IR2102STRPBF [INFINEON]

HIGH AND LOW SIDE DRIVER; 高端和低端驱动器
IR2102STRPBF
型号: IR2102STRPBF
厂家: Infineon    Infineon
描述:

HIGH AND LOW SIDE DRIVER
高端和低端驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总14页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60043 Rev.O  
( )  
( )  
&(PbF)  
S
S
IR2101 /IR2102  
HIGH AND LOW SIDE DRIVER  
Features  
Product Summary  
Floating channel designed for bootstrap operation  
V
600V max.  
130 mA / 270 mA  
10 - 20V  
OFFSET  
Fully operational to +600V  
Tolerant to negative transient voltage  
dV/dt immune  
Gate drive supply range from 10 to 20V  
Undervoltage lockout  
I +/-  
O
V
OUT  
3.3V, 5V, and 15V logic input compatible  
Matched propagation delay for both channels  
t
(typ.)  
160 & 150 ns  
50 ns  
on/off  
Outputs in phase with inputs (IR2101) or out of  
Delay Matching  
phase with inputs (IR2102)  
Also available LEAD-FREE  
Packages  
Description  
The IR2101(S)/IR2102(S) are high voltage, high speed  
power MOSFET and IGBT drivers with independent  
high and low side referenced output channels. Pro-  
prietary HVIC and latch immune CMOS technologies  
enable ruggedized monolithic construction. The logic  
input is compatible with standard CMOS or LSTTL  
8-Lead SOIC  
IR2101S/IR2102S  
8-Lead PDIP  
IR2101/IR2102  
output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum  
driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in  
the high side configuration which operates up to 600 volts.  
Typical Connection  
up to 600V  
VCC  
VCC  
VB  
HO  
VS  
HIN  
LIN  
HIN  
LIN  
TO  
LOAD  
COM  
LO  
IR2101  
up to 600V  
VCC  
VCC  
VB  
HO  
VS  
HIN  
LIN  
HIN  
LIN  
TO  
LOAD  
(Refer to Lead Assignments for correct pin  
configuration). This/These diagram(s) show  
electrical connections only. Please refer to  
our Application Notes and DesignTips for  
proper circuit board layout.  
COM  
LO  
IR2102  
www.irf.com  
1
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
V
High side floating supply voltage  
-0.3  
625  
B
S
High side floating supply offset voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Low side output voltage  
V
- 25  
V
V
+ 0.3  
+ 0.3  
25  
B
B
B
V
V
V
- 0.3  
S
HO  
V
-0.3  
-0.3  
-0.3  
CC  
V
V
V
+ 0.3  
+ 0.3  
LO  
CC  
V
Logic input voltage (HIN & LIN)  
Allowable offset supply voltage transient  
IN  
CC  
dV /dt  
S
50  
V/ns  
W
P
Package power dissipation @ T +25°C  
(8 lead PDIP)  
(8 lead SOIC)  
(8 lead PDIP)  
(8 lead SOIC)  
1.0  
0.625  
125  
200  
150  
150  
300  
D
A
Rth  
Thermal resistance, junction to ambient  
JA  
°C/W  
°C  
T
Junction temperature  
J
T
Storage temperature  
-55  
S
T
Lead temperature (soldering, 10 seconds)  
L
Recommended Operating Conditions  
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions. The V offset rating is tested with all supplies biased at 15V differential.  
S
Symbol  
Definition  
High side floating supply absolute voltage  
High side floating supply offset voltage  
High side floating output voltage  
Min.  
Max.  
Units  
V
V
V
+ 10  
V + 20  
S
B
S
S
Note 1  
600  
V
HO  
V
S
V
B
V
V
Low side and logic fixed supply voltage  
Low side output voltage  
10  
0
20  
CC  
V
V
LO  
CC  
CC  
V
Logic input voltage (HIN & LIN) (IR2101) & (HIN & LIN) (IR2102)  
Ambient temperature  
0
V
IN  
T
-40  
125  
°C  
A
Note 1: Logic operational for V of -5 to +600V. Logic state held for V of -5V to -V . (Please refer to the Design Tip  
S
S
BS  
DT97-3 for more details).  
2
