
400  
75  
2
mV  
mA  
V
0.8  
300  
-600  
V
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDDS 1 V  
500  
mV  
µA  
V
Input Pull-Up Current  
Pull-Up Voltage  
-300  
-60  
0.4  
Vpu() = VDDS V(), I() = -5 µA  
D08  
fclk()  
Clock Frequency at SCL  
ENFAST = 0  
ENFAST = 1  
60  
240  
80  
320  
100  
400  
kHz  
kHz  
D09  
tbusy()cfg Duration of Startup Configuration  
IBN not calibated, EEPROM access without  
read failure, time to outputs operational;  
ENFAST = 0  
36  
24  
48  
34  
ms  
ms  
ENFAST = 1  
D10  
D11  
tbusy()err End Of I2C Communication;  
IBN not calibrated;  
Time Until I2C Slave Is Enabled V(SDA) = 0 V  
4
indef.  
45  
12  
ms  
ms  
ms  
ms  
V(SCL) = 0 V or arbitration lost  
no EEPROM  
CRC ERROR  
135  
285  
95  
tp()  
Start Of Master Activity On I2C  
Protocol Error  
SCL without clock signal: V(SCL) = constant;  
IBN not calibrated  
IBN calibrated to 200 µA  
25  
64  
80  
80  
240  
120  
µs  
µs  
Temperature Monitoring  
E01  
VTs  
Temperature Sensor Voltage  
VTs() = VDDS V(PA),  
Calibration 3, without Load;  
Tj = -40 °C  
740  
620  
460  
770  
650  
520  
790  
670  
540  
mV  
mV  
mV  
Tj = 27 °C  
Tj = 100 °C  
E02 TCs  
E03  
Temp. Co. Temperature Sensor  
Voltage  
-1.8  
mV/K  
VTth  
Temperature Warning Activation  
Threshold  
VTth() = VDDS - V(NA), Tj = 27 °C,  
Calibration 3, without Load;  
CFGTA(3:0) = 0x0  
260  
470  
310  
550  
360  
630  
mV  
mV  
CFGTA(3:0) = 0xF  
E04 TCth  
E05  
Temp. Co. Temperature Warning  
Activation Threshold  
0.06  
%/K  
Tw  
Warning Temperature  
CFGTA(3:0) = 0x0  
CFGTA(3:0) = 0xF  
125  
140  
65  
°C  
°C  
80  
25  
25  
E06 Thys  
Warning Temperature Hysteresis 80 °C < Tj < 125 °C  
10  
5
15  
15  
°C  
°C  
E07 T  
Relative Shutdown Temperature T = Toff Tw  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 10/39  
t
t
MTD  
AB  
B
A
t
whi  
AArel  
AArel  
T
Figure 1: Definition of relative angle error and minimum phase distance  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 11/39  
PROGRAMMING  
Register Map, Overview . . . . . . . . . . . . . . . . . . . Page 12 Signal Conditioning CH0 (X1, X2) . . . . . . . . . Page 24  
GR0:  
GF0:  
VOS0:  
OR0:  
OF0:  
Gain Range CH0 (coarse)  
Gain Factor CH0 (fine)  
Offset Reference Source CH0  
Offset Range CH0 (coarse)  
Offset Factor CH0 (fine)  
Serial Configuration Interface . . . . . . . . . . . . . Page 14  
ENFAST:  
ENSL:  
I2C Fast Mode Enable  
I2C Slave Mode Enable  
DEVID:  
Device ID of EEPROM providing the  
chip configuration data (e.g. 0x50)  
CRC of chip configuration data  
(address range 0x00 to 0x2F)  
Chip Release  
CHKSUM:  
Signal Level Controller . . . . . . . . . . . . . . . . . . . . Page 25  
ADJ: Setup of ACO Output Function  
CHPREL:  
END:  
Sine-To-Digital Conversion . . . . . . . . . . . . . . . . Page 26  
SELRES:  
SELHYS:  
Configuration Enable  
Resolution  
Hysteresis  
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 16  
CFGIBN:  
CFGTA:  
Bias Current  
Temperature Monitoring  
Quadrature Output Logic . . . . . . . . . . . . . . . . . . Page 27  
CFGABZ: Output Logic  
CFGZPOS: Zero Signal Positioning  
ENZFF: Zero Signal Synchronisation  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 17  
MODE: Operating Mode  
Input Configuration  
and Signal Path Multiplexer . . . . . . . . . . . . . . . Page 19  
Quadrature Output Settings . . . . . . . . . . . . . . . Page 29  
MTD:  
SIK:  
SSR:  
TRIHL:  
Minimum Phase Distance  
Driver Short-Circuit Current  
Driver Slew Rate  
INMODE:  
RIN12:  
Diff./Single-Ended Input Mode  
I/V Mode and Input Resistance CH1,  
CH2  
Driver Mode  
BIAS12:  
RIN0:  
BIAS0:  
BIASEX:  
INVZ:  
Reference Voltage CH1, CH2  
I/V Mode and Input Resistance CH0  
Reference Voltage CH0  
Input Reference Selection  
Index Signal Inversion  
Error Monitoring and Alarm Output . . . . . . . Page 30  
EMTD:  
EPH:  
EPU:  
Minimal Alarm Indication Time  
Alarm Input/Output Logic  
Alarm Output Pull-Up Enable  
Error Mask For Alarm Indication (pin  
ERR)  
EMASKA:  
MUXIN:  
Input-To-Channel Assignment:  
X3...X6 to CH1, CH2  
EMASKE:  
EMASKO:  
PDMODE:  
LINECNT:  
Error Mask For Protocol (EEPROM)  
Error Mask For Driver Shutdown  
Driver Activation After Cycling Power  
Line Count (Pulses) Between 2 Zero  
Pulses  
Error Protocol: First Error  
Error Protocol: Last Error  
Error Protocol: History  
Signal Conditioning CH1, CH2 (X3...X6) . . . Page 21  
GR12:  
GF1:  
Gain Range CH1, CH2 (coarse)  
Gain Factor CH1 (fine)  
GF2:  
Gain Factor CH2 (fine)  
VOS12:  
VDC1:  
VDC2:  
OR1:  
Offset Reference Source CH1, CH2  
Intermediate Voltage CH1  
Intermediate Voltage CH2  
Offset Range CH1 (coarse)  
Offset Factor CH1 (fine)  
ERR1:  
ERR2:  
ERR3:  
Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 33  
OF1:  
OR2:  
OF2:  
PH12:  
Offset Range CH2 (coarse)  
Offset Factor CH2 (fine)  
Phase Correction CH1 vs. CH2  
EMODE:  
EMODE2:  
Test Mode  
Register And Address Selection For  
Test Mode  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 12/39  
REGISTER MAP  
Register Map  
Adr  
Serial Configuration Interface  
0x00 ENFAST  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DEVID(6:0)  
Calibration  
0x01  
CFGIBN(3:0)  
CFGTA(3:0)  
Operating Mode  
0x02  
Input Configuration  
0x03  
END  
1
0
ENZFF  
0
MODE(3:0)  
0
0
0
INVZ  
INMODE  
MUXIN(1:0)  
Signalkonditionierung CH1, CH2  
0x04  
GF2(4:0)  
GF1(3:0)  
GR12(2:0)  
0
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0
0
0
0
VDC1(0)  
0
0
0
0
0
0
GF1(6:4)  
VDC1(5:1)  
OR1(0)  
VDC2(5:0)  
0
OF1(3:0)  
0
0
0
OR1(1)  
0
0
OR2(1:0)  
OF1(7:4)  
OF2(6:0)  
0
PH12(2:0)  
0
0
1
0
0
OF2(7)  
BIASEX(1:0)  
0
1
PH12(5:3)  
RIN12(3:0)  
1
BIAS12  
VOS12(1:0)  
Signal Level Controller  
0x0F  
0x10  
ADJ(0)  
0
1
0
0
0
0
ADJ(8:1)  
Signal Conditioning CH0  
0x11  
0x12  
GF0(4:0)  
GR0(2:0)  
OF0(5:0)  
VOS0(1:0)  
OR0(1:0)  
0x13  
0
BIAS0  
RIN0(3:0)  
Error Monitoring and Alarm Output  
0x14  
EMASKA(7:0)  
EMTD(2:0)  
EMASKO(7:0)  
0x15  
0x16  
0x17  
0x18  
EMODE(1:0)  
EMASKE(3:0)  
EPH  
EPU  
EMASKA(9:8)  
EMASKO(9:8)  
ENSL  
EMODE2  
PDMODE  
EMASKE(9:4)  
Zero Signal Output  
0x19  
0x1A  
CFGABZ(7:0)  
CFGZPOS(7:0)  
Sine-To-Digital Conversion, Minimum Phase Distance  
0x1B  
SELRES(7:0)  
0x1C  
0x1D  
SELRES(14:8)  
MTD(3:0)  
SELHYS(3:0)  
Output Driver Settings  
0x1E  
SIK(1:0)  
SSR(1:0)  
TRIHL(1:0)  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 13/39  
Register Map  
Adr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Line Counter  
0x1F  
LINECNT(7:0)  
LINECNT(13:8)  
0x20  
0
0
0
0
Reserved  
0x21  
0
0
1
0
0
0
0x22  
0x00 (recommended programming)  
0x00 (recommended programming)  
free for OEM data  
0x23  
0x24  
0x25  
free for OEM data  
0x26  
free for OEM data  
0x27  
free for OEM data  
0x28  
free for OEM data  
0x29  
free for OEM data  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
free for OEM data  
free for OEM data  
free for OEM data  
free for OEM data  
free for OEM data  
Check Sum  
0x2F  
CHKSUM(7:0) of EEPROM data  
[CHPREL(7:0), refer to Table 7]  
Error Register  
0x30  
0x31  
0x32  
ERR1(7:0)  
ERR2(5:0)  
ERR1(9:8)  
ERR3(3:0)  
ERR2(9:6)  
0x33  
ERR3(9:4)  
Notes  
The device RAM initially contains random data following power-on.  
Table 4: Register layout (EEPROM)  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 14/39  
SERIAL CONFIGURATION INTERFACE  
ENSL  
Code  
0
Adr 0x17, bit 3  
The serial configuration interface consists of the two  
pins SCL and SDA and enables read and write ac-  
cess to an EEPROM with an I2C interface. The readout  
clock rate can be selected using ENFAST.  
Function  
Normal operation  
I2C Slave Mode Enable (Device ID 0x55)  
1
Table 6: Config. Interface Mode  
ENFAST  
Code  
0
Adr 0x00, bit 7  
Function  
The device ID for the EEPROM can be entered in reg-  
ister DEVID(6:0) (address 0x00), from which iC-MQ  
will take its configuration after exiting test mode (see  
page 33). The DEVID stored therein is then accepted.  
Regular clock rate, f(SCL) approx. 80 kHz  
High clock rate, f(SCL) approx. 320 kHz  
1
Notes  
For in-circuit programming bus lines SCL and SDA  
require pull-up resistors.  
For line capacitances to 170 pF, adequate values  
are:  
4.7 kwith clock frequency 80 kHz  
2 kwith clock frequency 320 kHz  
Example of CRC Calculation Routine  
unsigned char ucDataStream  
int iCRCPoly 0x11D ;  
unsigned char ucCRC=0;  
int 0;  
= 0;  
The pull-up resistors may not be less than 1.5 k.  
To separate the signals a ground line between SCL  
and SDA is recommended.  
iC-MQ requires a supply voltage during EEPROM  
programming (5 V to VDD).  
=
i
=
ucCRC = 1; / / s t a r t value ! ! !  
for ( iReg  
= 0; iReg <47; iReg ++)  
{
Table 5: Clock Frequency Configuration Interface  
ucDataStream  
for ( i =0; i <=7; i ++)  
i f ( (ucCRC & 0x80 ) != ( ucDataStream & 0x80 ) )  
ucCRC = (ucCRC << 1) iCRCPoly ;  
else  
ucCRC = (ucCRC << 1 ) ;  
ucDataStream ucDataStream << 1;  
= ucGetValue ( iReg ) ;  
{
^
Once the supply has been switched on the iC-MQ out-  
puts are high impedance (tristate*) until a valid config-  
uration is read out from the EEPROM using device ID  
0x50.  
=
}
}
EEPROM Selection  
The following minimal requirements must be fulfilled:  
Bit errors in the 0x00 to 0x2F memory section are  
pinpointed by the CRC deposited in register CHK-  
SUM(7:0) (address 0x2F in the EEPROM; the CRC  
polynomial used is "’1 0001 1101"’ with a start value  
of "1").  
• Operation from 3.3 to 5 V, I2C interface  
• At least 512 bits, 64x8  
(address range used is 0x00 to 0x3F)  
Should the read configuration data not be confirmed  
by the CRC, the readin process is repeated. If no valid  
configuration data is available after a fourth readin, iC-  
MQ terminates EEPROM access and switches to I2C  
slave mode. This switch takes place after 150 ms at  
the latest (see Electrical Characteristics, D11), for ex-  
ample when no EEPROM is connected.  
• Support of Page Write with Pages of at least 4  
bytes. Errors can otherwise not be saved to the  
EEPROM (EMASKE = 0x0).  
• Device ID 0x50 "1010 000", no occupation of  
0x55 (A2...A0 = 0). iC-MQ can otherwise not be  
accessed via 0x55 in I2C slave mode.  
For devices loading a valid configuration from the EEP-  
ROM register bit ENSL decides whether the I2C slave Recommended device:  
Atmel AT24C01B, ST  
function is enabled or not.  
M24C01W  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 15/39  
I2C Slave Mode (ENSL = 1)  
Register  
Read access via I2C slave mode (ENSL = 1)  
In this mode iC-MQ behaves like an I2C slave with the  
device ID 0x55 and the configuration interface permits  
write and read accesses to iC-MQ’s internal registers.  
RAM Addr Content  
0x00-0x21 Configuration data  
(see EEPROM addresses 0x00-0x21)  
0x22-0x2A Not available  
0x2B-0x2E Configuration data  
For chip release verification purposes an identification  
value is stored under ROM address 0x2F; a write ac-  
cess to this address is not permitted.  
(see EEPROM addresses 0x2B-0x2E)  
Chip release CHPREL(7:0)  
0x30-0x33 Configuration data  
(see EEPROM addresses 0x30-0x33)  
0x2F  
CHPREL  
Code  
0x00  
Adr 0x2F, bit 7:0 (ROM)  
Chip Release  
Not available  
iC-MQ 3  
0x34-0x3A Not available  
0x3B-0x3E Configuration data  
(see EEPROM addresses 0x2B-0x2E)  
0x04  
0x3F  
Chip release CHPREL(7:0)  
0x08  
iC-MQ X  
0x40-0x43 Current error memory (only active when enabled by  
EMASKE; messages will be transferred to  
0x09  
iC-MQ X1  
EEPROM Addresses 0x30-0x33)  
0x44-0x7F Not available  
Table 7: Chip Release  
Table 9: RAM Read Access  
END  
Code  
0
Adr 0x02, bit 7  
Function  
Register  
RAM Addr Access and conditions  
Write access via I2C slave mode (ENSL = 1)  
Sin/D converter and line driver disabled  
(RAM configuration data invalid)  
0x00  
0x01  
Changes possible, no restrictions  
1
Restart of Sin/D conversion, line driver active  
(RAM configuration data valid)  
Changes possible  
(wrong entries for CFGIBN can limit functions)  
0x02  
Changes to bits 6:0 are permitted only when Sin/D  
conversion is halted (END = 0, ie. bit 7);  
Table 8: Configuration Enable  
Restarting Sin/D conversion by changing END (bit  
7) is permitted only with no changes of operating  
mode (bits 6:0 remain as set)  
0x03-0x16 Changes possible, no restrictions  
0x17  
Changes to bits 7:4 and 2:0 are permitted  
(ENSL, bit 3 must be kept 1)  
0x18  
Changes possible, no restrictions  
0x19-0x21 Changes possible when Sin/D conversion is halted  
(END = 0)  
0x2B-0x2E Changes possible, no restrictions  
0x2F-0x3F No write access permitted  
0x40-0x43 No write access permitted  
0x44-0x7F Not available  
Table 10: RAM Write Access  
Notes: The converter function should be halted by  
END = 0 for the deletion of errors saved in the EEP-  
ROM (Dev-ID 0x50, Addresses 0x30-0x33). Other-  
wise active errors could be transferred to the EEP-  
ROM again (from addresses 0x40-0x43 if enabled by  
EMASKE).  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 16/39  
BIAS CURRENT SOURCE AND TEMPERATURE SENSOR CALIBRATION  
Bias Current  
Example: VTs(T1) is ca. 650 mV, measured from  
The calibration of the bias current source in operation VDDS versus PA, with T1 = 25 °C;  
mode Calibration 1 (see Table 13) is prerequisite for  
adherence to the given electrical characteristics and  
The necessary reference voltage VTth(T1) is then cal-  
also instrumental in the determination of the chip tim-  
ing (e.g. clock frequency at SCL). For setup purposes  
the IBN bias current is measured using a 10 kresis-  
tor by pin VDDS connected to pin NC. The setpoint is  
200 µA which is equivalent to a voltage drop of 2 V.  
culated. The required warning temperature T2, tem-  
perature coefficients TCs and TCth (see Electrical  
Characteristics, Section E) and measurement value  
VTs(T1) are entered into this calculation:  
CFGIBN  
Code k  
0x0  
Adr 0x01, bit 7:4  
31  
39k  
31  
39k  
VTs(T1) + TCs · (T2 T1)  
VTth(T1) =  
IBN ∼  
79 %  
81 %  
84 %  
86 %  
88 %  
91 %  
94 %  
97 %  
Code k  
0x8  
IBN ∼  
100 %  
103 %  
107 %  
111 %  
115 %  
119 %  
124 %  
129 %  
1 + TCth · (T2 T1)  
0x1  
0x9  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
Example: For T2 = T1 + 100 K VTth(T1) must be pro-  
grammed to 443 mV.  
0x4  
0x5  
0x6  
Reference voltage VTth(T1) is provided for a high  
impedance measurement (10 M) at output pin NA  
(measurement versus VDDS) and must be set by pro-  
gramming CFGTA(3:0) to the calculated value.  
0x7  
Table 11: Calibration of Bias Current  
Temperature Sensor  
The temperature monitoring is calibrated in operating  
mode Calibration 3.  
Example: Altering VTth(T1) from 310 mV (measured  
with CFGTA(3:0)= 0x0) to 443 mV is equivalent to  
143 %, the closest value for CFGTA is 0x9;  
To set the required warning temperature T2 the tem-  
perature sensor voltage VTs at which the warning  
message is generated is first determined. To this  
end a voltage ramp from VDDS towards GNDS is ap-  
plied to pin PA until pin ERR displays the warning  
message. The following settings are required here:  
EMASKA = 0x20, EMTD = 0x00 and EPH = 0x00.  
CFGTA  
Code k  
0x0  
Adr 0x01, bit 3:0  
65+3k  
VTth ∼  
65  
65+3k  
65  
Code k  
0x8  
VTth ∼  
140 %  
145 %  
150 %  
155 %  
160 %  
165 %  
170 %  
175 %  
100 %  
105 %  
110 %  
115 %  
120 %  
125 %  
130 %  
135 %  
0x1  
0x9  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
0x4  
0x5  
The signal at ERR first switches from tristate to low  
(on reaching the warning threshold VTs) and then from  
low to tristate (on overshooting the internal hysteresis  
which is not relevant to calibration). To avoid confusion  
a clear change of state (from low to high) must be gen-  
erated with the help of an external pull-up resistor at  
pin ERR.  
0x6  
0x7  
Notes  
With CFGTA = 0xF Toff is 80 °C typ.,  
with CFGTA = 0x0 Toff is 155 °C typ.  
Table 12: Calibration of Temperature Monitoring  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 17/39  
OPERATING MODES  
iC-MQ has various modes of operation, for which the coder quadrature signal with a zero pulse. Only in  
functions of outputs PA, NA, PB, NB, PZ, NZ and ERR these modes are the line drivers and the reverse po-  
are altered.  
larity protection feature active.  
Two operating modes can be selected for the out- In order to condition the input signals and to cali-  
put of the angle position in normal operation. Mode brate and test iC-MQ Calibration and Test modes are  
191/193 provides control signals for devices compati- available. Digital and analog test signals are pro-  
ble with 74HC191 or 74HC193, whereas in Mode ABZ vided; the latter must always be measured at high load  
the angle position is output incrementally as an en- impedance.  
MODE(3:0)  
Code  
0x00  
0x0F  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
Addr. 0x02; bit 3:0  
Operating Mode  
Mode ABZ  
Mode 191/193  
Calibration 1  
Calibration 2  
Test 3*  
PA  
NA  
PB  
NB  
PZ  
NZ  
ERR  
ERR  
ERR  
IERR  
A
not(A)  
CPU  
B
not(B)  
nU/D  
IBN  
Z
not(Z)  
nPL  
CPD  
CP  
MR  
TANAZ(2)  
PCH1  
VPAH  
PS_out  
PSIN  
PCH1I  
VTs  
VREFIZ  
NCH1  
VPD  
VREFISC  
PCH2  
PCH0  
VDC1  
IPF  
NCH0  
VDC2  
V05  
NCH2  
CGUCK  
NC_out  
NCOS  
NCH2I  
IERR  
IERR  
IERR  
res.  
Test 4*  
NS_out  
NSIN  
NCH1I  
VTth  
PC_out  
PCOS  
PCH2I  
PZO  
PZO  
VDC1  
VTTFE  
NZO  
NZO  
VDC2  
VTTSE  
Test 5*  
Test 6*  
Calibration 3  
Lo-Signal  
Hi-Signal  
Test 10*  
ERR  
All outputs and SCL, SDA, ERR to low level  
All outputs to high level  
TP  
A4  
A
CLK6  
A8  
CLK1  
B4  
CLK3/8  
B8  
ZIn  
ZIn  
Z
CLK4  
TP1  
not(Z)  
System Test*  
Test 12*  
ERR  
ERR  
not(A)  
B
not(B)  
IDDQ Test*  
Hints  
All PU/PD resistors, oscillator and analog supply voltage deactivated.  
*) Test function for iC-Haus device test only.  
Table 13: Operating Modes  
Mode 191/193  
Mode ABZ  
Pin  
PA  
Signal  
CPD  
CPU  
CP  
Description  
In Mode ABZ A/B signals are generated and output via  
PA, NA, PB and NB. A freely configurable zero signal  
is simultaneously provided at pins PZ and NZ. The dif-  
ferential RS422 line drivers are active; an Nx pin con-  
stantly supplies a complementary signal which is the  
inversion of pin Px.  
Clock Down Pulse  
Clock Up Pulse  
Clock Pulse  
NA  
PB  
NB  
PZ  
nU/D  
MR  
Count Direction (0: up, 1: down)  
Asynch. Master Reset (active high)  
Signal is ’1’ if index position is reached,  
otherwise ’0’.  
NZ  
nPL  
Asynch. Parallel Load Input (active low) /  
Reset (active low)  
Signal is ’0’ if index position is reached,  
otherwise ’1’.  
Table 14: Operating mode for counter devices compat-  
ible with 74HC191 or 74HC193.  
Mode 191/193  
In Mode 191/193 the output pins provide control sig-  
nals for counter devices compatible with 74HC191 or  
74HC193 according to the following table. The driving  
capability (SIK) and the slew rate (SSR) of the output Calibration 1, 2, 3  
drivers must be selected so that the clock pulses can These modes are used to condition the input signals  
be output with a low pulse of typically 50 ns (see Elec- and calibrate iC-MQ. In mode Calibration 1 the user  
trical Characteristics, 511).  
can measure the IBN bias current and the zero chan-  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 18/39  
nel analog signals are available following signal condi- this end at a resolution of 8 the interpolator generates  
tioning (PCH0 and NCH0).  
a switchpoint every 45 degrees. The objective of the  
calibration procedure is a pulse duty cycle of exactly  
In mode Calibration 2 the conditioned sine and cosine 50% respectively for A4, B4 und A8, B8. The following  
signals are output (PCH1, NCH1, PCH2 and NCH2). settings are required for mode System Test:  
In addition intermediate potential VDC1 is provided for  
compensating circuit CH1, as is intermediate potential  
VDC2 for CH2 (for a description of the calibration pro-  
cess, see page 21).  
• MODE = 0x0B  
• SELRES = 0x1B0  
• SELHYS = 0xF  
In mode Calibration 3 the internal temperature moni-  
toring signals are provided. Calibration of the bias cur-  
rent source and temperature monitoring is described  
on page 16 and calibration of the zero channel on page  
24.  
• CFGABZ(7:4) = ’0000’  
System Test  
TEST 6  
Pin  
PA  
Signal  
A4  
Description  
Offset CH1  
The input voltages at pins X3 to X6 can be checked in  
mode Test 6. The following settings are required here:  
NA  
A8  
Phase deviation from 90° between  
CH1 and CH2  
PB  
NB  
B4  
B8  
Offset CH2  
• GF1 = 0x0  
Amplitude deviation between  
CH1 and CH2  
• GF2 = 0x0  
PZ  
NZ  
ZIn  
Digital zero signal, unmasked  
• Byte 0x05, bit 3:0 = ’0000’  
• Byte 0x0F, bit 3 = ’1’  
• Byte 0x0F, bit 4 = ’0’  
TP1  
Verification of line count (pulses) between  
two zero pulses  
Low signal: verification running (state after  
power on reset)  
High signal: verification finished  
An error messaging at ERR is valid after the  
second zero signal (enable required).  
System Test  
This mode enables the signal conditioning to be ad-  
justed using comparated sine and cosine signals. To  
Table 15: Digital Calibration Signals  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 19/39  
INPUT CONFIGURATION  
All input stages are configured as instrumentation am-  
plifiers and thus directly suitable for differential input  
signals. Referenced input signals can be processed;  
input X2 can be configured as a reference input. Both  
current and voltage signals can be processed, se-  
lected using RIN12 and RIN0.  
INMODE  
Adr 0x03, bit 2  
Code  
0
Function  
Differential input signals  
Single-ended input signals *  
* Input X2 is reference for all inputs.  
1
Note  
Figure 2: Signal Conditioning  
Table 16: Input Signal Mode  
RIN12  
RIN0  
Code  
–000  
–010  
–100  
–110  
1—1  
0—1  
Adr 0x0E, bit 3:0  
Current Signals  
Adr 0x13, bit 3:0  
In I Mode an input resistor Rin() becomes active at  
each input pin, converting the current signal into a  
voltage signal. Input resistance Rin() consists of a  
pad wiring resistor and resistor Rui() which is linked  
to the adjustable bias voltage source VREFin(). BIA-  
SEX must be set to ’00’. The table besides shows the  
possible selections, with Rin() giving the typical result-  
ing input resistance (see Electrical Characteristics for  
tolerances). The input resistor should be set in such  
a way that intermediate potentials VDC1 and VDC2 lie  
between 125 mV and 250 mV (verifiable in mode Cali-  
bration 2).  
Nominal Rin() Internal Rui()  
I/V Mode  
1.7 kΩ  
2.5 kΩ  
3.5 kΩ  
4.9 kΩ  
20 kΩ  
1.6 kΩ  
2.3 kΩ  
3.2 kΩ  
4.6 kΩ  
5 kΩ  
current input  
current input  
current input  
current input  
voltage input  
voltage input  
high  
impedance  
1 MΩ  
Table 17: I/V Mode and Input Resistance  
BIAS12  
BIAS0  
Code  
0
Adr 0x0E, bit 6  
Adr 0x13, bit 6  
VREFin()  
2.5 V  
Voltage Signals  
Type of sensor  
In V mode an optional voltage divider can be selected  
which reduces unacceptably large input amplitudes to  
ca. 25 %. The circuitry is equivalent to the resistor  
chain in I mode; the pad wiring resistor is considerably  
larger here, however. For sensors whose offset cali-  
bration is to be proportional to an external DC voltage  
source the reference source can be selected using BI-  
ASEX; for all other sensors BIASEX should be set to  
’00’.  
Lowside sink current (I Mode)  
Highside current source (I Mode)  
1
1.5 V  
Note  
Not valid with BIASEX=11.  
Table 18: Reference Voltage  
BIASEX  
Code  
00*  
Adr 0x0D, bit 7:6  
VREFin()  
Signal at X2  
1.5 / 2.5 V  
(internal)  
Neg. Zero Signal (Index -), input  
10  
11  
1.5 / 2.5 V  
(internal)  
Ref. Voltage VREFin12, output  
Voltage at X2 supplies VREFin  
external  
Table 19: Input Reference Selection  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 20/39  
SIGNAL PATH MULTIPLEXING  
MUX_OUT  
MUX_IN  
Calibration  
X1  
X2  
X3  
X4  
X5  
X6  
PCH0i  
PCH0o  
NCH0o  
INVZ  
PZO  
NZO  
+
+
0
1
ZIN  
NCH0i  
-
-
VREFin0  
MUXIN(0)  
PCH2i  
PCH2o  
NCH2o  
0
1
PC_out  
NC_out  
+
NCH2i  
MUXIN(1)  
-
0
1
PCH1i  
PCH1o  
NCH1o  
PS_out  
NS_out  
+
MUXIN(1)  
NCH1i  
-
0
1
VDC1  
VDC2  
VDC1  
VDC2  
INMODE  
VREFin12  
Figure 3: Principle Of Multiplexer Function  
MUXIN  
Code  
00  
Adr 0x03, bit 1:0  
The signals for index channel CH0 are connected up to  
pins X1 and X2. Pins X3 to X6 are allocated to internal  
channels CH1 and CH2 via MUXIN. INMODE can be  
activated for referenced input signals; this then selects  
X2 as the reference signal input. For output purposes  
INVZ allows the index signal phase to be inverted for  
channel CH0.  
PCH1i  
NCH1i  
PCH2i  
X3  
NCH2i  
X4  
X2  
X2  
01  
not permitted  
not permitted  
X4  
10  
11  
X2  
X5  
X2  
Table 21: Input Multiplexer for INMODE = 1  
MUXIN  
Code  
00  
Adr 0x03, bit 1:0  
PCH1i  
NCH1i  
PCH2i  
X3  
NCH2i  
X5  
X4  
X6  
INVZ  
Code  
0
Adr 0x03, bit 3  
01  
not permitted  
PZO  
NZO  
10  
X4  
X4  
X5  
X3  
X3  
X5  
X6  
X6  
PCH0o  
NCH0o  
NCH0o  
PCH0o  
11  
1
Table 20: Input Multiplexer for INMODE = 0  
Table 22: Index Signal Inversion  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 21/39  
SIGNAL CONDITIONING CH1, CH2  
GR12  
Code  
0x0  
Adr 0x04, bit 2:0  
The analog voltage signals necessary for the calibra-  
tion of the sine signals can be measured in operation  
mode Calibration 2. Alternatively, characteristic digital  
test signals are also available for offset, amplitude and  
phase errors in operating mode System Test.  
Range RIN12=0x9  
Range RIN12=0x9  
0.5  
1.0  
1.3  
1.7  
2.2  
2.6  
3.3  
4.0  
2.0  
0x1  
4.1  
0x2  
5.3  
0x3  
6.7  
0x4  
8.7  
Gain Settings  
The gain is set in four steps:  
0x5  
10.5  
13.2  
16.0  
0x6  
0x7  
1. The sensor supply controller is shut down and the  
constant current source for the ACO output set to a  
suitable output current (register ADJ; current value  
close to the later operating point).  
Table 23: Gain Range CH1, CH2  
GF2  
Code  
0x00  
0x01  
...  
Adr 0x04, bit 7:3  
Factor  
2. The coarse gain is selected so that differential signal  
amplitudes of ca. 1 Vpp are produced internally (signal  
Px versus Nx, see Figure).  
1.00  
1.06  
6.25GF2  
31  
3. Using fine gain factor GF2 the CH2 signal amplitude  
is then adjusted to 1 Vpp.  
0x1F  
6.25  
Table 24: Fine Gain Factor CH2  
4. The CH1 signal amplitude can then be adjusted to  
the CH2 signal amplitude via fine gain factor GF1. This  
results in a total gain of GR12 * GFi for differential input  
signals.  
GF1  
Code  
0x00  
0x01  
...  
Adr 0x06, bit 2:0, Adr 0x05, bit 7:4  
Factor  
1.0  
1.015  
GF1  
124  
6.25  
0x7F  
6.53  
Table 25: Fine Gain Factor CH1  
Px  
VPNx  
R0  
VPx  
Nx  
VNx  
GND  
Figure 4: Definition of 1 Vpp signal. Termination R0  
must be high-ohmic during all Test and  
Calibration modes.  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 22/39  
Offset Calibration CH1, CH2  
The offset calibration range for CH1 and CH2 is de-  
In order to calibrate the offset the reference source pendent on the selected VOS12 source and is set us-  
must first be selected using VOS12. Two fixed voltages ing OR1 and OR2. Both sine and cosine signals are  
and two dependent sources are available for this pur- then calibrated using factors OF1 and OF2. The cal-  
pose. The fixed voltage sources should be selected for ibration target is reached when the DC fraction of the  
external sensors which provide stable, self-regulating differential signals PCHi versus NCHi is zero.  
signals.  
OR1  
OR2  
Code  
0x0  
Adr 0x09, bit 0; Adr 0x08, bit 7  
So that photosensors can be operated in optical en-  
coders iC-MQ tracks changes in offset voltages via  
the signal-dependent source VDC when used in con-  
junction with the controlled sensor current source for  
LED supply (pin ACO). The VDC potential automati-  
cally tracks higher DC photocurrents. To this end inter-  
mediate potentials VDC1 and VDC2 must be adjusted  
to a minimal AC ripple using the selectable k factor  
(this calibration must be repeated when the gain set-  
ting is altered). The ideal DC voltage level of 0.125 V  
to 0.25 V is selected via input resistor Rui().  
Adr 0x0A, bit 5:4  
Range  
x1  
0x1  
x2  
0x2  
x6  
0x3  
x12  
Table 28: Offset Range CH1, CH2  
OF1  
OF2  
Code  
0x00  
0x01  
...  
Adr 0xA, bit 3:0; Adr 0x9, bit 7:4  
Adr 0xC, bit 0; Adr 0xB, bit 7:1  
Factor  
Code  
0x80  
0x81  
...  
Factor  
The feedback of pin voltage V(ACO) fulfills the same  
task as source VDC when MR bridge sensors are sup-  
plied by the controlled sensor current source. In this  
instance the VDC sources do not need adjusting.  
0
0
0.0079  
0.0079  
0.0079 · OFi  
1  
0.0079 · OFi  
1
0x7F  
0xFF  
VOS12  
Code  
0x0  
Adr 0x0E, bit 5:4  
Table 29: Offset Factors CH1, CH2  
Source  
0.05 · V(ACO)  
0.5 V  
0x1  
Phase Correction CH1 vs. CH2  
0x2  
0.25 V  
The phase shift between CH1 and CH2 can be ad-  
justed using parameter PH12. Following phase cal-  
ibration other calibration parameters may have to be  
adjusted again (those as amplitude compensation, in-  
termediate potentials and offset voltages).  
0x3  
VDC (VDC1 for CH1, VDC2 for CH2)  
Table 26: Offset Reference Source CH1, CH2  
VDC1  
Adr 0x07, bit 4:0; Adr 0x06, bit 7  
Adr 0x08, bit 6:1  
VDC2  
Code  
0x00  
0x01  
...  
PH12  
Code  
0x00  
0x01  
...  
Adr 0xD, bit 2:0; Adr 0xC, bit 7:5  
VDC = k · VPi + (1 k) · VNi  
k = 0.33  
Correction angle  
+0  
Code  
0x20  
0x21  
...  
Correction angle  
0  
k = 0.335  
+0.65  
0.65  
k = 0.33 + VDCi · 0.0052  
k = 0.66  
+0.65 · PH12  
+20.2  
0.65 · PH12  
20.2  
0x3F  
0x1F  
0x3F  
Table 27: Intermediate Voltages CH1, CH2  
Table 30: Phase Correction CH1 vs. CH2  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 23/39  
Signal Conditioning Examples  
1. Photodiode array connected to current inputs, LED supply with constant current source  
Step  
1.  
Operating Mode  
Calibration and Signal  
Presets  
VOS12= 0x3, GF1= 0x40, VDC1= 0x20, OF1= 0x0, GF2= 0x10, VDC2= 0x20, OF2= 0x0  
Example: LED current approx. 6.25 mA  
ADJ(8)= 1 (constant current source), ADJ(6:5)= 11 (range 50 mA), ADJ(4:0)= 0x04 (value 12.5)  
2.  
Calibration 2  
Calibration of Channel 1:  
Parameter GR12: Adjust diff. signal at PA vs. NA to approx. 1 Vpp amplitude  
Parameter GF1: Adjust diff. signal at PA vs. NA to exactly 1 Vpp amplitude  
Parameter VDC1: Minimization of VDC1 AC fraction at output PZ (ripple < 10 mVpeak)  
Parameter OR1, OF1: Calibration of DC fraction to zero for diff. signal PA vs. NA (< 5 mVdc)  
3.  
4.  
Calibration 2  
System Test  
Calibration of Channel 2:  
Parameter GF2: Adjust diff. signal at PB vs. NB to exactly 1 Vpp amplitude  
Parameter VDC2: Minimization of VDC2 AC fraction at ouput NZ (ripple < 10 mVpeak)  
Parameter OR2, OF2: Calibration of DC fraction to zero for diff. signal PB vs. NB (< 5 mVdc)  
1. Iteration, Calibration of Channel 1 vs. Channel 2:  
Parameter OF1: Adjust duty ratio of A4 at PA to 50 %  
Parameter OF2: Adjust duty ratio of B4 at PB to 50 %  
Parameter PH12: Adjust duty ratio of A8 at NA to 50 %  
Parameter GF1: Adjust duty ratio of B8 at NB to 50 %  
5.  
6.  
Calibration 2  
System Test  
Repeated Adjustment of Intermediate Voltages, VDC1 and VDC2:  
Parameter VDC1: Minimization of VDC1 AC fraction at ouput PZ  
Parameter VDC2: Minimization of VDC2 AC fraction at ouput NZ  
2. Iteration, Calibration of Channel 1 vs. Channel 2:  
Parameter OF1: Adjust duty ratio of A4 at PA to 50 %  
Parameter OF2: Adjust duty ratio of B4 at PB to 50 %  
Parameter PH12: Adjust duty ratio of A8 at NA to 50 %  
Parameter GF1: Adjust duty ratio of B8 at NB to 50 %  
Table 31: Conditioning example 1  
2. Encoder supplying 100 mVpp to voltage inputs  
Step  
1.  
Operating Mode  
Calibration and Signal  
Presets  
VOS12= 0x1, GF1= 0x40, OF1= 0x0, GF2= 0x10, OF2= 0x0  
2.  
Calibration 2  
Calibration of Channel 1:  
Parameter GR12: Adjust diff. signal at PA vs. NA to approx. 1 Vpp amplitude  
Parameter GF1: Adjust diff. signal at PA vs. NA to exactly 1 Vpp amplitude  
Parameter OR1, OF1: Calibration of DC fraction to zero for diff. signal PA vs. NA (< 5 mVdc)  
3.  
4.  
Calibration 2  
System Test  
Calibration of Channel 2:  
Parameter GF2: Adjust diff. signal at PB vs. NB to exactly 1 Vpp amplitude  
Parameter OR2, OF2: Calibration of DC fraction to zero for diff. signal PB vs. NB (< 5 mVdc)  
Calibration of Channel 1 vs. Channel 2:  
Parameter OF1: Adjust duty ratio of A4 at PA to 50 %  
Parameter OF2: Adjust duty ratio of B4 at PB to 50 %  
Parameter PH12: Adjust duty ratio of A8 at NA to 50 %  
Parameter GF1: Adjust duty ratio of B8 at NB to 50 %  
Table 32: Conditioning example 2  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 24/39  
SIGNAL CONDITIONING CH0  
The voltage signals needed to calibrate the zero chan- Offset Calibration CH0  
nel are available in mode Calibration 1. The relative To calibrate the offset the reference source must first  
phase position of the ungated zero signal Zin com- be selected using VOS0 (see Offset Calibration CH1  
pared to A and B can be determined in mode System and CH2 for further information). For the CH0 path the  
Test.  
dependent source VDC is identical to source VDC1.  
Gain Settings CH0  
VOS0  
Code  
0x0  
Adr 0x13, bit 5:4  
Source  
Parallel to the conditioning process for the CH1 and  
CH2 signals the CH0 gain is also set in the following  
steps:  
0.05 · V(ACO)  
0.5 V  
0x1  
0x2  
0.25 V  
1. The sensor supply controller is shut down and the  
constant current source for the ACO output set to the  
same output current as in the calibration of CH1 and  
CH2 (register ADJ; current value close to the later op-  
erating point).  
0x3  
VDC (i.e. VDC1)  
Table 35: Offset Reference Source CH0  
OR0  
Code  
0x0  
Adr 0x12, bit 1:0  
Range  
x1  
2. The coarse gain is selected so that a differential sig-  
nal amplitude of ca. 1 Vpp is produced internally (sig-  
nal PCHi versus NCHi).  
0x1  
x2  
0x2  
x6  
0x3  
x12  
3. GF0 then permits fine gain adjustment to 1 Vpp. The  
total gain is accrued from GR0 x GF0.  
Table 36: Offset Range CH0  
GR0  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Adr 0x11, bit 2:0  
OF0  
Code  
0x00  
0x01  
...  
Adr 0x12, bit 7:2  
Range RIN0 = 0x9  
Range RIN0 = 0x9  
Factor  
Code  
0x20  
0x21  
...  
Factor  
0.5  
1.0  
1.3  
1.7  
2.2  
2.6  
3.3  
4.0  
2.0  
0
0
4.1  
0.0322  
-0.0322  
-0.0322 · OF0  
-1  
5.3  
0.0322 · OF0  
1
6.7  
0x1F  
0x3F  
8.7  
10.5  
13.2  
16.0  
Table 37: Offset Factor CH0  
Table 33: Gain Range CH0  
GF0  
Code  
0x00  
0x01  
...  
Adr 0x11, bit 7:3  
Factor  
1.00  
1.06  
6.25GF0  
31  
0x1F  
6.25  
Table 34: Fine Gain Factor CH0  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 25/39  
SIGNAL LEVEL CONTROL and SIGNAL MONITORING  
ADJ (4:0)  
Code  
Adr 0x10, bit 3:0; Adr 0x0F, bit 7  
Square control ADJ(8:7) = 00  
Via the controlled sensor current source (pin ACO) iC-  
MQ can keep the input signals for the internal sine-  
to-digital converter constant regardless of temperature  
and aging effects by tracking the sensor supply.  
0x00  
Vpp() ca. 300 mV (60 %)  
Vpp() ca. 305 mV (61 %)  
0x01  
77  
...  
Vpp() 300 mV 77(1.25Code)  
Both the controller operating range and input signal  
amplitude for the controller are monitored and can  
be enabled for error messaging. A constant current  
source can be selected for the ACO output when set-  
ting the signal conditioning; the current range for the  
highside current source is adjusted using ADJ(6:5).  
0x19  
...  
Vpp() ca. 500 mV (98 %)  
...  
0x1F  
Vpp() ca. 600 mV (120 %)  
Table 40: Internal Sin/Cos Signal Amplitude For  
Square Control  
In operation with the active square control mode  
ADJ(4:0) sets the internal signal amplitudes according  
to the relation (PCH1-NCH1)² + (PCH2-NCH2)²; these  
should be set to 0.25 Vpk.  
ADJ (4:0)  
Code  
Adr 0x10, bit 3:0; Adr 0x0F, bit 7  
Sum control ADJ(8:7) = 01  
VDC1 + VDC2 ca. 245 mV  
VDC1 + VDC2 ca. 249 mV  
0x00  
0x01  
77  
...  
VDC1 + VDC2 245mV 77(1.25Code)  
Figure 5: Internal signal level monitoring and test  
signals in Calibration 2 mode (example  
for ADJ(8:0) = 0x19; see Elec. Char.  
Nos. 605 and 606 regarding Vt()min and  
Vt()max).  
0x1F  
VDC1 + VDC2 ca. 490 mV  
Table 41: DC Setpoint For Sum Control  
ADJ (4:0)  
Adr 0x10, bit 3:0; Adr 0x0F, bit 7  
Constant current source ADJ(8:7) = 10  
I(ACO) ca. 3.125% Isc(ACO)  
Code  
0x00  
0x01  
ADJ (8:7)  
Code  
00  
Adr 0x10, bit 7:6  
Function  
I(ACO) ca. 6.25% Isc(ACO)  
Sine/cosine square control  
Sum control  
01  
...  
I(ACO) 3.125% (Code + 1) Isc(ACO)  
10  
Constant current source  
Not permitted (device test only)  
11  
0x1F  
I(ACO) ca. 100% Isc(ACO)  
Notes  
See Elec. Char. No. 602 for Isc(ACO)  
Table 38: Controller Operating Modes  
Table 42: I(ACO) With Constant Current Source  
ADJ (6:5)  
Adr 0x10, bit 5:4  
Function  
Code  
00  
5 mA - Range  
10 mA - Range  
25 mA - Range  
50 mA - Range  
01  
10  
11  
Table 39: ACO Output Current Range (applies for con-  
trol modes and constant current source)  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 26/39  
SINE-TO-DIGITAL CONVERSION  
SELRES  
Adr 0x1C, bit 6:0; Adr 0x1B, bit 7:0  
iC-MQ’s converter resolution can be set using SEL-  
RES. For a resolution of 4, four angle steps per in-  
put signal period are generated so that the switching  
frequency at the A and B output matches the sine fre-  
quency at the input.  
Value  
STEP  
IPF  
fin()max  
Angle Steps  
Per Period  
Interpolation  
Factor  
Permissible Input  
Frequency  
(MTD=0x8)  
0x00E0  
0x01B0  
0x02A0  
0x0398  
0x0414  
0x0590  
0x078C  
0x090A  
0x0B88  
0x0F86  
0x1305  
0x1784  
0x1804  
0x1F83  
0x2F82  
0x3102  
0x5F81  
0x6301  
4
1
500 kHz  
500 kHz  
200 kHz  
200 kHz  
200 kHz  
166 kHz  
125 kHz  
100 kHz  
83 kHz  
62.5 kHz  
50 kHz  
40 kHz  
40 kHz  
30 kHz  
20 kHz  
20 kHz  
10 kHz  
10 kHz  
8
2
The programmable converter hysteresis is determined  
by SELHYS. It is set in multiples of the increment size  
and may have a maximum of 45° of the input signal  
period.  
12  
3
16  
4
20  
5
24  
6
32  
8
SELHYS  
Code  
0x0  
Adr 0x1D, bit 3:0  
40  
10  
12  
16  
20  
24  
25  
32  
48  
50  
96  
100  
Function  
48  
Nearly no hysteresis  
64  
0x1  
1 increment (0.9°)  
80  
0x2  
2 increments (1.8°)  
96  
0x3-0xD  
0xE  
3-13 increments (2.7°-11.7°)  
SELRES(6:1) increments (0.5 LSB)  
SELRES(6:0) increments  
*) Not permissible with SELRES = 0x00E0  
100  
128  
192  
200  
384  
400  
0xF*  
Notes  
Table 44: Converter Hysteresis  
Table 43: Converter Resolution  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 27/39  
OUTPUT SETTINGS AND ZERO SIGNAL  
The set interpolation factor IPF determines the num- Zero Signal Generation  
ber of A/B signal cycles generated internally which are The generation of the zero signal is dependant on the  
counted via register POS to enable the positioning of internal enable signal ZIn which is produced by com-  
the zero pulse. At a sine/cosine phase angle of zero paring the processed X1 and X2 input signals. The  
degree the A/B cycle count starts at POS = 0, and the offset calibration of CH0 influences the width of the en-  
highest cycle count is reached when POSmax = IPF-1. able signal so that the correct position of ZIn should be  
The internal A/B signal cycle adheres to the following checked before the zero signal logic is configured. In  
pattern:  
Mode ABZ this is possible at the error signal output  
(pin ERR; required settings are EMASKA = 0x010 and  
EMTD = 0x0).  
A 1 1 0 0  
B 1 0 0 1  
Table 45: Internal A/B Signal Cycle  
Inversions and reversals can be selected for the output  
of the A/B/Z signals and any logic combination for the  
output of the zero signal. The output logic pairs param-  
eters CFGABZ in accordance with the table below:  
CFGABZ  
Adr 0x19, bit 7:0  
Figure 7: Signal path from ZIn to PZ/NZ  
Bit  
7
Function and Description  
Output inversion for channel A: PA<>NA  
PA = P1i xor CFGABZ(7)  
The positioning of the zero signal by CFGZPOS is rel-  
ative to the internal A/B cycle count POS. A cycle must  
be selected across which enable signal ZIn is centered  
as far as is possible. For cycle counts which cannot be  
achieved due to a smaller interpolation factor no zero  
signal is generated.  
6
5
4
Output inversion for channel B: PB<>NB  
PB = P2i xor CFGABZ(6)  
Output inversion for index channel: PZ<>NZ  
PZ = P0i xor CFGABZ(5)  
Exchange of A/B signal assignation  
0: P1i = A, P2i = B  
1: P1i = B, P2i = A  
CFGZPOS Adr 0x1A, bit 7:0  
Zero Signal Logic CFGABZ(3:0)  
Enable for A = 1, B = 1  
Enable for A = 1, B = 0  
Enable for A = 0, B = 0  
Enable for A = 0, B = 1  
Bit  
7
Description  
3
2
1
0
Mask Enable  
(zero signal position determined by POS)  
(6:0)  
POS = A/B cycle count nl (releases zero signal  
output)  
Table 46: Output Logic  
Table 47: Zero Signal Positioning  
ENZFF  
Adr 0x02, bit 4  
Bit  
0
Description  
Zero signal output with state change of P0i  
Zero signal output synchronized with A/B signal  
1
Table 48: Zero Signal Synchronization  
Figure 6: Signal Path from A and B to PA/NA and  
PB/NB  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 28/39  
Description Of CFGABZ Setup  
Figure 9: Function of CFGABZ(4)  
Figure 10: Function of CFGABZ(7)  
Figure 8: Function of zero signal logic CF-  
GABZ(3:0) (Example for CFGZPOS(7)=1,  
CFGZPOS(6:0)=0x6)  
Setup Example 1  
Incremental ABZ output with a zero signal of 180° syn-  
chronous with the A signal at PA:  
CFGABZ = "0000 1100"  
Setup Example 2  
Incremental ABZ output with a zero signal of 270°  
which can be synchronized externally with a 90° zero  
pulse for PA = 1 und PB = 1:  
CFGABZ = "1100 0111"  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 29/39  
SIK  
Code  
00  
Adr 0x1E, bit 5:4  
Function  
Output Driver Configuration  
The output drivers can be used as push-pull, lowside  
or highside drivers; the mode of operation is deter-  
mined by TRIHL(1:0).  
typ. 2 mA, linking logic or driver ICs  
typ. 8 mA  
01  
10  
typ. 40 mA  
11  
typ. 100 mA, recommended for RS422  
See Elec. Char. Nos. 503/504  
In order to avoid steep edges when transmitting via  
short wires the slew rate can be set using SSR to suit  
the length of the cable. This can result in a limiting  
of the maximum permissible output frequency if at the  
same time the RS422 specification is to be adhered  
to (for example, to 300 kHz at a slew rate of 300 ns;  
the tolerances in Electrical Characteristics, numbers  
506/507, must be observed).  
Note  
Table 51: Output Short-Circuit Current  
Minimum Phase Distance  
The minimum phase distance for A/B/Z and  
CPD/CPU/CP output signals can be preselected using  
MTD(3:0). This setting limits the maximum possible  
output frequency for safe transmission to counters  
which cannot debounce spikes or only permit a low  
input frequency.  
The driver output short-circuit current can be set by  
SIK and can be minimized when connecting to logic or  
to an external 24 V line driver. If the outputs are used  
as RS422-compatible 5 V drivers, it is recommended  
that SIK = 11 to keep the power dissipation of iC-MQ  
low.  
When preselecting the minimum edge distance the  
configuration of the RS422 output drivers (with regard  
to the driver current and slew rate) and the length of  
cable used must be taken into account.  
TRIHL  
Code  
00  
Adr 0x1E, bit 1:0  
Function  
Push-pull operation  
MTD  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
Note  
Adr 0x1D, bit 7:4  
Mode ABZ: tMTD  
220 ns  
01  
Highside driver mode (P channel open drain)  
Lowside driver mode (N channel open drain)  
Not permitted  
Mode 191/193: tclk()lo  
110 ns  
205 ns  
300 ns  
400 ns  
500 ns  
600 ns  
700 ns  
800 ns  
50 ns  
10  
11  
410 ns  
600 ns  
Table 49: Output Drive Mode  
800 ns  
1.0 µs  
SSR  
Code  
00  
Adr 0x1E, bit 3:2  
1.2 µs  
Function  
1.4 µs  
Nominal value 12 ns  
Nominal value 25 ns  
Nominal value 80 ns  
Nominal value 220 ns  
See Elec. Char. Nos. 506/507  
1.6 µs  
01  
220 ns  
10  
410 ns  
50 ns  
11  
600 ns  
50 ns  
Note  
800 ns  
50 ns  
1.0 µs  
50 ns  
Table 50: Output Slew Rate  
1.2 µs  
50 ns  
1.4 µs  
50 ns  
1.6 µs  
50 ns  
All timing specifications are nominal values, see  
Elec. Char. No. 515 for tolerances.  
Table 52: Minimum Phase Distance  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 30/39  
ERROR MONITORING AND ALARM OUTPUT  
EMASKA  
Adr 0x15, bit 1:0; Adr 0x14, bit 7:0  
Error event  
iC-MQ monitors the input signals, the internal interpo-  
lator and the sensor supply controller via which the in-  
put signal levels are stabilized. If the sensor supply  
tracking unit reaches its control limits this can be inter-  
preted as an end-of-life message, for example.  
Bit  
9
Line count error (wrong count of sine periods  
between two zero pulses)  
8
Temporal tracking error (out-of-sync: position output  
differs from actual angle, e.g. after cycling power)  
7
6
Loss of tracking (excessive input frequency)  
Three separate error masks stipulate whether error  
events are signaled as an alarm via the current-limited  
open drain I/O pin ERR (mask EMASKA), whether they  
cause the RS422 line drivers to shutdown or not (mask  
EMASKO) or whether they are stored in the EEPROM  
(mask EMASKE).  
Configuration error*  
(SDA or SCL pin error, no acknowledge signal from  
EEPROM or invalid check sum)  
5
4
Excessive temperature warning  
Ungated index enable signal ZIn  
(comparated X1/X2 inputs for CFGABZ and  
CFGZPOS adjustment)  
3
2
1
0
Control error 2: range at max. limit  
The display logic (via EPH) and the minimum alarm in-  
dication time (via EMTD) can be set for I/O pin ERR; an  
internal pull-up current source can be switched in via  
EPU. ERR pin also has an input function for switching  
iC-MQ to test mode (see page 33) and for the accep-  
tance of a system error message in normal operation  
(only for EPH = 0).  
Control error 1: range at min. limit  
Signal error 2: clipping due to excessive input level  
Signal error 1: loss of signal (poor input level or s/c  
phase out of range)  
Code  
1
Function  
Enable: event will be displayed  
Disable: event will not be displayed  
0
Notes  
*) The line drivers remain high impedance (tristate)  
when cycling power.  
EPH  
Code  
0
Adr 0x15, bit 2  
Pin Logic  
Low on error (otherwise Z)  
Z on error (otherwise low)  
Table 57: Error Event Mask for Alarm Output  
1
EMASKO  
Adr 0x17, bit 1:0; Adr 0x16, bit 7:0  
Error event  
Table 53: Alarm Input/Output Logic  
Bit  
9
Line count error (wrong count of sine periods  
between two zero pulses)  
EMTD  
Code  
0x0  
Adr 0x15, bit 5:3  
Indication Time  
0 ms  
Code  
0x4  
0x5  
0x6  
0x7  
Indication Time  
50 ms  
8
Temporal tracking error (out-of-sync: position output  
differs from actual angle, e.g. after cycling power)  
7
6
Loss of tracking (excessive input frequency)  
0x1  
12.5 ms  
25 ms  
62.5 ms  
75 ms  
Configuration error* (ROM bit with fixed value = 1)  
SDA or SCL pin error, no acknowledge signal from  
EEPROM or invalid check sum  
0x2  
0x3  
37.5 ms  
87.5 ms  
5
4
Excessive temperature warning  
Table 54: Minimum Alarm Indication Time  
System error: I/O pin ERR pulled to low by an  
external error signal (only permitted with EPH = 0)  
EPU  
Code  
0
Adr 0x17, bit 2  
3
2
1
0
Control error 2: range at max. limit  
Function  
Control error 1: range at min. limit  
No internal pull-up active  
Internal 300 µA pull-up current source active  
Signal error 2: clipping due to excessive input level  
1
Signal error 1: loss of signal (poor input level or s/c  
phase out of range)  
Code  
1
Function  
Table 55: Pull-Up Enable for Alarm Output ERR  
Enable: event triggers tri-state  
Disable: event does not cause tri-state  
0
PDMODE  
Adr 0x18, bit 6  
Notes  
*) The line drivers remain high impedance (tristate)  
when cycling power.  
Code  
Function  
0
1
Line driver active when no error persists  
Line driver active only after cycling power  
Table 58: Error Event Mask for Driver Shutdown  
Table 56: Driver Activation  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 31/39  
Error Protocol  
Line Count Error  
Out of the errors enabled by EMASKE both the first The line count error feature is particularly interest-  
(under ERR1) and last error (under ERR2) which oc- ing for encoder systems. The disc is checked anew  
cur after the iC-MQ is turned on are stored in the EEP- with each zero pulse, with the number of sine cycles  
ROM.  
counted until the next zero pulse occurs. If the direc-  
tion of rotation is changed, the check is aborted.  
The EEPROM also has a memory area in which all oc-  
curring errors can be stored (ERR3). Only the fact that The line count is then stored under LINECNT minus 1,  
an error has occurred can be recorded, with no infor- i.e. for a code disc with 256 lines LINECNT records  
mation as to the time and count of appearance of that a value of 255. If the counted line number does not  
error given. Error recording can be used to statistically match the number already stored in LINECNT, a line  
evaluate the causes of system failure, for example.  
count error is set. In mode System Test signal TP1  
indicates when the line count check is first ended.  
EMASKE  
Adr 0x18, bit 5:0; Adr 0x17, bit 7:4  
Error event  
Bit  
9
Temperature Monitoring  
If the temperature warning threshold is exceeded an  
excessive temperature message is generated which is  
processed in the temperature monitor block (Tw corre-  
sponds to T2).  
Line count error (wrong count of sine periods  
between two zero pulses)  
8
7
6
5
4
Loss of tracking (excessive input frequency)  
Excessive temperature warning  
Exceeding the temperature warning threshold can be  
signaled at pin ERR or used to shut down the line  
drivers (via mask EMASKO). The temperature warn-  
ing is deleted when the temperature drops below Tw  
System error: I/O pin ERR reads low by an external  
error signal (only permitted with EPH = 0)  
3
2
1
0
Control error 2: range at max. limit  
Control error 1: range at min. limit  
-Thys  
.
Signal error 2: clipping due to excessive input level  
Signal error 1: loss of signal (poor input level or s/c  
phase out of range)  
If the temperature shutdown threshold Toff = Tw + T  
is exceeded the line drivers are shut down independent  
of EMASKO.  
Code  
Function  
1
0
Enable: event will be latched  
Disable: event will not be latched  
Table 59: Error Event Mask for EEPROM Savings  
ERR1  
Adr 0x31, bit 1:0; Adr 0x30, bit 7:0  
Adr 0x32, bit 3:0; Adr 0x31, bit 7:2  
Adr 0x33, bit 5:0; Adr 0x32, bit 7:4  
Error Event  
ERR2  
ERR3  
Bit  
6:0  
Assignation according to EMASKE  
Code  
Function  
0
1
No event  
Registered error event  
Table 60: Error Protocol  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 32/39  
REVERSE POLARITY PROTECTION  
iC-MQ is protected against a reversal of the supply The following pins are also reverse polarity protected:  
voltage and has short-circuit-proof, error-tolerant line PA, NA, PB, NB, PZ, NZ, ERR, VDD, GND and ACO.  
drivers. A defective device cable or one wrongly con-  
nected is tolerated by iC-MQ. All circuitry components Conditions: This is based on the condition that GNDS  
which draw the monitored supply voltage from VDDS only receives load currents from VDDS. The maxi-  
and GNDS are also protected.  
mum voltage difference between GNDS and another  
pin should not exceed 6 V, the exception here being  
pin ERR (see Test Mode page 33).  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 33/39  
TEST MODE  
EMODE  
Adr 0x15, bit 7:6  
iC-MQ switches to test mode when a voltage greater  
than VTMon is applied to pin ERR (precondition:  
EMODE(0) = 1). In response iC-MQ transmits its setup  
settings as current-modulated data using error sig-  
nal I/O pin ERR either directly from the RAM (for  
EMODE2 = 1) or after re-reading the EEPROM (for  
EMODE2 = 0). Should the voltage at the ERR pin fall  
below VTMoff test mode is terminated and data trans-  
mission aborted.  
Code  
Function during test  
mode  
Function following test  
mode  
00  
01  
Normal operation  
Normal operation  
Transmission of error  
and OEM data*  
Repeated read out of  
EEPROM  
10  
11  
Normal operation  
Repeated read out of  
EEPROM  
Transmission of  
EEPROM contents  
(0x0-0x7F)  
Repeated read out of  
EEPROM  
Notes  
*) Selectable address ranges:  
EMODE2 = 0: EEPROM addresses 0x24 to 0x7F  
EMODE2 = 1: RAM addresses 0x3B to 0x43  
The clock rate for the data output is determined by  
ENFAST. Two clock rates can be selected: 780 ns for  
ENFAST = 1 or 3.125 µs for ENFAST = 0 (see Electri-  
cal Characteristics, B12, for clock frequency and toler-  
ances).  
Table 61: Test Mode  
EMODE2  
Adr 0x18, bit 7  
Data is output in Manchester code via two clock pulses  
per bit. To this end the lowside current source switches  
between a Z state (OFF = 0 mA) and an L state (ON =  
2 mA).  
Code  
Register selection  
Address range for  
EMODE = 01  
0
1
Reading/sending  
external configuration  
data (DEVID is device  
address)  
EEPROM address  
range 0x24-0x7F  
The bit information lies in the direction of the current  
source switch:  
Sending internal  
configuration data  
(ENSL = 1)  
RAM address range  
0x3B-0x43  
Zero bit: change of state Z L (OFF to ON)  
One bit: Change of state L Z (ON to OFF)  
Table 62: Register And Address Selection For Test  
Mode  
Transmission consists of a start bit (a one bit), 8 data  
bits and a pause interval in Z state (the timing is iden-  
tical with an EEPROM access via the I2C interface).  
VP  
U23-B  
VP LM393  
VP  
7
8
6
5
VP  
VP  
C21  
100nF  
C22  
100nF  
-
U22-S  
AD8029  
VN  
U23-S  
LM393  
GND  
7
+
4
4
Example: byte value = 1000 1010  
Transmission including the start bit: 1 1000 1010  
In Manchester code: LZ LZZL ZLZL LZZL LZZL  
JP4  
R24  
470  
ERR  
max. 5V  
VDD  
M22  
IRLML6401  
C24  
VP  
R26  
100pF  
100k  
R23  
2K  
C26  
100nF  
R28  
51k  
U22-A  
U23-A  
LM393  
R25  
2k  
2
D21  
LL4148  
Decoding of the data stream:  
-
M21  
2N7002  
6
2
3
DATA_ON  
AD8029  
-
3
1
NDIS  
DATA_OUT  
+
8
+
R21  
475k  
8
4
R27  
U21  
LM285  
VP  
100k  
5
ZZZZZZ LZ LZ ZL ZL ZL LZ ZL LZ ZL ZZZZZZ  
Pause 1 1 0 0 0 1 0 1 0 Pause  
C25  
100nF  
R22  
365k  
VDD  
C23  
100nF  
dra_mq1d_error_schem  
Figure 11: Example circuit for the decoding and  
conversion of the current-modulated sig-  
nals to logic levels.  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 34/39  
Quick programming in the  
single master system  
Quick programming in the  
multimaster system  
For the purpose of signal conditioning it is possible Fast programming of iC-MQ, byte for byte, is possible  
to reprogram iC-MQ quickly. If test mode is quit and with a multimaster-competent programming device. To  
EMODE = 00, iC-MQ reads the configuration data in this end the integrated I2C slave mode must be en-  
again. In place of the standard EEPROM (DEVID abled by ENSL; iC-MQ then reacts to the device ID  
0x50) an EEPROM with a different device address can 0x55.  
be read in which can be stored under DEVID (address  
0x00, bit 6:0).  
If no EEPROM is connected, iC-MQ automatically  
In operating modes Mode ABZ, System Test and Mode sets the I2C slave mode enable (after a maximum of  
191/193 the content of the EEPROM is read in its en- 150 ms, see Electrical Characteristics, D11) and deac-  
tirety. For other modes the address area is limited to tivates the digital section (ENSL = 1 and END = 0 are  
0x0-0x31 so that the configuration time for either cali- set). Any number of bytes can be written at any one  
bration or IC testing is shortened.  
time; the received data is accepted directly into the  
RAM register. The conditions given in the following  
If the setup is switched to test mode during the readin table must be taken into consideration here. After pro-  
procedure, readin is aborted and only repeated once gramming END = 1 must be set to restart sine-to-digital  
test mode has been terminated.  
conversion in the selected mode of operation.  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 35/39  
EXAMPLE APPLICATIONS  
Figure 12 is a circuit diagram of an optical encoder with tive the magnetic encoder in Figure 13 uses magneto-  
an incremental output of quadrature signals as RS422- resistive sensor bridges. An external overvoltage pro-  
compatible differential signals which can be terminated tection circuit may be realized employing TVS diodes  
by 100 at the controller end. By way of an alterna- plus a PolyFuse in the VDD line, for instance.  
iC-MQ  
Disc  
iC-LSHB  
Figure 12: Example application with an optical encoder  
iC-MQ  
Figure 13: Example application with a magnetic encoder  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 36/39  
When iC-MQ is used in 24 V systems, with supply volt- mask is set for output shutdown (EMASKO). In the  
ages of 5 V to 30 V for example, it can be combined event of error the pull-down current sources ensure  
with iC-DL which acts as a line driver with an integrated that a low signal is produced at the iC-DL inputs on  
line adaptation feature (Figure 14).  
all lines which the controller recognizes as an error. If  
there is an overload at the outputs, via its temperature  
A reduced driving capability of iC-MQ is sufficient protection unit iC-DL itself makes sure that the driver  
(SIK = 00) to operate iC-DL so that the current required outputs are shutdown (tristate) - which the controller  
is reduced at the 5 V end. If an LDO voltage regulator also classes as an error. In addition iC-MQ can trans-  
is selected, the circuit is suitable for a supply range of mit the overload to the error memory as a system error  
4.5 V to 30 V without any changes having to be made.  
when information is returned to the bidirectional I/O pin  
ERR (as shown).  
The wiring of the iC-DL error message output (pin  
NER) to the PLC is not necessary if the iC-MQ error  
iC-MQ  
iC-DL  
Figure 14: Example application with a 24 V line driver  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 37/39  
APPLICATION HINTS  
In-circuit programming of the EEPROM  
A phase error between the sine and cosine signals  
Access to the EEPROM is unhindered when the iC- (a deviation in phase shift from the ideal 90°) has the  
MQ supply voltage is kept below power down reset most marked influence on the absolute angle error at  
threshold VDDoff. In this case an EEPROM which op- 0°, 90°, 180° and 270°. The greatest effect on the tran-  
erates at a supply voltage of 2.5 V and above is re- sition distance is noted at 45°, 135°, 225° and 315°.  
quired. If 3.3 V are necessary to power the EEPROM, iC-MQ’s phase correction feature permits a step size of  
iC-MQ’s supply voltage can be raised at a maximum 0.64° so that incorrect compensation by 1 LSB would  
to power on threshold VDDon; this must occur without increase the absolute angle error by ca. 0.64°. The  
overshooting.  
transition distance would then vary by +/- 1.1 %.  
The supply voltage provided by pins VDDS and GNDS In a perfect signal conditioning procedure it can be as-  
can be used to power the EEPROM; shutdown only sumed that the residual error constitutes half a com-  
occurs with reverse polarity. Here, the load-dependent pensation step respectively. With this, in theory iC-  
voltage drop at both switches must be taken into ac- MQ would achieve an absolute angle accuracy of ca.  
count; see Vs(VDDS) and Vs(GNDS) in the Electrical 0.5°, with the transition distance varying by ca. +/-  
Characteristics, C01 and C02.  
1.5 %. The linearity error of the interpolator must also  
be taken into consideration; this increases the absolute  
angle error by ca. 0.12° and the variation in transition  
Absolute angle accuracy and edge jitter  
The precise setting of the signal conditioning unit for distance by 0.4 %. With ideal, almost static input sig-  
correction of the analog input signals is crucial to the nals iC-MQ then obtains an absolute angle accuracy  
result of interpolation; the absolute angle error ob- of 0.62° and a variation in transition distance of under  
tained determines the minimum signal jitter. Here, the 2 %.  
effect on the transition distance of the A/B output sig-  
nals is not always the same but instead dependent on Information on the demo board  
the absolute phase angle of the input signals. The fol- The default delivery status of demo board EVAL MQ1D  
lowing gives an example for an interpolation factor of is such that it expects differential sine/cosine signals at  
100, i.e. 400 edges per sine period.  
inputs X3 to X6 with an amplitude of 125 mV, i.e.  
The offset error in the cosine signal has the strongest  
effect on the absolute angle error at 90° and 270°; at 0°  
and 180° its influence on the transition distance is the  
most marked. With a range setting of OR1 = OR2 = 00  
and VOSSC = 01 the offset error can be compensated  
for by an increment of 3.9 mV. If the offset has been  
compensated for incorrectly by one step (1 LSB), the  
absolute angle error would increase by ca. 0.45° and  
V(X4) = 2.5 V + 0.125 Vsin(ϕt)  
V(X3) = 2.5 V 0.125 Vsin(ϕt)  
V(X5) = 2.5 V + 0.125 Vsin(90 + ϕt)  
V(X6) = 2.5 V 0.125 Vsin(90 + ϕt)  
the transition distance vary by approximately +/- 0.8 %. Outputs PA, NA, PB and NB generate a differential  
Similar conditions apply to the sine signal, with the sole A/B signal with an angle resolution of 4 (an interpo-  
difference that the maxima would be shifted by 90°.  
lation factor of 1). When high sine input frequencies  
are applied or the resolution is increased, the mini-  
An error in amplitude has the strongest effect on the mum phase distance (MTD), short-circuit current limit  
absolute angle error at 45°, 135°, 225° and 315°; the (SIK) and driver slew rate (SSR) must be adjusted to  
biggest change in the transition distance can be ob- meet requirements. For example, a minimum phase  
served at 0°, 90°, 180° and 270°. iC-MQ can compen- distance of MTD = 8 should be selected with a resolu-  
sate for the amplitude ratio in steps of 1.5 % so that tion of 200 (an interpolation factor of 50) when input  
incorrect compensation by 1 LSB would increase the frequencies of up to 20 kHz are to be applied.  
absolute angle error by ca. 0.42°. The transition dis-  
tance would then vary by +/- 1.5 %.  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 38/39  
iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these  
materials.  
The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, tness  
for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no  
guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of  
the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical  
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of  
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued  
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in  
Hanover (Hannover-Messe).  
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations  
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can  
be put to.  
iC-MQ PROGRAMMABLE 9-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev D4, Page 39/39  
ORDERING INFORMATION  
Type  
Package  
Order Designation  
iC-MQ  
TSSOP20  
iC-MQ TSSOP20  
Evaluation Board iC-MQ  
iC-MQ EVAL MQ1D  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (61 35) 92 92-0  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Fax: +49 (61 35) 92 92-192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

IC-MR

13-BIT S&H SIN/COS INTERPOLATOR WITH CONTROLLER INTERFACES
ICHAUS

IC-MSA

SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER
ICHAUS

IC-MSB

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2EVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2TSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBEVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBTSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBTSSOP20-TP

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MU

Magnetic off-axis absolute position encoder
ICHAUS

IC-MU_13

OFF-AXIS NONIUS ENCODER WITH INTEGRATED HALL SENSORS
ICHAUS

IC-MZ

DIFFERENTIAL HALL SWITCH
ICHAUS