CPV363MM [INFINEON]

IGBT SIP MODULE Short Circuit Rated Fast IGBT; IGBT模块SIP短路额定IGBT的快速
CPV363MM
型号: CPV363MM
厂家: Infineon    Infineon
描述:

IGBT SIP MODULE Short Circuit Rated Fast IGBT
IGBT模块SIP短路额定IGBT的快速

晶体 晶体管 电动机控制 双极性晶体管 栅 局域网
文件: 总8页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
IGBT SIP MODULE  
Short Circuit Rated Fast IGBT  
Features  
1
• Short Circuit Rated - 10µs @ 125°C, V GE = 15V  
Fully isolated printed circuit board mount package  
• Switching-loss rating includes all "tail" losses  
• HEXFREDTM soft ultrafast diodes  
• Optimized for medium operating frequency (1 to  
10kHz) See Fig. 1 for Current vs. Frequency curve  
D1  
D2  
D3  
D4  
D5  
D6  
Q1  
Q2  
Q3  
Q4  
Q5  
3
6
9
4
15  
10  
16  
Q6  
12  
18  
Product Summary  
Output Current in a Typical 5.0 kHz Motor Drive  
7
13  
19  
7.65 ARMS per phase (2.4 kW total) with T C = 90°C, TJ = 125°C, Supply Voltage 360Vdc,  
Power Factor 0.8, Modulation Depth 80% (See Figure 1)  
Description  
The IGBT technology is the key to International Rectifier's advanced line of IMS  
(Insulated Metal Substrate) Power Modules. These modules are more efficient  
than comparable bipolar transistor modules, while at the same time having the  
simpler gate-drive requirements of the familiar power MOSFET. This superior  
technology has now been coupled to a state of the art materials system that  
maximizes power throughput with low thermal resistance. This package is highly  
suited to power applications and where space is at a premium.  
These new short circuit rated devices are especially suited for motor control and  
other totem-pole applications requiring short circuit withstand capability.  
IMS-2  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
600  
V
IC @ TC = 25°C  
Continuous Collector Current, each IGBT  
Continuous Collector Current, each IGBT  
Pulsed Collector Current  
13  
IC @ TC = 100°C  
7.0  
ICM  
26  
A
ILM  
Clamped Inductive Load Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
Short Circuit Withstand Time  
26  
IF @ TC = 100°C  
6.1  
IFM  
26  
10  
tsc  
µs  
V
VGE  
Gate-to-Emitter Voltage  
± 20  
VISOL  
Isolation Voltage, any terminal to case, 1 min.  
Maximum Power Dissipation, each IGBT  
2500  
36  
VRMS  
W
PD @ TC = 25°C  
PD @ TC = 100°C Maximum Power Dissipation, each IGBT  
14  
TJ  
Operating Junction and  
-40 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting torque, 6-32 or M3 screw.  
°C  
300 (0.063 in. (1.6mm) from case)  
5-7 lbf•in (0.55 - 0.8 N•m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
°C/W  
R
R
R
θJC (IGBT)  
Junction-to-Case, each IGBT, one IGBT in conduction  
Junction-to-Case, each diode, one diode in conduction  
Case-to-Sink, flat, greased surface  
3.5  
5.5  
θJC (DIODE)  
θCS (MODULE)  
0.1  
Wt  
Weight of module  
20 (0.7)  
g (oz)  
Revision 2  
C-417  
To Order  
 
