ICS842S104 [IDT]

Crystal-to-HSTL 100MHz / 200MHz PCI Express™ Clock Synthesizer; 水晶到100MHz的HSTL / 200MHz的PCI Express的™时钟合成器
ICS842S104
型号: ICS842S104
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Crystal-to-HSTL 100MHz / 200MHz PCI Express™ Clock Synthesizer
水晶到100MHz的HSTL / 200MHz的PCI Express的™时钟合成器

PC 时钟
文件: 总21页 (文件大小:921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Crystal-to-HSTL 100MHz / 200MHz  
PCI ExpressClock Synthesizer  
ICS842S104  
DATA SHEET  
General Description  
Features  
The ICS842S104 is a PLL-based clock generator specifically  
designed for PCI Express™ Clock Generation 2 applications. This  
device generates either a 200MHz or 100MHz differential HSTL  
clock from an input reference of 25MHz. The input reference may be  
derived from an external source or by the addition of a 25MHz  
crystal to the on-chip crystal oscillator. An external reference is  
applied to the XTAL_IN pin with the XTAL_OUT pin left floating.The  
device offers spread spectrum clock output for reduced EMI  
applications. An I2C bus interface is used to enable or disable spread  
spectrum operation as well as select either a down spread value of  
-0.35% or -0.5%.The ICS842S104 is available in a lead-free 24-Lead  
package.  
Four differential HSTL output pairs  
Crystal oscillator interface: 25MHz  
Output frequency: 100MHz or 200MHz  
RMS phase jitter @ 200MHz (12kHz – 20MHz): 1.27ps (typical)  
Cycle-to-cycle jitter: 25ps (maximum)  
I2C support with readback capabilities up to 400kHz  
Spread Spectrum for electromagnetic interference (EMI) reduction  
3.3V core/1.5V to 2.0V output operating supply  
0°C to 70°C ambient operating temperature  
Available lead-free (RoHS 6) package  
PCI Express Gen2 Jitter Compliant  
HiPerClockS™  
Block Diagram  
Pin Assignment  
SRCC4  
SRCT4  
SRCT3  
SRCC3  
VSS  
24  
23  
1
2
XTAL_IN 25MHz  
4
Divider  
Network  
SRCT[1:4]  
SRCC[1:4]  
OSC  
PLL  
4
3
4
22  
21  
VDDO  
SDATA  
XTAL_OUT  
VDDO  
SRCT2  
SRCC2  
SRCT1  
5
6
7
20  
19  
18  
17  
SCLK  
XTAL_OUT  
XTAL_IN  
Pullup  
Pullup  
SDATA  
I2C  
SCLK  
Logic  
8
9
10  
11  
12  
SRCC1  
VSS  
V
V
DD  
SS  
16  
15  
14  
13  
VDD  
VSS  
nc  
VDDA  
VSS  
nc  
ICS842S104  
24-Lead TSSOP  
4.4mm x 7.8mm x 0.925mm package body  
G Package  
Top View  
ICS842S104CG REVISION A MARCH 17, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Output  
Description  
1, 2  
SRCT3, SRCC3  
Differential output pair. HSTL interface levels.  
3, 9,  
11, 13, 16  
VSS  
Power  
Power supply ground.  
4, 22  
5, 6  
VDDO  
SRCT2, SRCC2  
SRCT1, SRCC1  
VDD  
Power  
Output  
Output  
Power  
Unused  
Power  
Input  
Output power supply pins.  
Differential output pair. HSTL interface levels.  
Differential output pair. HSTL interface levels.  
Core supply pins.  
7, 8  
10, 17  
12, 15  
14  
nc  
No connect.  
VDDA  
Analog supply for PLL.  
18, 19  
XTAL_IN, XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.  
I2C compatible SCLK. This pin has an internal pullup resistor.  
LVCMOS/LVTTL interface levels.  
I2C compatible SDATA. This pin has an internal pullup resistor.  
LVCMOS/LVTTL interface levels.  
20  
SCLK  
Input  
Pullup  
Pullup  
21  
SDATA  
I/O  
23, 24  
SRCT4, SRCC4  
Output  
Differential output pair. HSTL interface levels.  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
2
RPULLUP  
51  
k  
ICS842S104CG REVISION A MARCH 17, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer, a  
two-signal I2C serial interface is provided. Through the Serial Data  
Interface, various device functions, such as individual clock output  
buffers, can be individually enabled or disabled. The registers  
associated with the serial interface initialize to their default setting  
upon power-up, and therefore, use of this interface is optional. Clock  
device register changes are normally made upon system  
