IRF6602TR1 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF6602TR1
型号: IRF6602TR1
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD-94363C  
IRF6602/IRF6602TR1  
HEXFET® Power MOSFET  
VDSS  
20V  
RDS(on) max  
13m@VGS = 10V  
19m@VGS = 4.5V  
Qg  
12nC  
l ApplicationSpecificMOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
l Low Switching Losses  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with existing Surface Mount Techniques  
DirectFET™ ISOMETRIC  
MQ  
Applicable DirectFET Package/Layout Pad (see p.9, 10 for details)  
MQ  
SQ  
SX  
ST  
MX  
MT  
Description  
The IRF6602 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to  
achieve the lowest on-state resistance charge product in a package that has the footprint of an SO-8 and only 0.7 mm profile.  
The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment  
and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the  
manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in  
power systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6602 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction  
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the  
latest generation of processors operating at higher frequencies. The IRF6602 has been optimized for parameters that are  
critical in synchronous buck converters including Rds(on) and gate charge to minimize losses in the control FET socket.  
Absolute Maximum Ratings  
Parameter  
Max.  
20  
Units  
V
VDS  
Drain-to-Source Voltage  
V
Gate-to-Source Voltage  
±20  
48  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TC = 25°C  
D
D
D
@ TA = 25°C  
@ TA = 70°C  
11  
8.9  
89  
A
DM  
Power Dissipation  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
2.3  
1.5  
42  
W
D
D
D
Power Dissipation  
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.018  
-40 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient  
Junction-to-Ambient  
Typ.  
–––  
12.5  
20  
Max.  
55  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
JA  
–––  
–––  
3.0  
JA  
Junction-to-Ambient  
Junction-to-Case  
°C/W  
JA  
–––  
1.0  
JC  
Junction-to-PCB Mounted  
–––  
J-PCB  
Notes  through ‡are on page 11  
www.irf.com  
1
3/1/04  
IRF6602/IRF6602TR1  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
∆Β  
Drain-to-Source Breakdown Voltage  
20  
–––  
–––  
V
VGS = 0V, ID = 250µA  
VDSS/ TJ  
Breakdown Voltage Temp. Coefficient –––  
22  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.0  
10  
13  
19  
VGS = 10V, ID = 11A  
GS = 4.5V, ID = 8.8A  
14  
V
VGS(th)  
Gate Threshold Voltage  
2.0  
-4.4  
–––  
–––  
–––  
–––  
–––  
–––  
12  
2.3  
V
VDS = VGS, ID = 250µA  
VGS(th)  
IDSS  
IGSS  
Gate Threshold Voltage Coefficient  
–––  
–––  
–––  
–––  
–––  
–––  
20  
––– mV/°C  
100  
VDS = 20V, VGS = 0V  
Drain-to-Source Leakage Current  
20  
125  
200  
-200  
–––  
18  
µA VDS = 16V, VGS = 0V  
VDS = 16V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
gfs  
Qg  
S
VDS = 10V, ID = 8.8A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
3.5  
1.3  
4.2  
3.0  
5.5  
19  
–––  
–––  
–––  
–––  
–––  
–––  
4.2  
VDS = 10V  
GS = 4.5V  
Qgs2  
Qgd  
nC  
V
ID = 8.8A  
Qgodr  
Gate Charge Overdrive  
See Fig. 16  
Qsw  
Switch Charge (Qgs2 + Qgd)  
Qoss  
RG  
Output Charge  
nC VDS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
2.8  
33  
td(on)  
tr  
td(off)  
tf  
–––  
–––  
–––  
–––  
VDD = 15V, VGS = 4.5V  
ID = 8.8A  
6.0  
14  
Turn-Off Delay Time  
Fall Time  
ns Clamped Inductive Load  
12  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1420 –––  
VGS = 0V  
pF VDS = 10V  
ƒ = 1.0MHz  
–––  
–––  
960  
100  
–––  
–––  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
97  
Units  
mJ  
A
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
8.8  
Repetitive Avalanche Energy  
EAR  
4.2  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
Continuous Source Current  
–––  
–––  
48  
D
(Body Diode)  
A
showing the  
ISM  
G
Pulsed Source Current  
–––  
–––  
380  
integral reverse  
S
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
0.83  
42  
1.2  
62  
77  
V
T = 25°C, I = 8.8A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 8.8A  
J F  
Qrr  
di/dt = 100A/µs  
51  
nC  
2
www.irf.com  
IRF6602/IRF6602TR1  
1000  
100  
10  
1000  
VGS  
VGS  
10V  
TOP  
TOP  
10V  
5.0V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
100  
10  
1
BOTTOM 2.7V  
BOTTOM 2.7V  
2.7V  
2.7V  
20µs PULSE WIDTH  
Tj = 150°C  
20µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
100.00  
2.0  
11A  
=
I
D
T
= 150°C  
J
1.5  
1.0  
0.5  
0.0  
T
= 25°C  
J
10.00  
V
= 15V  
DS  
20µs PULSE WIDTH  
V
= 10V  
1.00  
GS  
2.0  
2.5  
V
3.0  
3.5  
4.0  
4.5  
5.0  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
°
T , Junction Temperature  
( C)  
, Gate-to-Source Voltage (V)  
J
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF6602/IRF6602TR1  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
100000  
V
= 0V,  
f = 1 MHZ  
GS  
