IRF7834 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF7834
型号: IRF7834
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 开关 脉冲 光电二极管
文件: 总10页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94761  
IRF7834  
HEXFET® Power MOSFET  
Applications  
l Synchronous MOSFET for Notebook  
Processor Power  
VDSS  
30V  
RDS(on) max  
Qg (typ.)  
29nC  
4.5m:@VGS = 10V  
l Synchronous Rectifier MOSFET for  
Isolated DC-DC Converters in  
Networking Systems  
A
A
1
8
S
D
Benefits  
2
7
S
D
l Very Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
3
6
S
D
4
5
G
D
SO-8  
Top View  
l 20V VGS Max. Gate Rating  
Absolute Maximum Ratings  
Parameter  
Max.  
30  
Units  
V
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
V
± 20  
19  
GS  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
16  
A
160  
2.5  
1.6  
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
W
D
D
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.02  
W/°C  
°C  
T
-55 to + 150  
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
RθJL  
RθJA  
–––  
50  
Notes  through are on page 10  
www.irf.com  
1
2/26/04  
IRF7834  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.023 ––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.35  
3.6  
4.4  
–––  
4.5  
5.5  
V
GS = 10V, ID = 19A  
VGS = 4.5V, ID = 16A  
VDS = VGS, ID = 250µA  
mΩ  
VGS(th)  
VGS(th)  
IDSS  
Gate Threshold Voltage  
2.25  
V
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– - 5.2 ––– mV/°C  
–––  
–––  
–––  
–––  
85  
–––  
–––  
–––  
1.0  
150  
100  
µA VDS = 24V, VGS = 0V  
VDS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
V
V
GS = 20V  
GS = -20V  
––– -100  
gfs  
–––  
29  
–––  
44  
VDS = 15V, ID = 16A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
7.5  
2.7  
9.8  
9.0  
12.5  
19  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 15V  
nC VGS = 4.5V  
ID = 16A  
Gate Charge Overdrive  
See Fig. 16  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
nC  
V
V
DS = 16V, VGS = 0V  
Turn-On Delay Time  
Rise Time  
13.7  
14.3  
18  
DD = 15V, VGS = 4.5V  
ID = 16A  
ns Clamped Inductive Load  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
5.0  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 3710 –––  
V
V
GS = 0V  
–––  
–––  
810  
350  
–––  
–––  
pF  
DS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Single Pulse Avalanche Energy  
Typ.  
–––  
–––  
Max.  
Units  
mJ  
EAS  
IAR  
25  
16  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
–––  
–––  
3.1  
MOSFET symbol  
(Body Diode)  
A
showing the  
ISM  
Pulsed Source Current  
–––  
–––  
160  
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
21  
1.0  
32  
20  
V
T = 25°C, I = 16A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 16A, VDD = 15V  
J F  
Qrr  
di/dt = 100A/µs  
13  
nC  
2
www.irf.com  
IRF7834  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
3.8V  
3.5V  
3.3V  
3.0V  
2.8V  
4.5V  
3.8V  
3.5V  
3.3V  
3.0V  
2.8V  
BOTTOM 2.5V  
BOTTOM 2.5V  
2.5V  
2.5V  
1
> 60µs PULSE WIDTH  
Tj = 25°C  
> 60µs PULSE WIDTH  
Tj = 150°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1.5  
1000.00  
100.00  
I
= 20A  
D
V
= 10V  
GS  
T
= 150°C  
J
10.00  
1.00  
0.10  
0.01  
1.0  
T
= 25°C  
J
V
= 10V  
DS  
> 60µs PULSE WIDTH  
0.5  
2.0  
3.0  
4.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF7834  
100000  
V
12  
10  
8
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 16A  
D
V
= 24V  
C
C
C
+ C , C  
SHORTED  
DS  
VDS= 15V  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
100  
Ciss  
6
4
Coss  
Crss  
2
0
0
10  
20  
30  
40  
50  
60  
70  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
10.0  
1.0  
T
= 150°C  
J
T
= 25°C  
1
J
100µsec  
Tc = 25°C  
Tj = 150°C  
1msec  
V
= 0V  
Single Pulse  
GS  
10msec  
0.1  
0.1  
0
1
10  
100  
1000  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF7834  
20  
16  
12  
8
2.2  
1.8  
1.4  
1.0  
I
= 250µA  
D
4
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
J
, Junction Temperature (°C)  
T , Temperature ( °C )  
J
Fig 10. Threshold Voltage Vs. Temperature  
Fig 9. Maximum Drain Current Vs.  
Case Temperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
1.1659  
9.9439  
25.520  
13.380  
0.000184  
0.153919  
1.7486  
49  
τ
τ
J τJ  
Cτ  
0.1  
τ
1τ1  
τ
τ
τ
2τ2  
3τ3  
4τ4  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7834  
20  
16  
12  
8
100  
80  
60  
40  
20  
0
I
= 20A  
I
D
D
TOP  
5.9A  
6.7A  
16A  
BOTTOM  
T
= 125°C  
= 25°C  
J
4
T
J
0
2.0  
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13c. Maximum Avalanche Energy  
Vs. Drain Current  
15V  
LD  
VDS  
DRIVER  
+
L
V
DS  
+
-
VDD  
D.U.T  
AS  
R
G
V
DD  
-
D.U.T  
I
A
V
GS  
VGS  
0.01Ω  
t
p
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 13a. Unclamped Inductive Test Circuit  
Fig 14a. Switching Time Test Circuit  
VDS  
V
(BR)DSS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 14b. Switching Time Waveforms  
Fig 13b. Unclamped Inductive Waveforms  
6
www.irf.com  
IRF7834  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Current Regulator  
Vds  
Same Type as D.U.T.  
Vgs  
50KΩ  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 17. Gate Charge Waveform  
Fig 16. Gate Charge Test Circuit  
www.irf.com  
7
IRF7834  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
drive output  
loss  
conduction  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
in rr in  
(
)
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
Qoss  
)
g
g
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF7834  
SO-8 Package Details  
INCHES  
MILLIME T E RS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
A1 .0040  
b
c
D
E
.013  
8
1
7
2
6
3
5
4
.0075  
.189  
.0098  
.1968  
.1574  
6
H
E
0.25 [.010]  
A
.1497  
e
.050 BASIC  
1.27 BASIC  
0.635 BASIC  
e1 .025 BASIC  
H
K
L
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
y
e1  
A
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
F OOT PRINT  
8X 0.72 [.028]  
NOTES:  
1. DIMENSIONING& TOLERANCINGPER ASME Y14.5M-1994.  
2. CONTROLLINGDIMENSION: MILLIMETER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
6.46 [.255]  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A S UB S T R AT E .  
3X 1.27 [.050]  
8X 1.78 [.070]  
SO-8 Part Marking  
EXAMPLE: THIS IS AN IRF7101 (MOSFET)  
DATE CODE (YWW)  
Y = LAST DIGIT OF THE YEAR  
WW = WEEK  
YWW  
XXXX  
F7101  
LOT CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
PART NUMBER  
www.irf.com  
9
IRF7834  
SO-8 Tape and Reel  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.19mH  
„ When mounted on 1 inch square copper board  
Rθ is measured at TJ approximately 90°C  
RG = 25, IAS = 16A.  
ƒ Pulse width 400µs; duty cycle 2%.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.2/04  
10  
www.irf.com  

相关型号:

IRF7834PBF

HEXFET Power MOSFET
INFINEON

IRF7834TRPBF

暂无描述
INFINEON

IRF7835PBF

HEXFET Power MOSFET
INFINEON

IRF7835UPBF

HEXFET Power MOSFET
INFINEON

IRF7836PBF

HEXFET Power MOSFET
INFINEON

IRF7842

Power MOSFET(Vdss = 40 V)
INFINEON

IRF7842PBF

HEXFET Power MOSFET
INFINEON

IRF7842TRPBF

Synchronous MOSFET for Notebook Processor Power
INFINEON

IRF7853PBF

HEXFET Power MOSFET
INFINEON

IRF7853TRPBF

Primary Side Switch in Bridge Topology
INFINEON

IRF7854

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRF7854PBF

HEXFET Power MOSFET
INFINEON