initialization, if any are required.  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read, block  
write and block read operations from the controller. For block  
write/read operation, the bytes must be accessed in sequential order  
from lowest to highest byte (most significant bit first) with the ability to  
stop after any complete byte has been transferred. For byte write and  
byte read operations, the system controller can access individually  
indexed bytes. The offset of the indexed byte is encoded in the  
command code, as described in Table 3A.  
The block write and block read protocol is outlined in Table 3B, while  
Table 3C outlines the corresponding byte write and byte read  
protocol. The slave receiver address is 11010010 (D2h).  
Table 3A.Command Code Definition  
Bit  
7
Description  
0 = Block read or block write operation, 1 = Byte read or byte write operation.  
Chip select address, set to “00” to access device.  
6:5  
4:0  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits must be “00000”.  
ICS842S104CG REVISION A MARCH 17, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Table 3B. Block Read and Block Write Protocol  
Bit  
1
Description = Block Write  
Start  
Bit  
1
Description = Block Read  
Start  
2:8  
Slave address - 7 bits  
Write  
2:8  
9
Slave address - 7 bits  
Write  
9
10  
Acknowledge from slave  
Command Code - 8 bits  
Acknowledge from slave  
Byte Count - 8 bits  
Acknowledge from slave  
Data byte 1 - 8 bits  
Acknowledge from slave  
Data byte 2 - 8 bits  
Acknowledge from slave  
Data Byte/Slave Acknowledges  
Data Byte N - 8 bits  
Acknowledge from slave  
Stop  
10  
Acknowledge from slave  
Command Code - 8 bits  
Acknowledge from slave  
Repeat start  
11:18  
19  
11:18  
19  
20:27  
28  
20  
21:27  
28  
Slave address - 7 bits  
Read = 1  
29:36  
37  
29  
Acknowledge from slave  
Byte Count from slave - 8 bits  
Acknowledge  
38:45  
46  
30:37  
38  
39:46  
47  
Data Byte 1 from slave - 8 bits  
Acknowledge  
48:55  
56  
Data Byte 2 from slave - 8 bits  
Acknowledge  
Data Bytes from Slave/Acknowledge  
Data Byte N from slave - 8 bits  
Not Acknowledge  
Table 3C. Byte Read and Byte Write Protocol  
Bit  
1
Description = Byte Write  
Start  
Bit  
1
Description = Byte Read  
Start  
2:8  
9
Slave address - 7 bits  
Write  
2:8  
9
Slave address - 7 bits  
Write  
10  
Acknowledge from slave  
Command Code - 8 bits  
Acknowledge from slave  
Data Byte - 8 bits  
Acknowledge from slave  
Stop  
10  
Acknowledge from slave  
Command Code - 8 bits  
Acknowledge from slave  
Repeat start  
11:18  
19  
11:18  
19  
20:27  
28  
20  
21:27  
28  
Slave address - 7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave - 8 bits  
Not Acknowledge  
Stop  
30:37  
38  
39  
ICS842S104CG REVISION A MARCH 17, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Control Registers  
Table 3D. Byte 0: Control Register 0  
Table 3G. Byte 3:Control Register 3  
Bit  
@Pup  
Name  
Description  
Bit  
7
@Pup  
Name  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7
0
Reserved  
Reserved  
1
0
1
0
1
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SRC[T/C]4 Output Enable  
0 = Disable (Hi-Z)  
1 = Enable  
6
6
5
4
3
1
1
1
1
SRC[T/C]4  
SRC[T/C]3  
SRC[T/C]2  
SRC[T/C]1  
5
4
SRC[T/C]3 Output Enable  
0 = Disable (Hi-Z)  
1 = Enable  
3
2
SRC[T/C]2 Output Enable  
0 = Disable (Hi-Z)  
1 = Enable  
1
0
SRC[T/C]1 Output Enable  
0 = Disable (Hi-Z)  
1 = Enable  
Table 3H. Byte 4: Control Register 4  
Bit  
7
@Pup  
Name  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
1
0
1
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
5
4
Table 3E. Byte 1: Control Register 1  
3
Bit  
7
@Pup  
Name  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
6
0
5
4
Table 3I. Byte 5: Control Register 5  
3
Bit  
7