www.irf.com  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
Dynamic Electrical Characteristics  
V
(V , V ) = 15V, C = 1000 pF and T = 25°C unless otherwise specified.  
BIAS CC BS L A  
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
t
Turn-on propagation delay  
Turn-off propagation delay  
Turn-on rise time  
160  
150  
100  
50  
220  
220  
170  
90  
V = 0V  
S
on  
off  
t
V
= 600V  
S
ns  
t
r
t
Turn-off fall time  
f
MT  
Delay matching, HS & LS turn-on/off  
50  
Static Electrical Characteristics  
V (V , V ) = 15V and T = 25°C unless otherwise specified. The V , V and I parameters are referenced to  
BIAS CC BS A IN TH IN  
COM. The V and I parameters are referenced to COM and are applicable to the respective output leads: HO or LO.  
O
O
Symbol  
Definition  
Min. Typ. Max. Units Test Conditions  
V
Logic “1” input voltage (IR2101)  
Logic “0” input voltage (IR2102)  
Logic “0” input voltage (IR2101)  
Logic “1”input voltage (IR2102)  
IH  
3
VCC = 10V to 20V  
VCC = 10V to 20V  
V
V
IL  
0.8  
V
High level output voltage, V  
- V  
100  
I
I
= 0A  
= 0A  
OH  
BIAS  
O
O
mV  
V
Low level output voltage, V  
100  
50  
OL  
O
O
I
Offset supply leakage current  
Quiescent V supply current  
V = V = 600V  
B S  
LK  
I
30  
55  
V
= 0V or 5V  
= 0V or 5V  
QBS  
BS  
IN  
IN  
I
Quiescent V  
supply current  
150  
270  
V
QCC  
CC  
I
Logic “1” input bias current  
µA  
VIN = 5V (IR2101)  
VIN = 0V (IR2102)  
IN+  
3
10  
I
Logic “0” input bias current  
VIN = 0V (IR2101)  
VIN = 5V (IR2102)  
IN-  
8
1
V
V
supply undervoltage positive going  
CC  
8.9  
9.8  
CCUV+  
threshold  
supply undervoltage negative going  
V
V
V
7.4  
8.2  
9
CCUV-  
CC  
threshold  
I
Output high short circuit pulsed current  
130  
210  
V = 0V  
O
O+  
mA  
V = Logic “1”  
IN  
PW 10 µs  
= 15V  
I
O-  
Output low short circuit pulsed current  
270  
360  
V
O
V
IN  
= Logic “0”  
PW 10 µs  
www.irf.com  
3
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
Functional Block Diagram  
VB  
Q
HV  
LEVEL  
SHIFT  
R
S
HO  
PULSE  
FILTER  
HIN  
PULSE  
GEN  
VS  
UV  
DETECT  
VCC  
LIN  
LO  
COM  
IR2101  
VB  
Q
HV  
LEVEL  
SHIFT  
R
S
Vcc  
PULSE  
FILTER  
HO  
HIN  
PULSE  
GEN  
VS  
UV  
DETECT  
VCC  
Vcc  
LIN  
LO  
COM  
IR2102  
4
www.irf.com  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
Lead Definitions  
Symbol Description  
HIN  
HIN  
LIN  
LIN  
Logic input for high side gate driver output (HO), in phase (IR2101)  
Logic input for high side gate driver output (HO), out of phase (IR2102)  
Logic input for low side gate driver output (LO), in phase (IR2101)  
Logic input for low side gate driver output (LO), out of phase (IR2102)  
High side floating supply  
V
B
HO  
High side gate drive output  
V
V
High side floating supply return  
S
Low side and logic fixed supply  
CC  
LO  
Low side gate drive output  
COM  
Low side return  
Lead Assignments  
8 Lead PDIP  
8 Lead SOIC  
IR2101  
IR2101S  
8 Lead PDIP  
8 Lead SOIC  
IR2102  
IR2102S  
www.irf.com  
5
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
HIN  
LIN  
50%  
50%  
50%  
HIN  
LIN  
50%  
t
HIN  
LIN  
HIN  
LIN  
t
t
t
f
on  
off  
r
90%  
90%  
HO  
LO  
HO  
LO  
10%  
10%  
Figure 1. Input/Output Timing Diagram  
Figure 2. Switching Time Waveform Definitions  
HIN  
LIN  
50%  
50%  
50%  
50%  
HIN  
LIN  
LO  
HO  
10%  
MT  
MT  
90%  
LO  
HO  
Figure 3. Delay Matching Waveform Definitions  
6
www.irf.com  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
500  
400  
300  
200  
