ICS87332AMI-01 [IDT]

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8;
ICS87332AMI-01
型号: ICS87332AMI-01
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8

驱动 光电二极管 逻辑集成电路
文件: 总14页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS87332I-01 is a high performance • One ÷2 differential 2.5V/3.3V LVPECL / ECL output  
ICS  
HiPerClockS™  
÷2 Differential-to-2.5V/3.3V ECL/LVPECL Clock  
• One CLK, nCLK input pair  
Generator and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS. The CLK, nCLK pair can accept most  
• CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
standard differential input levels The ICS87332I-01 is  
characterized to operate from either a 2.5V or a 3.3V power sup-  
ply. Guaranteed output and part-to-part skew characteristics  
make the ICS87332I-01 ideal for those clock distribution appli-  
cations demanding well defined performance and repeatability.  
• Maximum output frequency: 500MHz  
• Maximum input frequency: 1GHz  
Translates any single ended input signal to 3.3V LVPECL  
levels with resistor bias on nCLK input  
• Part-to-part skew: 400ps (maximum)  
• Propagation delay: 1.6ns (maximum)  
LVPECL mode operating voltage supply range:  
VCC = 2.375V to 3.8V, VEE = 0V  
• ECL mode operating voltage supply range:  
VCC = 0V, VEE = -2.375V to -3.8V  
• -40°C to 85°C ambient operating temperature  
• Lead-Free package fully RoHS compliant  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
MR  
CLK  
nCLK  
nc  
Vcc  
Q
1
2
3
4
8
7
6
5
Q
nQ  
CLK  
nCLK  
÷2  
nQ  
VEE  
ICS87332I-01  
MR  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
TopView  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
1
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
Master reset. When LOW, outputs are enabled. When HIGH,  
1
MR  
Input  
Pulldown divider is reset forcing Q output LOW and nQ output HIGH.  
LVCMOS / LVTTL interface level.  
2
3
CLK  
nCLK  
nc  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup  
Inverting differential clock input.  
No connect.  
4
Unused  
Power  
Output  
Power  
5
VEE  
Negative supply pin.  
6, 7  
8
Q, nQ  
VCC  
Differential output pair. LVPECL interface levels.  
Positive supply pin.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
CLK  
MR  
Q
FIGURE 1. TIMING DIAGRAM  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
2
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
112.7°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Positive Supply Voltage  
Power Supply Current  
2.375  
3.3  
3.8  
30  
V
IEE  
mA  
TABLE 3B. LVCMOS DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
Input High Voltage  
MR  
2
VCC + 0.3  
0.8  
V
VIL  
IIH  
Input Low Voltage  
Input High Current  
Input Low Current  
MR  
MR  
MR  
-0.3  
V
VCC = VIN = 3.8V  
150  
µA  
µA  
IIL  
VCC = 3.8V, VIN = 0V  
-5  
TABLE 3C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
CC = VIN = 3.8V  
Minimum  
Typical  
Maximum Units  
CLK  
V
150  
5
µA  
µA  
µA  
µA  
V
nCLK  
CLK  
VCC = VIN = 3.8V  
V
CC = 3.8V, VIN = 0V  
-5  
IIL  
Input Low Current  
nCLK  
VCC = 3.8V, VIN = 0V  
-150  
0.15  
VPP  
Peak-to-Peak Input Voltage  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC - 0.85  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
3
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical  
VCC - 1.4  
Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VCC - 2.0  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.65  
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.  
TABLE 4. AC CHARACTERISTICS, VCC = 2.375V TO 3.8V, VEE = 0, TA = -40°C TO 85°C  
Symbol Parameter  
fMAX Input Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum Units  
1
GHz  
ns  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Output Rise Time  
ƒ1GHz  
1.1  
1.4  
1.6  
400  
700  
700  
51  
tsk(pp)  
tR  
ps  
20% to 80%  
20% to 80%  
200  
200  
49  
ps  
tF  
Output Fall Time  
ps  
odc  
Output Duty Cycle  
%
All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
4
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLK  
CLK  
LVPECL  
VEE  
VPP  
VCMR  
Cross Points  
nQx  
-1.8V to -0.375V  
VEE  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nCLK  
CLK  
Qx  
PART 2  
nQy  
nQ  
Qy  
Q
tPD  
tsk(pp)  
PART-TO-PART SKEW  
PROPAGATION DELAY  
nQ  
80%  
tF  
80%  
Q
VSWING  
20%  
tPW  
tPERIOD  
Clock  
20%  
Outputs  
tR  
tPW  
tPERIOD  
odc =  
x 100%  
OUTPUT RISE/FALL TIME  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