@Pup  
Name  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
6
0
5
4
Table 3F. Byte 2: Control Register 2  
3
Bit  
@Pup  
Name  
Description  
2
Spread Spectrum Selection  
0 = -0.35%, 1 = -0.5%  
1
7
1
SRCT/C  
0
6
5
4
3
1
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SRC Spread Spectrum  
Enable  
0 = Spread Off,  
1 = Spread On  
2
0
SRC  
1
0
1
1
Reserved  
FOUTCTL  
Reserved  
Output Frequency Control  
0 = 100MHz  
1 = 200MHz  
ICS842S104CG REVISION A MARCH 17, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Table 3J. Byte 6: Control Register 6  
Table 3K. Byte 7: Control Register 7  
Bit  
@Pup  
Name  
Description  
Bit  
7
@Pup  
Name  
Description  
REF/N or Hi-Z Select  
0 = Hi-Z, 1 = REF/N  
0
0
0
0
0
0
0
1
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
7
0
TEST_SEL  
6
TEST Clock  
5
Mode Entry Control  
0 = Normal Operation,  
1 = REF/N or Hi-Z Mode  
6
0
TEST_MODE  
4
3
5
4
3
2
1
0
0
1
0
0
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
Vendor ID Bit 2  
1
Vendor ID Bit 1  
0
Vendor ID Bit 0  
ICS842S104CG REVISION A MARCH 17, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
4.6V  
Inputs, VI  
XTAL_IN  
0V to VDD  
Other Inputs  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
77.5°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 3.3V 5%, VDDO = 1.5V to 2.0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
VDD  
2.0  
Units  
V
VDD  
VDDA  
VDDO  
IDD  
Positive Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
Output Supply Current  
VDD – 0.21  
1.5  
3.3  
V
V
106  
mA  
mA  
mA  
IDDA  
IDDO  
21  
7
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VDD + 0.3  
0.8  
Units  
V
VIH  
VIL  
IIH  
Input High Voltage  
2
Input Low Voltage  
Input High Current  
Input Low Current  
-0.3  
V
SDATA, SCLK  
SDATA, SCLK  
VDD = VIN = 3.465V  
10  
µA  
µA  
IIL  
VDD = 3.465V, VIN = 0V  
-150  
Table 4C. HSTL DC Characteristics, VDD = 3.3V 5%, VDDO = 1.5V to 2.0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
VOH  
VOL  
Output High Voltage; NOTE 1  
0.9  
0
1.2  
0.4  
V
V
Output Low Voltage; NOTE 1  
Output Crossover Voltage;  
NOTE 2  
VOX  
40% x (VOH - VOL) + VOL  
0.6  
65% x (VOH - VOL) + VOL  
1.1  
%
V
Peak-to-Peak Output Voltage  
Swing  
VSWING  
NOTE 1: Outputs terminated with 50to GND.  
NOTE 2: Defined with respect to output voltage swing at a given condition.  
ICS842S104CG REVISION A MARCH 17, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Fundamental  
25  
Maximum  
Units  
Mode of Oscillation  
Frequency  
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
50  
7
pF  
NOTE: Characterized using an 18pF parallel resonant crystal.  
AC Electrical Characteristics  
Table 6. AC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
FOUTCTL = 0  
FOUTCTL = 1  
Minimum  
Typical  
100  
Maximum  
Units  
MHz  
MHz  
fMAX  
Output Frequency  
Reference frequency  
200  
fref  
25  
ƒ= 200MHz,  
25MHz crystal input  
tREFCLK_HF_RMS Phase Jitter RMS; NOTE 1, 2  
0.95  
ps  
High Band: 1.5MHz - Nyquist  
(clock frequency/2)  
ƒ= 200MHz,  
25MHz crystal input  
tREFCLK_LF_RMS Phase Jitter RMS; NOTE 1  
0.31  
1.27  
ps  
Low Band: 10kHz - 1.5MHz  
tsk(o)  
Output Skew; NOTE 2, 3  
50  
ps  
ps  
200MHz, Integration Range:  
12kHz – 20MHz  
tjit(Ø)  
Phase Jitter, RMS (Random)  
tjit(cc)  
tL  
Cycle-to-Cycle Jitter  
PLL Lock Time  
PLL Mode  
25  
60  
52  
ps  
ms  
%
odc  
Output Duty Cycle  
48  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and  
reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps rms for tREFCLK_HF_RMS (High  
Band) and 3.0 ps RMS for tREFCLK_LF_RMS (Low Band). See IDT Application Note PCI Express Reference Clock Requirements and also the  
PCI Express Application section of this datasheet which show each individual transfer function and the overall composite transfer function.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
