IRF7665S2PBF [INFINEON]

Key parameters optimized for Class-D audio amplifier applications;
IRF7665S2PBF
型号: IRF7665S2PBF
厂家: Infineon    Infineon
描述:

Key parameters optimized for Class-D audio amplifier applications

文件: 总9页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96239  
DIGITALAUDIOMOSFET  
IRF7665S2TRPbF  
IRF7665S2TR1PbF  
Key Parameters  
Features  
Key parameters optimized for Class-D audio amplifier  
VDS  
100  
V
applications  
m
RDS(on) typ. @ VGS = 10V  
Qg typ.  
51  
8.3  
3.5  
Low RDS(on) for improved efficiency  
Low Qg for better THD and improved efficiency  
Low Qrr for better THD and lower EMI  
Low package stray inductance for reduced ringing and lower  
EMI  
nC  
RG(int) typ.  
Can deliver up to 100W per channel into 8with no heatsink Š  
Dual sided cooling compatible  
· Compatible with existing surface mount technologies  
· RoHS compliant containing no lead or bromide  
· Lead-Free (Qualified up to 260°C Reflow)  
· Industrial Qualified  
DirectFET™ISOMETRIC  
SB  
Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)  
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the  
latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse  
recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as  
efficiency, THD, and EMI.  
The IRF7665S2TR/TR1PbF device utilizes DirectFETTM packaging technology. DirectFETTM packaging technology offers lower  
parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance im-  
proves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFETTM package is  
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red  
or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and  
processes. The DirectFETTM package also allows dual sided cooling to maximize thermal transfer in power systems, improving  
thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable  
device for Class-D audio amplifier applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
100  
Units  
VDS  
VGS  
V
Gate-to-Source Voltage  
± 20  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
@ TC = 25°C  
14.4  
10.2  
D
D
D
@ TC = 100°C  
@ TA = 25°C  
A
I
I
4.1  
58  
DM  
Maximum Power Dissipation  
Power Dissipation  
P
P
P
@TC = 25°C  
@TC = 100°C  
@TA = 25°C  
30  
15  
D
D
D
W
Power Dissipation  
2.4  
Linear Derating Factor  
Operating Junction and  
0.2  
W/°C  
°C  
T
-55 to + 175  
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient  
Typ.  
Max.  
Units  
RθJA  
–––  
12.5  
20  
63  
RθJA  
Junction-to-Ambient  
–––  
–––  
5.0  
°C/W  
RθJA  
Junction-to-Ambient  
RθJ-Can  
RθJ-PCB  
Junction-to-Can  
–––  
1.4  
Junction-to-PCB Mounted  
–––  
Notes  through Š are on page 2  
www.irf.com  
1
07/02/09  
IRF7665S2TR/TR1PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min.  
100  
–––  
–––  
3.0  
Typ.  
–––  
0.10  
51  
Max.  
–––  
–––  
62  
Units  
V
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Reference to 25°C, ID = 1mA  
VGS = 10V, ID = 8.9A  
V/°C  
m
VDS = VGS, ID = 25µA  
VGS(th)  
4.0  
5.0  
V
VDS = 100V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
3.5  
20  
µA  
nA  
VDS = 80V, VGS = 0V, TJ = 125°C  
250  
100  
-100  
5.0  
V
GS = 20V  
GS = -20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
V
RG(int)  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Conditions  
VDS = 25V, ID = 8.9A  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min.  
8.8  
Typ.  
–––  
8.3  
1.9  
0.77  
3.2  
2.4  
4.0  
3.8  
6.4  
7.1  
3.6  
515  
112  
30  
Max.  
–––  
13  
Units  
S
gfs  
Qg  
VDS = 50V  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
VGS = 10V  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs2  
Qgd  
ID = 8.9A  
nC  
See Fig. 6 and 17  
Qgodr  
Qsw  
td(on)  
tr  
td(off)  
tf  
VDD = 50V  
ID = 8.9A  
Rise Time  
RG = 6.8Ω  
Turn-Off Delay Time  
ns  
VGS = 10V  
Fall Time  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Coss eff.  
Input Capacitance  
VDS = 25V  
Output Capacitance  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Output Capacitance  
pF  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 80V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 80V  
533  
67  
Output Capacitance  
Effective Output Capacitance  
115  
Avalanche Characteristics  
Typ.  
–––  
–––  
Max.  
37  
Parameter  
Units  
mJ  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
8.9  
A
Diode Characteristics  
Conditions  
Parameter  
Min.  
Typ.  
Max.  
Units  
MOSFET symbol  
showing the  
D
S
I
I
Continuous Source Current  
(Body Diode)  
S
–––  
–––  
14.4  
A
G
integral reverse  
p-n junction diode.  
Pulsed Source Current  
(Body Diode)  
SM  
–––  
–––  
58  
T = 25°C, I = 8.9A, V = 0V  
V
t
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
33  
1.3  
–––  
–––  
V
J
S
GS  
SD  
T = 25°C, I = 8.9A, VDD = 25V  
ns  
nC  
J
F
rr  
di/dt = 100A/µs  
Q
38  
rr  
Notes:  
† Used double sided cooling , mounting pad.  
‡ Mounted on minimum footprint full size board with  
metalized back and with small clip heatsink.  
ˆ TC measured with thermal couple mounted to top  
(Drain) of part.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.944mH, RG = 25, IAS = 8.9A.  
ƒ Surface mounted on 1 in. square Cu board.  
„ Pulse width 400µs; duty cycle 2%.  
‰ R is measured at TJ of approximately 90°C.  
θ
Coss eff. is a fixed capacitance that gives the same  
charging time as Coss while VDS is rising from 0 to 80% VDSS  
Š Based on testing done using a typical device & evaluation board  
at Vbus=±45V, fSW=400KHz, and TA=25°C. The delta case  
temperature TC is 55°C.  
.
2
www.irf.com  
IRF7665S2TR/TR1PbF  
100  
10  
1
100  
10  
VGS  
15V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
BOTTOM  
BOTTOM  
1
0.1  
5.0V  
0.01  
0.001  
5.0V  
60µs  
60µs  
PULSE WIDTH  
Tj = 175°C  
PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
100  
I
= 8.9A  
= 10V  
D
V
GS  
10  
1
T
= -40°C  
J
TJ = 25°C  
TJ = 175°C  
0.1  
0.01  
V
= 25V  
DS  
60µs PULSE WIDTH  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
2
4
6
8
10 12 14 16  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
14.0  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 8.9A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 80V  
= 50V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
VDS= 20V  
C
iss  
C
oss  
C
rss  
10  
0
2
4
6
8
10  
12  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRF7665S2TR/TR1PbF  
1000  
100  
10  
100  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
T
= -40°C  
J
DS  
TJ = 25°C  
TJ = 175°C  
10  
1
100µsec  
1msec  
10msec  
1
DC  
0.1  
0.01  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
0.01  
V
= 0V  
GS  
0
1
10  
100  
1000  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
16  
14  
12  
10  
8
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
6
I
= 25µA  
D
4
ID = 250µA  
ID = 1.0mA  
D = 1.0A  
2
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
10  
D = 0.50  
1
0.1  
0.20  
0.10  
0.05  
0.02  
0.01  
Ri (°C/W) τi (sec)  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.49687 0.000119  
τ
τ
J τJ  
τ
C
0.00517 8.231486  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
2.55852 0.018926  
0.01  
1.94004 0.002741  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ  
4
www.irf.com  
IRF7665S2TR/TR1PbF  
140  
120  
100  
80  
320  
280  
240  
200  
160  
120  
80  
Vgs = 10V  
I
= 8.9A  
D
T
= 125°C  
J
T
= 125°C  
J
T
= 25°C  
60  
T
= 25°C  
J
J
40  
40  
6
7
8
9
10 11 12 13 14 15  
0
10  
20  
30  
40  
I , Drain Current (A)  
D
V
Gate -to -Source Voltage (V)  
GS,  
Fig 13. On-Resistance vs. Drain Current  
Fig 12. On-Resistance vs. Gate Voltage  
160  
140  
120  
100  
80  
I
D
TOP  
1.64A  
3.04A  
BOTTOM 8.90A  
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
60  
V
20V  
GS  
0.01  
t
p
40  
Fig 15a. Unclamped Inductive Test Circuit  
20  
0
V
(BR)DSS  
25  
50  
75  
100  
125  
150  
175  
t
p
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
I
AS  
Fig 15b. Unclamped Inductive Waveforms  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
10%  
VGS  
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
td(on)  
td(off)  
tr  
tf  
Fig 16b. Switching Time Waveforms  
Fig 16a. Switching Time Test Circuit  
www.irf.com  
5
IRF7665S2TR/TR1PbF  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
Vgs(th)  
3mA  
I
I
D
G
Current Sampling Resistors  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 17a. Gate Charge Test Circuit  
Fig 17b. Gate Charge Waveform  
D.U.T  
+
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
+
‚
„
-
+
-

