IMBF170R450M1 [INFINEON]

CoolSiC™ 1700 V, 450 mΩ SiC MOSFET采用TO-263-7增大爬电距离,针对反激式拓扑结构进行了优化,适用于众多电力应用场合下接入直流母线电压600 V至1000 V的辅助电源。;
IMBF170R450M1
型号: IMBF170R450M1
厂家: Infineon    Infineon
描述:

CoolSiC™ 1700 V, 450 mΩ SiC MOSFET采用TO-263-7增大爬电距离,针对反激式拓扑结构进行了优化,适用于众多电力应用场合下接入直流母线电压600 V至1000 V的辅助电源。

文件: 总15页 (文件大小:1274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMBF170R450M1  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Silicon Carbide MOSFET  
Features  
Drain  
Revolutionary semiconductor material - Silicon Carbide  
Optimized for fly-back topologies  
Gate  
pin 1  
12V/0V gate-source voltage compatible with most fly-back controllers  
Very low switching losses  
Sense  
pin 2  
Source  
pin 3~7  
Benchmark gate threshold voltage, VGS(th) = 4.5V  
Fully controllable dV/dt for EMI optimization  
Benefits  
Reduction of system complexity  
Directly drive from fly-back controller  
Efficiency improvement and cooling effort reduction  
Enabling higher frequency  
Potential applications  
Energy generation  
o
o
Solar string inverter  
Solar Central inverter  
Industrial power supplies  
o
o
Industrial UPS  
Industrial SMPS  
Infrastructure Charger  
Charger  
o
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC 47/20/22  
Note:  
the source and sense pins are not exchangeable, their exchange might lead to malfunction  
recommended for forward operation mode only  
Table 1  
Type  
Key Performance and Package Parameters  
VDS  
ID  
RDS(on)  
Tvj = 25°C, ID = 2A, VGS = 12V  
Tvj,max  
Marking  
Package  
TC = 25°C, Rth(j-c,max)  
IMBF170R450M1  
1700V  
9.8A  
450mΩ  
175°C  
170M1450  
PG-TO263-7  
Datasheet  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 15  
www.infineon.com  
2021-04-12  
 
 
 
 
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Benefits......................................................................................................................................... 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
Maximum ratings ................................................................................................................... 3  
Thermal resistances ............................................................................................................... 4  
3
Electrical Characteristics ........................................................................................................ 5  
Static characteristics...............................................................................................................................5  
Dynamic characteristics..........................................................................................................................6  
Switching characteristics........................................................................................................................7  
3.1  
3.2  
3.3  
4
5
6
Electrical characteristic diagrams ............................................................................................ 8  
Package drawing...................................................................................................................12  
Test conditions .....................................................................................................................13  
Revision history.............................................................................................................................14  
Datasheet  
2 of 15  
2.3  
2021-04-12  
 