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
Electrical Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
600  
0.68  
1.6  
2.0  
1.7  
V
VGE = 0V, IC = 250µA  
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage  
V/°C VGE = 0V, IC = 1.0mA  
IC = 7.0A  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
Gate Threshold Voltage  
2.4  
VGE = 15V  
V
IC = 13A  
See Fig. 2, 5  
IC = 7.0A, TJ = 150°C  
VCE = VGE, IC = 250µA  
VGE(th)  
3.0  
5.5  
VGE(th)/TJ Temperature Coeff. of Threshold Voltage  
-13  
mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance  
3.2 6.3  
S
VCE = 100V, IC = 14A  
VGE = 0V, VCE = 600V  
ICES  
Zero Gate Voltage Collector Current  
250  
2500  
1.7  
1.6  
µA  
VGE = 0V, VCE = 600V, TJ = 150°C  
VFM  
IGES  
Diode Forward Voltage Drop  
1.4  
1.3  
V
IC = 12A  
See Fig. 13  
IC = 12A, TJ = 150°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±500 nA  
Switching Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
Rise Time  
10  
32  
6.7  
13  
64  
29  
49  
10  
21  
IC = 14A  
Qge  
Qgc  
td(on)  
tr  
nC  
ns  
VCC = 400V  
See Fig. 8  
TJ = 25°C  
IC = 7.0A, VCC = 480V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
340 500  
240 350  
VGE = 15V, RG = 23Ω  
Energy losses include "tail" and  
diode reverse recovery.  
See Fig. 9, 10, 11, 18  
Eon  
Eoff  
Ets  
tsc  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Short Circuit Withstand Time  
0.28  
0.70  
mJ  
µs  
0.98 1.5  
VCC = 360V, TJ = 125°C  
VGE = 15V, RG = 23, VCPK < 500V  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
62  
28  
60  
TJ = 150°C,  
See Fig. 9, 10, 11, 18  
ns  
IC = 7.0A, VCC = 480V  
VGE = 15V, RG = 23Ω  
Energy losses include "tail" and  
diode reverse recovery.  
VGE = 0V  
Turn-Off Delay Time  
Fall Time  
620  
420  
1.8  
750  
100  
9.3  
42  
Ets  
Total Switching Loss  
Input Capacitance  
mJ  
pF  
ns  
A
Cies  
Coes  
Cres  
trr  
Output Capacitance  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
VCC = 30V  
See Fig. 7  
ƒ = 1.0MHz  
TJ = 25°C See Fig.  
80 120  
TJ = 125°C  
TJ = 25°C See Fig.  
TJ = 125°C 15  
TJ = 25°C See Fig.  
TJ = 125°C 16  
A/µs TJ = 25°C See Fig.  
TJ = 125°C 17  
14  
IF = 12A  
Irr  
Diode Peak Reverse Recovery Current  
Diode Reverse Recovery Charge  
3.5  
5.6  
6.0  
10  
V R = 200V  
Qrr  
80 180  
220 600  
nC  
di/dt = 200A/µs  
di(rec)M/dt  
Diode Peak Rate of Fall of Recovery  
During tb  
180  
120  
Notes:  
VCC=80%(VCES), VGE=20V, L=10µH,  
RG= 23, ( See fig. 19 )  
Pulse width 5.0µs,  
single shot.  
Repetitive rating; V GE=20V, pulse width limited  
by max. junction temperature. ( See fig. 20)  
Pulse width 80µs; duty factor 0.1%.  
C-418  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
10  
8
3.1  
2.5  
6
1.9  
1.2  
0.6  
4
TC= 90°C  
TJ = 125°C  
2
Power Factor = 0.8  
Modulation Depth = 0.8  
VCC = 60% of Rated Voltage  
0
0
0.1  
1
10  
100  
f, Frequency (kHz)  
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave  
100  
100  
10  
1
T = 25°C  
J
T = 150°C  
J
T = 150°C  
J
TJ = 25°C  
10  
VCC = 100V  
5µs PULSE WIDTH  
VGE = 15V  
20µs PULSE WIDTH  
A
A
1
0.1  
5
10  
15  
20  
0.1  
1
10  
V
, Gate-to-Emitter Voltage (V)  
V
, Collector-to-Emitter Voltage (V)  
GE  
CE  
Fig. 3 - Typical Transfer Characteristics  
Fig. 2 - Typical Output Characteristics  
C-419  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
15  
12  
9
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
VGE = 15V  
VGE = 15V  
80µs PULSE WIDTH  
IC = 14A  
6
IC = 7.0A  
IC = 3.5A  
3
A
A
0
25  
50  
75  
100  
125  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T , Case Temperature (°C)  
T , Case Temperature (°C)  
C
C
Fig. 5 - Collector-to-Emitter Voltage vs.  
Fig. 4 - Maximum Collector Current vs.  
Case Temperature  
Case Temperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
P
DM  
0.02  
0.1  
0.01  
t
1
SINGLE PULSE  
t
2
(THERMAL RESPONSE)  
N otes:  
1 . D uty factor D  
=
t
/ t  
2
1
2. Pea k T = P  
x Z  
+ T  
C
D M  
J
thJC  
1
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