ICS842S104CG REVISION A MARCH 17, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Typical Phase Noise at 200MHz  
Offset Frequency (Hz)  
ICS842S104CG REVISION A MARCH 17, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Parameter Measurement Information  
3.3V 5%  
1.5V to 2.0V  
3.3V 5%  
Phase Noise Plot  
V
DD  
SCOPE  
Qx  
Phase Noise Mask  
V
DDO  
V
DDA  
HSTL  
Offset Frequency  
f1  
f2  
nQx  
GND  
0V  
RMS Jitter = Area Under the Masked Phase Noise Plot  
3.3V HSTL Output Load AC Test Circuit  
RMS Phase Jitter  
SRCC(1:4)  
SRCT(1:4)  
SRCC(1:4)  
SRCT(1:4)  
tPW  
tPERIOD  
tcycle n  
tcycle n+1  
tPW  
tjit(cc) = tcycle n – tcycle n+1  
|
|
odc =  
x 100%  
1000 Cycles  
tPERIOD  
Cycle-to-Cycle Jitter  
Output Duty Cycle/Pulse Width/Period  
ICS842S104CG REVISION A MARCH 17, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Application Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS842S104 provides  
separate power supplies to isolate any high switching noise from the  
outputs to the internal PLL. VDD, VDDA and VDDO should be  
individually connected to the power supply plane through vias, and  
0.01µF bypass capacitors should be used for each pin. Figure 1  
illustrates this for a generic VDD pin and also shows that VDDA  
requires that an additional 10resistor along with a 10µF bypass  
capacitor be connected to the VDDA pin.  
3.3V  
VCC  
.01µF  
10  
VCCA  
.01µF  
10µF  
Figure 1. Power Supply Filtering  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
HSTL Outputs  
All control pins have internal pullups; additional resistance is not  
required but can be added for additional protection. A 1kresistor  
can be used.  
All unused HSTL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
ICS842S104CG REVISION A MARCH 17, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Crystal Input Interface  
The ICS842S104 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in Figure  
2 below were determined using a 25MHz, 18pF parallel resonant  
crystal and were chosen to minimize the ppm error. The optimum C1  
and C2 values can be slightly adjusted for different board layouts.  
XTAL_IN  
C1  
18pF  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
18pF  
Figure 2. Crystal Input Interface  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3A. The XTAL_OUT pin can be left floating. The  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series  
resistance (Rs) equals the transmission line impedance. In addition,  
matched termination at the crystal input will attenuate the signal in  
half. This can be done in one of two ways. First, R1 and R2 in parallel  
should equal the transmission line impedance. For most 50Ω  
applications, R1 and R2 can be 100. This can also be  
accomplished by removing R1 and making R2 50. By overdriving  
the crystal oscillator, the device will be functional, but note, the device  
performance is guaranteed by using a quartz crystal.  
3.3V  
3.3V  
R1  
100  
C1  
Ro  
~ 7 Ohm  
Zo = 50 Ohm  
XTAL_I N  
RS  
43  
0.1uF  
R2  
Driver_LVCMOS  
100  
XTAL_OU T  
Crystal Input Interf ace  
Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface  
VCC=3.3V  
C1  
Zo = 50 Ohm  
XTAL_IN  
0.1uF  
R1  
Zo = 50 Ohm  
50  
XTAL_OUT  
LVPECL  
Cry stal Input Interface  
R2  
50  
R3  
50  
Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface  
ICS842S104CG REVISION A MARCH 17, 2010 12  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Termination for HSTL Outputs  
VDDO  
VDD  
Zo = 50  
+
-
Zo = 50  
HSTL  
HSTL  
R1  
R2  
50  
50  
ICS HiPerClockS  
HSTL Driver  
Figure 4. HSTL Output Termination  
ICS842S104CG REVISION A MARCH 17, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Schematic Example  
Figure 5 shows an example of ICS842S104 application schematic. In  