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Maximum ratings  
1
Maximum ratings  
For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the  
maximum ratings stated in this datasheet.  
Table 2  
Maximum ratings  
Parameter  
Symbol  
Value  
Unit  
V
Drain-source voltage, Tvj ≥ 25°C  
VDSS  
1700  
DC drain current for Rth(j-c,max), limited by Tvjmax, VGS = 12V,  
TC = 25°C  
TC = 100°C  
ID  
9.8  
6.9  
A
A
1
Pulsed drain current, tp limited by Tvjmax, VGS = 12V  
ID,pulse  
24.8  
Gate-source voltage2  
Max transient voltage, < 1% duty cycle  
Recommended turn-on gate voltage  
Recommended turn-off gate voltage  
Power dissipation, limited by Tvjmax  
TC = 25°C  
VGS  
VGS,on  
VGS,off  
-1020  
12… 15  
0
V
Ptot  
107  
53  
W
TC = 100°C  
°C  
°C  
Virtual junction temperature  
Storage temperature  
Tvj  
-55… 175  
-55… 150  
Tstg  
Soldering temperature  
Reflow soldering (MSL1 according to JEDEC J-STD-020)  
Tsold  
260  
°C  
1 verified by design  
2 Important note: The selection of positive and negative gate-source voltages impacts the long-term behavior  
of the device. The design guidelines described in Application Note AN2018-09 must be considered to ensure  
sound operation of the device over the planned lifetime.  
Datasheet  
3 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Thermal resistances  
2
Thermal resistances  
Table 3  
Parameter  
Value  
Unit  
Symbol Conditions  
min.  
typ.  
1.1  
max.  
1.4  
MOSFET thermal  
resistance, junction –  
case  
Rth(j-c)  
-
-
K/W  
K/W  
Thermal resistance,  
junction ambient  
Rth(j-a)  
leaded  
-
62  
Datasheet  
4 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Static characteristics  
Table 4  
Static characteristics (at Tvj = 25°C, unless otherwise specified)  
Parameter  
Symbol Conditions  
Value  
Unit  
min.  
typ.  
max.  
Drain-source on-state  
resistance  
RDS(on) VGS = 12V, ID = 2A,  
Tvj = 25°C  
-
-
-
450  
638  
917  
-
-
-
Tvj = 100°C  
Tvj = 175°C  
VGS = 15V, ID = 2A,  
Tvj = 25°C  
mΩ  
-
364  
390  
Gate-source threshold  
voltage  
VGS(th)  
(tested after 1 ms pulse at  
VGS = 20V)  
ID = 2.5mA, VDS = VGS  
Tvj = 25°C  
Tvj =175°C  
V
3.5  
-
4.5  
3.6  
5.7  
-
Zero gate voltage drain  
current  
IDSS  
VGS = 0V, VDS = 1700V  
Tvj = 25°C  
Tvj = 175°C  
-
-
-
-
-
-
0.9  
10  
-
11  
-
µA  
Gate-source leakage  
current  
IGSS  
VGS = 20V, VDS = 0V  
VGS = -10V, VDS = 0V  
VDS = 20V, ID = 2A  
f = 1MHz, VAC = 25mV  
100  
nA  
nA  
S
-
-100  
Transconductance  
gfs  
0.9  
20  
-
-
Internal gate resistance  
RG,int  
Ω
Datasheet  
5 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Electrical Characteristics  
3.2  
Dynamic characteristics  
Table 5  
Parameter  
Dynamic characteristics (at Tvj = 25°C, unless otherwise specified)  
Value  
Symbol Conditions  
Unit  
min.  
typ.  
610  
16  
max.  
Input capacitance  
Output capacitance  
Reverse capacitance  
Coss stored energy  
Ciss  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Coss  
Crss  
Eoss  
QG  
pF  
µJ  
nC  
VDD = 1000V, VGS = 0V,  
f = 1MHz, VAC = 25mV  
1.7  
2.9  
11  
Total gate charge  
VDD = 1000V, ID = 2A,  
VGS = 0/12V, turn-on pulse  
Gate to source charge  
Gate to drain charge  
QGS,pl  
QGD  
3.3  
5.9  
Datasheet  
6 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Electrical Characteristics  
3.3  
Switching characteristics  
Table 6  
Switching characteristics, Inductive load 3  
Symbol Conditions  
Parameter  
Value  
Unit  
min.  
typ.  
max.  
MOSFET Characteristics, Tvj = 25°C  
Turn-on delay time  
Rise time  
td(on)  
tr  
td(off)  
tf  
VDD = 1000V, ID = 2A,  
VGS = 0/12V, RG,ext = 22Ω,  
Lσ = 40nH,  
diode:  
body diode at VGS = 0V  
see Fig. E  
-
-
-
-
-
-
-
27  
20  
32  
24  
76  
15  
91  
-
-
-
-
-
-
-
ns  
µJ  
Turn-off delay time  
Fall time  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Etot  
MOSFET Characteristics, Tvj = 175°C  
Turn-on delay time  
Rise time  
td(on)  
tr  
td(off)  
tf  
VDD = 1000V, ID = 2A,  
VGS = 0/12V, RG,ext = 22Ω,  
Lσ = 40nH,  
diode:  
body diode at VGS = 0V  
see Fig. E  
-
-
-
-
-
-
-
22  
16  
36  
27  
81  
21  
101  
-
-
-
-
-
-
-
ns  
µJ  
Turn-off delay time  
Fall time  
Turn-on energy  
Turn-off energy  
Total switching energy  
Eon  
Eoff  
Etot  
3 The chip technology was characterized up to 200 kV/µs. The measured dV/dt was limited by measurement test  
setup and package. In applications, e.g. fly-back topology, the switching behavior highly depends on the  
circuitry (transformer, snubber…), the switching loss in the application will be different from the datasheet  
value.  
Datasheet  
7 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Electrical characteristic diagrams  
4
Electrical characteristic diagrams  
160  
140  
120  
100  
80  
30  
25  
20  
15  
10  
5
Rth(j-c,max)  
Rth(j-c,typ)  
not for linear use  
60  
40  
20  
0
0
0
25  
50  
75 100 125 150 175  
500  
1000  
1500  
2000  
TC [ C]  
VDS [V]  
Figure 2  
Power dissipation as a function of case  
temperature limited by bond wire  
(Ptot = f(TC))  
Figure 1  
Safe operating area (SOA)  
(VGS = 0/12V, Tc = 25°C, Tj ≤ 175°C)  
12  