100  
0
500  
400  
Max  
.
300  
200  
100  
0
Max  
.
Typ.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 6A. Turn-On Time vs Temperature  
Figure 6B. Turn-On Time vs Supply Voltage  
500  
400  
300  
500  
400  
300  
200  
100  
0
M ax.  
Typ.  
200  
100  
0
0
2
4
6
8
10 12 14 16 18 20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Input Voltage (V)  
Figure 7A. Turn-Off Time vs Temperature  
Figure 6C. Turn-On Time vs Input Voltage  
500  
400  
500  
400  
300  
Max.  
Typ.  
300  
200  
100  
0
Max.  
200  
100  
Typ  
.
0
0
2
4
6
8
10 12 14 16 18 20  
10  
12  
14  
16  
18  
20  
VBIAS Supply Voltage (V)  
Input Voltage (V)  
Figure 7C. Turn-Off Time vs Input Voltage  
Figure 7B. Turn-Off Time vs Supply Voltage  
www.irf.com  
7
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
500  
400  
300  
200  
500  
400  
300  
200  
100  
0
M ax.  
Typ.  
M ax  
.
100  
0
Typ.  
-25  
-50  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 9A. Turn-On Rise Time vs Temperature  
Figure 9B. Turn-On Rise Time vs Voltage  
200  
150  
100  
200  
150  
M ax.  
100  
Max  
.
50  
0
50  
Typ.  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
VBIAS Supply Voltage (V)  
Temperature (°C)  
Figure 10A. Turn-Off Fall Time vs Temperature  
Figure 10B. Turn-Off Fall Time vs Voltage  
8
7
6
5
8
7
6
5
4
4
M in.  
M in.  
3
2
1
0
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Vcc Supply Voltage (V)  
Temperature (°C)  
Figure 12A. Logic "1" Input Voltage (IR2101)  
Logic "0" Input Voltage (IR2102)  
vs Temperature  
Figure 12B. Logic "1" Input Voltage (IR2101)  
Logic "0" Input Voltage (IR2102)  
vs Voltage  
8
www.irf.com  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
4
3.2  
2.4  
1.6  
0.8  
0
4
3.2  
2.4  
1.6  
M ax  
.
M ax  
.
0.8  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Vcc Supply Voltage (V)  
Figure 13B. Logic "0" Input Voltage (IR2101)  
Figure 13A. Logic "0" Input Voltage (IR2101)  
Logic "1" Input Voltage (IR2102)  
Logic "1" Input Voltage (IR2102)  
vs Voltage  
vs Temperature  
1
1
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
M ax.  
0.2  
M ax.  
0.2  
0
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
Vcc Supply Voltage (V)  
Temperature (°C)  
Figure 14B. High Level Output vs Voltage  
Figure 14A. High Level Output  
vs Temperature  
1
0.8  
0.6  
0.4  
1
0.8  
0.6  
0.4  
0.2  
0
0.2  
M ax.  
M ax.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Vcc Supply Voltage (V)  
Temperature (°C)  
Figure 15B. Low level Output vs Voltage  
Figure 15A. Low Level Output  
vs Temperature  
www.irf.com  
9
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
500  
400  
300  
200  
500  
400  
300  
200  
100  
0
100  
M ax.  
Max.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
0
100  
200  
300  
400  
500  
600  
VB Boost Voltage (V)  
Temperature (°C)  
Figure 16B. Offset Supply Current  
vs Voltage  
Figure 16A. Offset Supply Current  
vs Temperature  
150  
120  
90  
60  
30  
0
150  
120  
90  
60  
30  
0
M ax.  
Typ.  
Max.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBS Floating Supply Voltage (V)  
Figure 17B. VBS Supply Current  
vs Voltage  
Figure 17A. VBS Supply Current  
vs Temperature  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
M ax.  
Typ.  
M ax.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
Vcc Supply Voltage (V)  
Figure 18A. Vcc Supply Current  
vs Temperature  
Figure 18B. Vcc Supply Current  
vs Voltage  
10  
www.irf.com  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