VDD  
di/dt controlled by RG  
RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
+
-
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
*
=10V  
V
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
Re-Applied  
Voltage  
Body Diode  
InductorCurrent  
Forward Drop  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
6
www.irf.com  
IRF7665S2TR/TR1PbF  
DirectFET Auto™ Board Footprint, SB (Small Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
CL  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
G
S
www.irf.com  
7
IRF7665S2TR/TR1PbF  
DirectFET Auto™ Outline Dimension, SB Outline (Small Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX MIN  
CODE  
MIN  
MAX  
0.191  
0.156  
0.112  
0.018  
0.020  
0.036  
0.040  
0.036  
N/A  
4.85  
3.95  
2.85  
0.45  
0.52  
0.92  
A
B
C
D
E
F
0.187  
0.146  
0.108  
0.014  
0.019  
0.035  
4.75  
3.70  
2.75  
0.35  
0.48  
0.88  
0.98  
0.88  
N/A  
1.02 0.039  
G
H
J
0.92  
N/A  
0.035  
N/A  
1.05 0.037  
K
L
0.95  
1.85  
0.616  
0.020  
0.08  
0.041  
0.073  
0.0274  
0.0031  
0.007  
1.95  
0.073  
0.676  
0.080  
0.17  
M
R
P
0.0235  
0.0008  
0.003  
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
8
www.irf.com  
IRF7665S2TR/TR1PbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
Loaded Tape Feed Direction  
DIMENSIONS  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts.I
IRF7665S2PbF  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
METRIC  
MAX  
IMPERIAL  
CODE  
MIN  
MIN  
7.90  
3.90  
MAX  
0.319  
0.161  
0.484  
0.219  
0.165  
0.205  
N.C  
0.311  
0.154  
0.469  
0.215  
0.158  
0.197  
0.059  
0.059  
A
B
C
D
E
F
8.10  
REEL DIMENSIONS  
4.10  
STANDARD OPTION (QTY 4800)  
11.90  
5.45  
4.00  
5.00  
1.50  
1.50  
12.30  
5.55  
4.20  
5.20  
N.C  
METRIC  
MAX  
IMPERIAL  
MIN  
CODE  
MIN  
MAX  
N.C  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
N.C  
G
H
0.520  
N.C  
0.063  
1.60  
100.0  
N.C  
N.C  
0.724  
0.567  
0.606  
G
H
0.488  
0.469  
12.4  
11.9  
Data and specifications subject to change without notice.  
This product has been designed and qualified to MSL1 rating for the Industrial market.  
Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR’s Web site.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/2009  
www.irf.com  
9

相关型号:

IRF7665S2PBF_15

Can deliver up to 100W per channel into 8 with no heatsink
INFINEON

IRF7665S2TR1PBF

Power Field-Effect Transistor, 4.1A I(D), 100V, 0.062ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF7665S2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7700

Power MOSFET(Vdss=-20V)
INFINEON

IRF7700GPBF

HEXFET? Power MOSFET Ultra Low On-Resistance
INFINEON

IRF7700PBF

Power Field-Effect Transistor, 8.6A I(D), 20V, 0.015ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-153AA, LEAD FREE, TSSOP-8
INFINEON

IRF7701

Power MOSFET(Vdss=-12V)
INFINEON

IRF7701GPBF

HEXFET® Power MOSFET Ultra Low On-Resistance
INFINEON

IRF7701GTRPBF

Transistor
INFINEON

IRF7701PBF

Power Field-Effect Transistor, 10A I(D), 12V, 0.011ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-153AA, LEAD FREE, TSSOP-8
INFINEON

IRF7701TRPBF

Transistor
INFINEON

IRF7702

Power MOSFET(Vdss=-12V)
INFINEON