this example, the device is operated at VDD = 3.3V and VDDO = 1.8V.  
Both input options are shown. The device can either be driven using  
a quartz crystal or a 3.3V LVCMOS signal. The C1 and C2 = 18pF  
are recommended for frequency accuracy. For different board  
layouts, the C1 and C2 may be slightly adjusted for optimizing  
fequency accuracy. The LVHSTL output driver termination examples  
are shown in this schematic. The decoupling capacitor should be  
located as close as possible to the power pin.  
Logic Control Input Examples  
Zo = 50 Ohm  
SRCT1  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VDD  
VDD  
SRCC1  
+
VDD  
VDDO  
RU1  
1K  
RU2  
Not Install  
Zo = 50 Ohm  
-
To Logic  
Input  
To Logic  
Input  
pins  
pins  
R1  
50  
R2  
50  
RD1  
RD2  
1K  
U1  
Not Install  
VDD=3.3V  
VDDO=1.8V  
Zo = 50 Ohm  
SRCT4  
SRCC4  
VDD  
VDDA  
C3  
+
-
R3  
10  
VDD  
C4  
VDDO  
10uF  
0.01u  
Zo = 50 Ohm  
25MHz  
C2  
X1  
18pF  
VDD  
18pF  
R4  
50  
R5  
50  
C1  
18pF  
R6  
SP  
R7  
SP  
VDD  
VDDO  
(U1-10)  
(U1-17)  
(U1-4) VDDO (U1-22)  
J1  
VDD  
R8  
0
SDA  
5
4
3
2
1
C5  
0.1uF  
C6  
C7  
C8  
R9  
0
0.1uF  
0.1uF  
0.1uF  
SCL  
Figure 5. ICS842S104 Schematic Example  
ICS842S104CG REVISION A MARCH 17, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
PCI Express Application Note  
PCI Express jitter analysis methodology models the system response  
to reference clock jitter. The below block diagram shows the most  
frequently used Common Clock Architecture in which a copy of the  
reference clock is provided to both ends of the PCI Express Link.  
In the jitter analysis, the Tx and Rx serdes PLLs are modeled as well  
as the phase interpolator in the receiver. These transfer functions are  
called H1, H2, and H3 respectively. The overall system transfer  
function at the receiver is:  
For PCI Express Gen 1, one transfer function is defined and the  
evaluation is performed over the entire spectrum: DC to Nyquist (e.g  
for a 100MHz reference clock: 0Hz to 50MHz) and the jitter result is  
reported in peak-peak. For PCI Express Gen 2, two transfer functions  
are defined with 2 evaluation ranges and the final jitter number is  
reported in rms. The two evaluation ranges for PCI Express Gen 2  
are 10kHz - 1.5MHz (Low Band) and 1.5MHz - Nyquist (High Band).  
The below plots show the individual transfer functions as well as the  
overall transfer function Ht. The respective -3 dB pole frequencies for  
each transfer function are labeled as F1 for transfer function H1, F2  
for H2, and F3 for H3. For a more thorough overview of PCI Express  
jitter analysis methodology, please refer to IDT Application Note PCI  
Express Reference Clock Requirements.  
t(s) = H3(s) × [H1(s) H2(s  
The jitter spectrum seen by the receiver is the result of applying this  
system transfer function to the clock spectrum X(s) and is:  
s) = X(s) × H3(s) × [H1(s) H2(  
In order to generate time domain jitter numbers, an inverse Fourier  
Transform is performed on X(s)*H3(s) * [H1(s) - H2(s)].  
ICS842S104CG REVISION A MARCH 17, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Magnitude of Transfer Functions - PCIe Gen 1  
0
-10  
-20  
-30  
-40  
-50  
F1: 2.2e+007 F2: 1.5e+006  
F3: 1.5e+006  
H1  
H2  
H3  
Ht=(H1-H2)*H3  
-60  
103  
104  
105  
106  
107  
Frequency (Hz)  
PCIe Gen 1 Magnitude of Transfer Function  
Magnitude of Transfer Functions - PCIe Gen 2B  
Magnitude of Transfer Functions - PCIe Gen 2A  
0
0
F1: 1.6e+007 F2: 8.0e+006  
F3: 1.0e+006  
F1: 1.6e+007 F2: 5.0e+006  
F3: 1.0e+006  
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
H1  
H1  
H2  
H3  
-50  
-60  
H2  
H3  
-50  
-60  
Ht=(H1-H2)*H3  
Ht=(H1-H2)*H3  
103  
104  
105  
106  
107  
103  
104  
105  
106  
107  
Frequency (Hz)  
Frequency (Hz)  
PCIe Gen 2A Magnitude of Transfer Function  
PCIe Gen 2B Magnitude of Transfer Function  
ICS842S104CG REVISION A MARCH 17, 2010  
16  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS842S104.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS842S104 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD= 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
The maximum current at 70°C is as follows:  
IDD_MAX = 101.7mA  
IDDA_MAX = 19.4mA  
Power (core)MAX = VDD_MAX * (IDD_MAX + IDDA_MAX) = 3.465V * (101.7mA + 19.4mA) = 419.6mW  
Power (outputs)MAX = 32mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 32mW = 128mW  
Total Power_MAX (3.465V, with all outputs switching) = 419.6mW + 128mW = 547.6mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature for HiPerClockS devices is 125°C. Limiting the internal transistor junction temperature, Tj, to  
125°C ensures that the bond wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 77.5°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.548W * 77.5°C/W = 112.5°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance θJA for 24 Lead TSSOP, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
77.5°C/W  
73.2°C/W  
71.0°C/W  
ICS842S104CG REVISION A MARCH 17, 2010  
17  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the HSTL output pair.  
HSTL output driver circuit and termination are shown in Figure 6.  
VDDO  
Q1  
VOUT  
RL  
50Ω  
Figure 6. HSTL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (VOH_MAX/RL) * (VDD_MAX- VOH_MAX  
Pd_L = (VOL_MAX /RL) * (VDD_MAX - VOL_MAX  
)
)
Pd_H = (1.2V/50) * (2.0V - 1.2V) = 19.2mW  
Pd_L = (0.4V/50) * (2.0V - 0.4V) = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32mW  
ICS842S104CG REVISION A MARCH 17, 2010  
18  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 24 Lead TSSOP  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
77.5°C/W  
73.2°C/W  
71.0°C/W  
Transistor Count  
The transistor count for ICS842S104 is: 11,891  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 24 Lead TSSOP  
Table 9. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
24  
1.20  
0.15  
1.05  
0.30  
0.20  
7.90  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
7.70  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
ICS842S104CG REVISION A MARCH 17, 2010  
19  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
842S104CGLF  
842S104CGLFT  
Marking  
ICS842S104CGL  
ICS842S104CGL  
Package  
“Lead-Free” 24 Lead TSSOP  
“Lead-Free” 24 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Temperature  
0°C to 70°C  
0°C to 70°C  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product  
for use in life support devices or critical medical instruments.  
ICS842S104CG REVISION A MARCH 17, 2010  
20  
©2010 Integrated Device Technology, Inc.  
ICS842S104 Data Sheet  
CRYSTAL-TO- HSTL 100MHZ / 200MHZ PCI EXPRESS™ CLOCK SYNTHESIZER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2010. All rights reserved.  

相关型号:

ICS843-106

106.25MHZ, LVCMOS, LVPECL DUAL OUTPUT OSCILLATOR
ICSI

ICS843-75

75MHZ, LVCMOS, LVPECL DUAL OUTPUT OSCILLATOR
ICSI

ICS8430-111

700MHZ, LOW JITTER DIFFERENTIAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-51

600MHZ, LOW JITTER LVCMOS/ LVTTL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-61

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-61

500MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430-62

500MHz, Crystal-to-3.3V, 2.5V Differential LVPECL Frequency Synthesizer
IDT

ICS8430-71B

700MHZ, LOW JITTER, CRYSTAL INTERFACE / LVCMOS-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8430002

High-Performance Fractional-N Frequency Synthesizer
IDT

ICS843001

FEMTO CLOCKS CRYSTAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001-21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001A21

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI