IRF1018EPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF1018EPBF
型号: IRF1018EPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:430K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97125  
IRF1018EPbF  
IRF1018ESPbF  
IRF1018ESLPbF  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in  
D
S
SMPS  
VDSS  
RDS(on) typ.  
max.  
60V  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
7.1m  
8.4m  
:
:
G
ID  
79A  
Benefits  
l Improved Gate, Avalanche and Dynamic  
dv/dt Ruggedness  
l Fully Characterized Capacitance and  
Avalanche SOA  
D
D
D
l Enhanced body diode dV/dt and dI/dt  
Capability  
S
S
S
D
D
D
G
G
G
D2Pak  
IRF1018ESPbF  
TO-262  
IRF1018ESLPbF  
TO-220AB  
IRF1018EPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
Max.  
79  
Units  
56  
A
315  
110  
0.76  
± 20  
21  
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
W/°C  
V
VGS  
Gate-to-Source Voltage  
Peak Diode Recovery e  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw k  
Avalanche Characteristics  
Single Pulse Avalanche Energy d  
EAS (Thermally limited)  
88  
47  
11  
mJ  
A
Avalanche Current c  
IAR  
Repetitive Avalanche Energy f  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
Units  
RθJC  
RθCS  
RθJA  
RθJA  
Junction-to-Case j  
1.32  
–––  
62  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 j  
Junction-to-Ambient (PCB Mount) , D2Pak ij  
0.50  
–––  
°C/W  
–––  
40  
www.irf.com  
1
2/28/08  
IRF1018E/S/SLPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.073 ––– V/°C Reference to 25°C, ID = 5mAc  
Conditions  
VGS = 0V, ID = 250μA  
V
ΔV(BR)DSS/ΔTJ  
RDS(on)  
–––  
2.0  
7.1  
8.4  
4.0  
20  
VGS = 10V, ID = 47A f  
VDS = VGS, ID = 100μA  
mΩ  
V
VGS(th)  
–––  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
μA VDS = 60V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 48V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
VGS = 20V  
VGS = -20V  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
110 ––– –––  
Conditions  
VDS = 50V, ID = 47A  
S
Qg  
–––  
–––  
–––  
–––  
–––  
46  
10  
12  
34  
69  
nC ID = 47A  
VDS = 30V  
Qgs  
Gate-to-Source Charge  
–––  
–––  
–––  
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Internal Gate Resistance  
Turn-On Delay Time  
VGS = 10V f  
Qsync  
ID = 47A, VDS =0V, VGS = 10V  
RG(int)  
0.73 –––  
Ω
td(on)  
–––  
–––  
–––  
–––  
13  
35  
55  
46  
–––  
–––  
–––  
–––  
ns VDD = 39V  
ID = 47A  
tr  
Rise Time  
td(off)  
Turn-Off Delay Time  
RG = 10Ω  
VGS = 10V f  
VGS = 0V  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 2290 –––  
––– 270 –––  
––– 130 –––  
––– 390 –––  
––– 630 –––  
Coss  
Output Capacitance  
VDS = 50V  
pF ƒ = 1.0MHz  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)h  
Effective Output Capacitance (Time Related)g  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 60V h  
VGS = 0V, VDS = 0V to 60V g  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
79  
D
S
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 315  
(Body Diode)ꢁc  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
39  
V
TJ = 25°C, IS = 47A, VGS = 0V f  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
–––  
26  
31  
24  
35  
1.8  
ns  
IF = 47A  
di/dt = 100A/μs f  
47  
Qrr  
36  
nC  
53  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.08mH  
RG = 25Ω, IAS = 47A, VGS =10V. Part not recommended for  
use above this value.  
ƒ ISD 47A, di/dt 1668A/μs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400μs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
‰ This is only applied to TO-220  
2
www.irf.com  
IRF1018E/S/SLPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 47A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
V
J
1
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
V
, Gate-to-Source Voltage (V)  
GS  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
4000  
3000  
2000  
1000  
0
V
C
= 0V,  
f = 1 MHZ  
GS  
16  
= C + C , C SHORTED  
I = 47A  
D
iss  
gs  
gd ds  
C
= C  
rss  
gd  
V
V
V
= 48V  
= 30V  
= 12V  
DS  
DS  
DS  
C
= C + C  
oss  
ds  
gd  
12  
8
C
iss  
4
C
oss  
C
rss  
0
1
10  
100  
0
10  
20  
30  
40  
50  
60  
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRF1018E/S/SLPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100  
T
= 175°C  
J
1msec  
100μsec  
10  
1
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
DC  
10  
GS  
0.1  
0.1  
0.1  
1
100  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
80  
80  
Id = 5mA  
60  
40  
20  
0
75  
70  
65  
60  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, CaseTemperature (°C)  
C
T
, Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
0.8  
400  
I
D
350  
300  
250  
200  
150  
100  
50  
TOP  
5.3A  
11A  
47A  
0.6  
0.4  
0.2  
0.0  
BOTTOM  
0
0
10  
V
20  
30  
40  
50  
60  
25  
50  
75  
100  
125  
150  
175  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRF1018E/S/SLPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
τι (sec)  
Ri (°C/W)  
0.1  
τJ  
0.026741 0.000007  
0.28078 0.000091  
0.606685 0.000843  
0.406128 0.005884  
τC  
τJ  
τ1  
τ
τ
τ
3τ3  
τ4  
2 τ2  
0.02  
0.01  
τ1  
τ4  
Ci= τi/Ri  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
Duty Cycle = Single Pulse  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
100  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 10% Duty Cycle  
= 47A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRF1018E/S/SLPbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
14  
12  
10  
8
I
I
I
I
= 1.0A  
D
D
D
D
I
= 32A  
= 51V  
F
= 1.0mA  
= 250μA  
= 100μA  
V
R
T = 25°C  
J
T = 125°C  
J
6
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
J
di /dt (A/μs)  
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
14  
12  
10  
8
320  
280  
240  
200  
160  
120  
80  
I
= 47A  
= 51V  
I
= 32A  
V = 51V  
R
F
F
V
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
40  
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
320  
I
= 47A  
= 51V  
F
280  
240  
200  
160  
120  
80  
V
R
T = 25°C  
J
T = 125°C  
J
40  
0
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRF1018E/S/SLPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
V***  
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
„
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
Ω
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
10%  
VGS  
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRF1018E/S/SLPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 0 = 2000  
WEEK 19  
Note: "P" in assembly line position  
indicates "L ead - F ree"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
8
www.irf.com  
IRF1018E/S/SLPbF  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
ASSEMBLED ON WW 19, 1997  
RECTIFIER  
IN THE ASSEMBLY LINE "C"  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEE K 19  
A = AS S E MB L Y S IT E CODE  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
www.irf.com  
9
IRF1018E/S/SLPbF  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEEK 02  
ASSEMBLY  
LOT CODE  
LINE L  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
For GB Production  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
LOT CODE  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
10  
www.irf.com  
IRF1018E/S/SLPbF  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.2/08  
www.irf.com  
11  

相关型号:

IRF1018ES

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRF1018ESLPBF

HEXFET Power MOSFET
INFINEON

IRF1018ESPBF

HEXFET Power MOSFET
INFINEON

IRF1018ESTRLPBF

Power Field-Effect Transistor, 79A I(D), 60V, 0.0084ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, D2PAK-3
INFINEON

IRF103IPBF

Adavanced Process Technology
INFINEON

IRF10N40

POWER MOSFET
SUNTAC

IRF1104

Power MOSFET(Vdss=40V, Rds(on)=0.009ohm, Id=100A)
INFINEON

IRF1104L

HEXFET Power MOSFET
INFINEON

IRF1104LPBF

HEXFET Power MOSFET
INFINEON

IRF1104PBF

HEXFET POWER MOSFET ( VDSS = 40V , RDS(on) = 0.009ヘ , ID = 100A )
INFINEON

IRF1104S

HEXFET Power MOSFET
INFINEON

IRF1104SPBF

HEXFET Power MOSFET
INFINEON