30  
25  
20  
15  
30  
25  
20  
15  
10  
5
10  
5
M ax.  
Typ.  
M ax.  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Vcc Supply Voltage (V)  
Temperature (°C)  
Figure 19A. Logic"1" Input Current  
vs Temperature  
Figure 19B. Logic"1" Input Current  
vs Voltage  
5
4
3
2
1
0
5
4
3
2
1
0
Max.  
Max.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC Supply Voltage (V)  
Temperature (°C)  
Figure 20A. Logic "0" Input Current  
vs Temperature  
Figure 20B. Logic "0" Input Current  
vs Voltage  
11  
11  
10  
9
M ax.  
10  
9
Max.  
Typ.  
Typ.  
M in.  
8
8
7
7
Min.  
6
6
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 21A. Vcc Undervoltage Threshold(+)  
vs Temperature  
Figure 21B. Vcc Undervoltage Threshold(-)  
vs Temperature  
www.irf.com  
11  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
500  
400  
300  
200  
100  
0
500  
400  
Typ.  
300  
200  
Typ.  
100 Min.  
0
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 22A. Output Source Current  
vs Temperature  
Figure 22B. Output Source Current  
vs Voltage  
700  
600  
500  
400  
700  
600  
500  
400  
300  
200  
100  
0
Typ.  
M in.  
Typ.  
M in.  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
VBIAS Supply Voltage (V)  
Temperature (°C)  
Figure 23A. Output Sink Current  
vs Temperature  
Figure 23B. Output Sink Current  
vs Voltage  
12  
www.irf.com  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
Case outlines  
01-6014  
01-3003 01 (MS-001AB)  
8 Lead PDIP  
IN C H E S  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
A1 .0040  
b
c
.013  
.0075  
.189  
.0098  
.1968  
.1574  
8
1
7
2
6
3
5
6
D
E
e
H
E
.1497  
0.25 [.010]  
A
.050 BASIC  
1.27 BASIC  
6.46 [.255]  
4
e 1 .025 BASIC  
0.635 BASIC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
K x 45°  
e1  
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C A  
NOTES:  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONTROLLING DIMENSION: MILLIMETER  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A SUBSTRATE.  
01-6027  
01-0021 11 (MS-012AA)  
8 Lead SOIC  
www.irf.com  
13  
( )  
( ) & (PbF)  
S
S
IR2101 /IR2102  
LEADFREE PART MARKING INFORMATION  
Part number  
IRxxxxxx  
Date code  
IR logo  
YWW?  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Leadfree Part  
Basic Part (Non-Lead Free)  
8-Lead PDIP IR2101 order IR2101PbF  
8-Lead SOIC IR2101S order IR2101SPbF  
8-Lead PDIP IR2102 order IR2102PbF  
8-Lead SOIC IR2102S order IR2102SPbF  
8-Lead PDIP IR2101 order IR2101  
8-Lead SOIC IR2101S order IR2101S  
8-Lead PDIP IR2102 order IR2102  
8-Lead SOIC IR2102S order IR2102S  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
This product has been qualified per industrial level  
Data and specifications subject to change without notice. 4/2/2004  
14  
www.irf.com  

相关型号:

IR2103

HALF-BRIDGE DRIVER
INFINEON

IR21034

Half Bridge Based MOSFET Driver, 0.36A, CMOS, PDIP14, PLASTIC, DIP-14
INFINEON

IR21034S

Half Bridge Based MOSFET Driver, 0.36A, CMOS, PDSO14, SOIC-14
INFINEON

IR2103PBF

Half-Bridge Driver
INFINEON

IR2103S

HALF-BRIDGE DRIVER
INFINEON

IR2103SPBF

Half-Bridge Driver
INFINEON

IR2103STR

Half Bridge Based MOSFET Driver, 0.36A, CMOS, PDSO8, SOIC-8
INFINEON

IR2103STRPBF

Half-Bridge Driver
INFINEON

IR2103_13

Half-Bridge Driver
INFINEON

IR2104

HALF-BRIDGE DRIVER
INFINEON

IR21044

HIGH AND LOW SIDE DRIVER(205.08 k)
ETC

IR21044PBF

Half Bridge Based MOSFET Driver, 0.27A, CMOS, PDIP14, PLASTIC, DIP-14
INFINEON