10  
8
50  
40  
30  
20  
10  
0
Tvj=25°C  
Tvj=175°C  
Rth(j-c,max)  
Rth(j-c,typ)  
6
4
2
0
0
25  
50  
75 100 125 150 175  
0
5
10  
15  
20  
TC [ C]  
VGS [V]  
Figure 3  
Maximum DC drain to source current  
as a function of case temperature  
limited by bond wire (IDS = f(TC))  
Figure 4  
Typical transfer characteristic  
(IDS = f(VGS), VDS = 20V, tP = 20µs)  
Datasheet  
8 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Electrical characteristic diagrams  
6
5
4
3
2
1
0
1 000  
750  
500  
250  
0
VGS = 18V  
VGS = 15V  
-50 -25  
0
25 50 75 100 125 150 175  
-50 -25  
0
25 50 75 100 125 150 175  
Tvj [ C]  
Tvj [°C]  
Figure 5  
Typical gate-source threshold voltage Figure 6  
as a function of junction temperature  
(VGS(th) = f(Tvj), IDS = 2.5mA, VGS = VDS)  
Typical on-resistance as a function of  
junction temperature  
(RDS(on) = f(Tvj), IDS = 2A)  
20  
30  
25  
20  
15  
10  
5
15V  
12V  
9V  
6V  
15  
15V  
12V  
9V  
6V  
10  
5
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
VDS [V]  
VDS [V]  
Figure 8  
Typical output characteristic, VGS as  
parameter  
Figure 7  
Typical output characteristic, VGS as  
parameter  
(IDS = f(VDS), Tvj=175°C, tP = 20µs)  
(IDS = f(VDS), Tvj=25°C, tP = 20µs)  
Datasheet  
9 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Electrical characteristic diagrams  
15  
10  
5
1000  
100  
10  
Ciss  
Coss  
Crss  
1
0
1
10  
100  
1000  
0
2
4
6
8
10 12 14  
VDS[V]  
QG [nC]  
Figure 9  
Typical capacitance as a function of  
drain-source voltage  
Figure 10 Typical gate charge  
(VGS = f(QG), IDS = 2A, VDS = 1000V, turn-on  
(C = f(VDS), VGS = 0V, f = 1MHz)  
pulse)  
250  
100  
80  
60  
40  
20  
0
Etot  
Eon  
Eoff  
225  
200  
175  
150  
125  
100  
75  
Etot  
Eon  
Eoff  
50  
25  
0
10  
30  
50  
70  
90  
110  
25  
75  
125  
175  
RG (Ohm)  
Tvj (°C)  
Figure 11 Typical switching energy losses as a  
function of gate resistance  
Figure 12  
Typical switching energy losses as a  
function of junction temperature  
(E = f(Tvj), VDD = 1000V, VGS = 0V/12V,  
RG,ext = 22Ω, ID = 2A, ind. load, test  
circuit in Fig. E, diode: body diode at  
VGS = 0V)  
(E = f(RG,ext), VDD = 1000V, VGS = 0V/12V,  
ID = 2A, Tvj = 175°C, ind. load, test circuit  
in Fig. E, diode: body diode at  
0V)  
VGS =  
Datasheet  
10 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Electrical characteristic diagrams  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
550  
td(on)  
tr  
500  
Etot  
Eon  
Eoff  
450  
400  
350  
300  
250  
200  
150  
100  
50  
td(off)  
tf  
0
10  
30  
50  
70  
90  
110  
1
2
3
4
5
6
7
8
9
10  
RG [Ohm]  
ID (A)  
Figure 14  
Typical switching times as a  
function of gate resistor  
(t = f(RG,ext), VDD = 1000V, VGS = 0V/12V,  
ID = 2A, Tvj = 175°C, ind. load, test  
circuit in Fig. E, diode: body diode at  
VGS = 0V)  
Figure 13 Typical switching energy losses as a  
function of drain-source current  
(E = f(IDS), VDD = 1000V, VGS = 0V/12V,  
RG,ext = 22Ω, Tvj = 175°C, ind. load, test  
circuit in Fig. E, diode: body diode at  
VGS = 0V)  
1E0  
1E-1  
1E-2  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
Single pulse  
1E-6  
1E-5  
1E-4  
1E-3  
1E-2  
1E-1  
1E0  
tp [s]  
Figure 15 Max. transient thermal resistance (MOSFET)  
(Zth(j-c,max) = f(tP), parameter D = tp/T, thermal equivalent circuit in Fig. D)  
Datasheet  
11 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Package drawing  
5
Package drawing  
PG-TO263-7-13  
Figure 16  
Package drawing  
Datasheet  
12 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Test conditions  
6
Test conditions  
Figure 17  
Test conditions  
Datasheet  
13 of 15  
2.3  
2021-04-12  
IMBF170R450M1  
CoolSiC™ 1700V SiC Trench MOSFET  
Revision history  
Revision history  
Document  
version  
Date of release  
Description of changes  
2.1  
2.2  
2.3  
2020-04-27  
2020-12-11  
2021-04-12  
Final Datasheet  
Correction of circuit symbol on page 1  
Editorial changes  
Datasheet  
14 of 15  
2.3  
2021-04-12  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2021.  
All Rights Reserved.  
Important notice  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any  
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and  
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third  
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this  
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of  
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of  
customer’s technical departments to evaluate the suitability of the product for the intended application and the  
completeness of the product information given in this document with respect to such application.  
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies office (www.infineon.com).  
Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive  
Electronics Council.  
Warnings  
Due to technical requirements products may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies office.  
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized  
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a  
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

相关型号:

IMBF170R650M1

CoolSiC™ 1700 V, 650 mΩ SiC MOSFET采用TO-263-7增大爬电距离,针对反激式拓扑结构进行了优化,适用于众多电力应用场合下接入直流母线电压600 V至1000 V的辅助电源。
INFINEON

IMBG120R030M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 30 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG120R045M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 45 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG120R090M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 90 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG120R140M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 140 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG120R220M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 220 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG120R350M1H

是采用D2PAK-7L (TO-263-7)封装的1200 V, 350 mΩ CoolSiC™ SiC MOSFET,它基于先进的沟槽工艺,该工艺经过优化,兼具性能与可靠性。它采用改良版1200V SMD封装,将CoolSiC技术的低功耗特性与.XT互联技术相结合,可在电机驱动、充电模块以及工业电源等应用中实现最高效率和被动制冷。
INFINEON

IMBG65R022M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R022M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R030M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R030M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R057M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R057M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R083M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R083M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON

IMBG65R163M1H

CoolSiC™ MOSFET 技术通过最大限度发挥碳化硅强大的物理特性,从而增强了器件性能、稳健性和易用性等独特优势。IMBG65R163M1H CoolSiC™ MOSFET 650 VSiC MOSFET 采用紧凑型 7 引脚 SMD 封装,基于先进的英飞凌碳化硅沟槽技术,适于大功率应用。 该器件旨在提高系统性能,缩减尺寸,增强可靠性。
INFINEON