10  
t1 , Rectangular Pulse Duration (sec)  
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case  
C-420  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
20  
16  
12  
8
1400  
V
C
C
C
= 0V,  
f = 1MHz  
VCE = 400V  
IC = 16A  
GE  
ies  
= C + C  
,
C
ce  
SHORTED  
ge  
gc  
= C  
gc  
1200  
1000  
800  
600  
400  
200  
0
res  
oes  
= C + C  
ce  
gc  
C
C
ies  
oes  
4
C
res  
A
A
0
1
10  
100  
0
10  
20  
30  
40  
V
, Collector-to-Emitter Voltage (V)  
Q , Total Gate Charge (nC)  
g
CE  
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
10  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
0.92  
VCC = 480V  
VGE = 15V  
TC = 25°C  
IC = 7.0A  
RG = 23  
VGE = 15V  
VCC = 480V  
IC = 14A  
IC = 7.0A  
IC = 3.5A  
1
A
A
0.1  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
0
10  
20  
30  
40  
50  
60  
T , Case Temperature (°C)  
C
R , Gate Resistance ( )  
G
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Case Temperature  
C-421  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
4.0  
100  
10  
1
RG = 23Ω  
TC = 150°C  
VCC = 480V  
VGE = 20V  
TJ = 125°C  
VGE = 15V  
3.0  
SAFE OPERATING AREA  
2.0  
1.0  
0.0  
A
A
0
3
6
9
12  
15  
1
10  
100  
1000  
V
, Collector-to-Emitter Voltage (V)  
I
, Collector-to-Emitter Current (A)  
CE  
C
Fig. 12 - Turn-Off SOA  
Fig. 11 - Typical Switching Losses vs.  
Collector-to-Emitter Current  
100  
T = 150°C  
J
T = 125°C  
J
10  
T = 25°C  
J
1
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
Forward Voltage Drop - V  
(V)  
FM  
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current  
C-422  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
100  
10  
1
160  
120  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
I
= 24A  
F
I
= 24A  
F
I
= 12A  
F
I
= 12A  
F
80  
40  
0
I
= 6.0A  
F
I
= 6.0A  
F
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Recovery Current vs. dif/dt  
Fig. 14 - Typical Reverse Recovery vs. dif/dt  
600  
10000  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
400  
1000  
I
= 6.0A  
F
I
= 24A  
F
I
= 12A  
F
I
= 12A  
F
200  
100  
I
= 24A  
F
I
= 6.0A  
F
0
100  
10  
100  
1000  
1000  
di /dt - (A/µs)  
di /dt - (A/µs)  
f
f
Fig. 16 - Typical Stored Charge vs. dif/dt  
Fig. 17 - Typical di(rec)M/dt vs. dif/dt  
C-423  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV363MM  
90% Vge  
+Vge  
Same type  
device as  
D.U.T.  
Vce  
90% Ic  
10% Vce  
430µF  
80%  
Ic  
Ic  
of Vce  
D.U.T.  
5% Ic  
td(off)  
tf  
t1+5µS  
Eoff = Vce ic dt  
t1  
Fig. 18a - Test Circuit for Measurement of  
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t1  
t2  
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
id dt  
tx  
trr  
GATE VOLTAGE D.U.T.  
Qrr =  
Ic  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AND CURRENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIODE RECOVERY  
WAVEFORMS  
5% Vce  
tr  
td(on)  
t2  
Vce ie dt  
Eon =  
t2  
t4  
Erec = Vd id dt  
t3  
t1  
DIODE REVERSE  
t1  
RECOVERY ENERGY  
t3  
t4  
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
Refer to Section D for the following:  
Appendix D: Section D - page D-6  
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a  
Fig. 19 - Clamped Inductive Load Test Circuit  
Fig. 20 - Pulsed Collector Current Test Circuit  
Package Outline 5 - IMS-2 Package (13 pins) Section D - page D-14  
C-424  
To Order  

相关型号:

CPV363MU

IGBT SIP MODULE Ultra-Fast IGBT
INFINEON

CPV363MUPBF

Insulated Gate Bipolar Transistor, 13A I(C), 600V V(BR)CES, N-Channel
INFINEON

CPV364M4F

IGBT SIP MODULE
INFINEON

CPV364M4K

IGBT SIP MODULE
INFINEON

CPV364M4KPBF

IGBT SIP MODULE
INFINEON

CPV364M4KPBF

CPV364M4KPBF (Short Circuit Rated Ultrafast IGBT)
VISHAY

CPV364M4U

IGBT SIP MODULE
INFINEON

CPV364M4UPBF

IGBT SIP Module (Ultrafast IGBT)
VISHAY

CPV364MF

IGBT SIP MODULE Fast IGBT
INFINEON

CPV364MK

IGBT SIP MODULE Short Circuit Rated UltraFast IGBT
INFINEON

CPV364MM

Short Circuit Rated Fast IGBT
INFINEON

CPV364MU

IGBT SIP MODULE Ultra-Fast IGBT
INFINEON