5
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin.The ratio  
of R1 and R2 might need to be adjusted to position theV_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V andVCC = 3.3V, V_REF should be 1.25V  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50Ω transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
6
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for 2.5V ground level. The R3 in Figure 4B can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 4C.  
ing 50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECL TERMINATION EXAMPLE  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
7
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING and VOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 5A to 5E show inter- For example in Figure 5A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 5A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 5B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 5E. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
8
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS87332I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS87332I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.8V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.8V * 30mA = 114mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
Total Power_MAX (3.8V, with all outputs switching) = 114mW + 30mW = 144mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W perTable 5 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.144W * 103.3°C/W = 99.9°C. This is well below the limit of 125°C  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 5. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
9
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
10  
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 6. θJAVS. AIR FLOW TABLE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS87332I-01 is: 383  
Compatible to part number MC100EP32  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
11  
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - M SUFFIX  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MINIMUN  
MAXIMUM  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
12  
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS87332AMI-01  
Marking  
7332AI01  
7332AI01  
TBD  
Package  
8 lead SOIC  
Shipping Package  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS87332AMI-01T  
ICS87332AMI-01LF  
ICS87332AMI-01LFT  
8 lead SOIC  
2500 tape & reel  
tube  
8 lead "Lead-Free" SOIC  
8 lead "Lead-Free" SOIC  
TBD  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
13  
ICS87332I-01  
÷2 DIFFERENTIAL-TO-2.5V/3.3V  
ECL/LVPECL CLOCK GENERATOR  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
1
2
6
Features Section - added Lead-Free bullet.  
T2  
Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.  
Added "Wiring the Differential Input to Accept Single Ended Levels.  
Added Termination for 3.3V LVPECL Output.  
6
B
7
Added Termination for 2.5V LVPECL Output.  
7/5/05  
8
Added Differential Clock Input Interface.  
T8  
13  
Ordering Information Table - corrected marking. Added Lead-Free part number  
and note.  
Updated format of datasheet.  
T3D  
4
LVPECL DC Characteristics Table -corrected VOH max. from VCC - 1.0V to  
V
CC - 0.9V; and VSWING max. from 0.9V to 1.0V.  
C
4/13/07  
9 - 10  
Power Considerations - corrected power dissipation to reflect VOH max in Table  
3D.  
87332AMI-01  
www.icst.com/products/hiperclocks.html  
REV.C APRIL 13, 2007  
14  

相关型号:

ICS87332AMI-01LF

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

ICS87332AMI-01LFT

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, ROHS COMPLIANT, MS-012, SOIC-8
IDT

ICS87332AMI-01T

Low Skew Clock Driver, 87332 Series, 1 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

ICS87339AG-01LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 X 0.92 MM, TSSOP-20
IDT

ICS87339AG-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11LFT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AG-11T

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS87339AM-01

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT

ICS87339AM-01LF

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-01LFT

Low Skew Clock Driver, 87339 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, ROHS COMPLIANT, CMS-013, SOIC-20
IDT

ICS87339AM-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 X 12.80 MM, 2.25 MM HEIGHT, MS-013, SOIC-20
IDT