I
= 8.8A  
D
C
= C + C  
,
C
ds  
SHORTED  
iss  
gs  
gd  
V
V
= 16V  
= 10V  
C
= C  
DS  
DS  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
10000  
1000  
100  
Ciss  
Coss  
Crss  
10  
1
10  
100  
0
5
10  
15  
V
, Drain-to-Source Voltage (V)  
DS  
Q
Total Gate Charge (nC)  
G
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
100  
10  
1
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
°
T = 150  
J
C
100µsec  
°
T = 25  
C
1msec  
J
10msec  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0 V  
GS  
0.1  
0.1  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
1
10  
100  
V
,Source-to-Drain Voltage (V)  
SD  
V
, Drain-toSource Voltage (V)  
DS  
Fig 7. Typical Source-Drain Diode  
Fig 8. Maximum Safe Operating  
Forward Voltage  
Area  
4
www.irf.com  
IRF6602/IRF6602TR1  
12  
3.0  
2.5  
2.0  
9
I
= 250µA  
D
1.5  
1.0  
0.5  
0.0  
6
3
0
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
75  
100  
125  
150  
T
, Temperature ( °C )  
J
TA, Ambient Temperature (°C)  
Fig 9. Maximum Drain Current Vs.  
Fig 10. Threshold Voltage Vs. Temperature  
Ambient Temperature  
100  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
P
DM  
0.02  
0.01  
t
1
t
2
Notes:  
SINGLE PULSE  
1. Duty factor D =  
2. Peak T = P  
t
/ t  
1
(THERMAL RESPONSE)  
2
x
Z
+ T  
10  
J
DM  
thJA  
A
0.1  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
100  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF6602/IRF6602TR1  
15V  
250  
200  
150  
100  
50  
I
D
TOP  
3.9A  
7.0A  
8.8A  
DRIVER  
+
L
V
BOTTOM  
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
0
t
p
25  
50  
75  
100  
125  
150  
°
( C)  
Starting Tj, Junction Temperature  
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
I
AS  
LD  
VDS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
Current Regulator  
VGS  
Same Type as D.U.T.  
Pulse Width < 1µs  
Duty Factor < 0.1%  
50KΩ  
.2µF  
12V  
.3µF  
Fig 14a. Switching Time Test Circuit  
VDS  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 14b. Switching Time Waveforms  
Fig 13. Gate Charge Test Circuit  
6
www.irf.com  
IRF6602/IRF6602TR1  
Driver Gate Drive  
P.W.  
Period  
D =  
D.U.T  
Period  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRF6602/IRF6602TR1  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
drive output  
loss  
conduction  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
in rr in  
(
)
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
Qoss  
)
g
g
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF6602/IRF6602TR1  
DirectFET™ Outline Dimension, MQ Outline  
(Medium Size Can, Q-Designation)  
Please see DirectFET application note AN-1035 for all details regarding the assembly of  
DirectFET. This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
MIN  
METRIC  
MAX  
CODE MIN  
MAX  
0.250  
0.199  
0.156  
0.018  
0.028  
0.028  
0.029  
0.024  
0.011  
0.067  
0.123  
0.028  
0.003  
6.35  
5.05  
3.95  
0.45  
0.72  
0.72  
0.73  
0.61  
0.27  
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.027  
0.022  
0.009  
A
B
C
D
E
F
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
0.69  
0.57  
0.23  
1.57  
2.95  
0.59  
0.03  
NOTE: CONTROLLING  
DIMENSIONS ARE IN MM  
G
H
J
1.70 0.062  
K
L
3.12  
0.70  
0.116  
0.023  
M
N
0.08 0.001  
www.irf.com  
9
IRF6602/IRF6602TR1  
DirectFET™ Board Footprint, MQ Outline  
(Medium Size Can, Q-Designation)  
Please see DirectFET application note AN-1035 for all details regarding the assembly of  
DirectFET. This includes all recommendations for stencil and substrate designs.  
DirectFET™ Tape and Reel Dimension  
(Showing Component Orientation)  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6602). For 1000 parts on 7" reel,  
order IRF6602TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
19.06  
13.5  
1.5  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
10  
www.irf.com  
IRF6602/IRF6602TR1  
DirectFET™ Part Marking  
Notes:  
Used double sided cooling , mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 2.5mH  
RG = 25, IAS = 8.8A. (See Figure 14).  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 03/04  
www.irf.com  
11  

相关型号:

IRF6603

HEXFETPower MOSFET
INFINEON

IRF6603PBF

Power Field-Effect Transistor, 27A I(D), 30V, 0.0034ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS AND REACH COMPLIANT, MT, ISOMETRIC-3
INFINEON

IRF6603TR1

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF6604

Power MOSFET
INFINEON

IRF6604PBF

Power Field-Effect Transistor, 12A I(D), 30V, 0.0115ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS AND REACH COMPLIANT, MQ, ISOMETRIC-3
INFINEON

IRF6604TR1

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF6607

Power MOSFET
INFINEON

IRF6607TR1

Power MOSFET
INFINEON

IRF6608

lHEXFET Power MOSFET
INFINEON

IRF6609

Power MOSFET
INFINEON

IRF6609PBF

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6609TR1

Power Field-Effect Transistor, 31A I(D), 20V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON