IRF7842 [INFINEON]

Power MOSFET(Vdss = 40 V); 功率MOSFET ( VDSS = 40 V )
IRF7842
型号: IRF7842
厂家: Infineon    Infineon
描述:

Power MOSFET(Vdss = 40 V)
功率MOSFET ( VDSS = 40 V )

晶体 晶体管 功率场效应晶体管 开关 脉冲 光电二极管
文件: 总9页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95864  
IRF7842  
HEXFET® Power MOSFET  
Applications  
l Synchronous MOSFET for Notebook  
Processor Power  
l Secondary Synchronous Rectification  
for Isolated DC-DC Converters  
l Synchronous Fet for Non-Isolated  
DC-DC Converters  
Benefits  
l Very Low RDS(on) at 4.5V VGS  
l Low Gate Charge  
VDSS  
40V  
RDS(on) max  
Qg (typ.)  
33nC  
5.0m:@VGS = 10V  
A
A
D
1
8
S
2
7
S
D
3
6
S
D
4
5
G
D
l Fully Characterized Avalanche Voltage  
and Current  
SO-8  
Top View  
Absolute Maximum Ratings  
Parameter  
Max.  
40  
Units  
V
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
V
± 20  
18  
GS  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
14  
A
140  
2.5  
1.6  
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
W
D
D
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.02  
W/°C  
°C  
T
-55 to + 150  
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
RθJL  
RθJA  
–––  
50  
Notes  through are on page 9  
www.irf.com  
1
4/26/04  
IRF7842  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.037 ––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.35  
4.0  
4.7  
–––  
5.0  
5.9  
V
V
V
GS = 10V, ID = 17A  
GS = 4.5V, ID = 14A  
DS = VGS, ID = 250µA  
mΩ  
VGS(th)  
VGS(th)  
IDSS  
Gate Threshold Voltage  
2.25  
V
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– - 5.6 ––– mV/°C  
–––  
–––  
–––  
–––  
81  
–––  
–––  
–––  
1.0  
150  
100  
µA VDS = 32V, VGS = 0V  
VDS = 32V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
V
V
GS = 20V  
GS = -20V  
––– -100  
gfs  
–––  
33  
–––  
50  
VDS = 20V, ID = 14A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
9.6  
2.8  
10  
–––  
–––  
–––  
–––  
–––  
–––  
TBD  
–––  
–––  
–––  
–––  
VDS = 20V  
nC VGS = 4.5V  
ID = 14A  
Gate Charge Overdrive  
10.6  
12.8  
18  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
nC VDS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
1.3  
14  
td(on)  
tr  
td(off)  
tf  
V
DD = 20V, VGS = 4.5V  
12  
ID = 14A  
Turn-Off Delay Time  
Fall Time  
21  
ns Clamped Inductive Load  
5.0  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 4500 –––  
V
V
GS = 0V  
–––  
–––  
680  
310  
–––  
–––  
pF  
DS = 20V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Single Pulse Avalanche Energy  
Typ.  
–––  
–––  
Max.  
Units  
mJ  
EAS  
IAR  
50  
14  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
–––  
–––  
3.1  
MOSFET symbol  
(Body Diode)  
A
showing the  
ISM  
Pulsed Source Current  
–––  
–––  
140  
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
99  
1.0  
150  
17  
V
T = 25°C, I = 14A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 14A, VDD = 20V  
J F  
Qrr  
di/dt = 100A/µs  
11  
nC  
2
www.irf.com  
IRF7842  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
3.5V  
3.3V  
3.0V  
2.8V  
2.5V  
BOTTOM  
BOTTOM  
2.5V  
1
2.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 150°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
2.0  
1.5  
1.0  
0.5  
I
= 18A  
D
V
= 10V  
GS  
100.0  
10.0  
1.0  
T
= 150°C  
J
T
= 25°C  
J
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF7842  
100000  
V
12  
10  
8
= 0V,  
= C  
f = 1 MHZ  
GS  
iss  
I = 14A  
D
C
C
C
+ C , C  
SHORTED  
V
= 30V  
gs  
gd  
ds  
DS  
VDS= 20V  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
Ciss  
6
4
Coss  
Crss  
2
0
100  
1
0
20  
40  
60  
80  
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
10.0  
1.0  
T
= 150°C  
J
1msec  
T
= 25°C  
J
1
10msec  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0
1
10  
100  
1000  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF7842  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
18  
16  
14  
12  
10  
8
I
= 250µA  
D
6
4
2
0
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
75  
100  
125  
150  
T
, Temperature ( °C )  
T
J
, Junction Temperature (°C)  
J
Fig 10. Threshold Voltage Vs. Temperature  
Fig 9. Maximum Drain Current Vs.  
Case Temperature  
100  
D = 0.50  
0.20  
10  
1
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
0.1  
Ri (°C/W) τi (sec)  
τ
JτJ  
τ
τ
Cτ  
10.48  
26.83  
12.69  
0.138167  
1.8582  
44.8  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
0.001  
0.0001  
Ci= τi/Ri  
Ci i
 
Ri  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7842  
200  
160  
120  
80  
16  
12  
8
I
I
= 18A  
D
D
TOP  
6.7A  
7.5A  
14A  
BOTTOM  
T
= 125°C  
= 25°C  
J
4
T
40  
J
0
0
2.0  
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13c. Maximum Avalanche Energy  
Vs. Drain Current  
15V  
LD  
VDS  
DRIVER  
+
L
V
DS  
+
-
VDD  
D.U.T  
AS  
R
G
V
DD  
-
D.U.T  
I
A
V
GS  
VGS  
0.01Ω  
t
p
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 13a. Unclamped Inductive Test Circuit  
Fig 14a. Switching Time Test Circuit  
VDS  
V
(BR)DSS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 14b. Switching Time Waveforms  
Fig 13b. Unclamped Inductive Waveforms  
6
www.irf.com  
IRF7842  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Current Regulator  
Vds  
Same Type as D.U.T.  
Vgs  
50KΩ  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 17. Gate Charge Waveform  
Fig 16. Gate Charge Test Circuit  
www.irf.com  
7
IRF7842  
SO-8 Package Details  
INCHES  
MIN MAX  
.0532 .0688  
MILLIME T ERS  
DIM  
A
D
B
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
A1 .0040 .0098  
b
c
D
E
.013  
.0075 .0098  
.189 .1968  
.020  
8
1
7
2
6
3
5
4
6
H
E
0.25 [.010]  
A
.1497 .1574  
.050 BASIC  
e
1.27 BASIC  
e1 .025 BASIC  
0.635 BASIC  
H
K
L
.2284 .2440  
.0099 .0196  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
.016  
0°  
.050  
8°  
y
e1  
A
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
F OOT PRINT  
8X 0.72 [.028]  
NOTES:  
1. DIMENSIONING& TOLERANCINGPER ASME Y14.5M-1994.  
2. CONTROLLINGDIMENSION: MILLIMETER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
6.46 [.255]  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
A S UB S T R AT E .  
3X 1.27 [.050]  
8X 1.78 [.070]  
SO-8 Part Marking  
EXAMPLE: THIS IS AN IRF7101 (MOSFET)  
DATE CODE (YWW)  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
Y = LAST DIGIT OF THE YEAR  
WW = WEE K  
A = AS S E MB L Y S IT E CODE  
XXXX  
F7101  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE  
PART NUMBER  
8
www.irf.com  
IRF7842  
SO-8 Tape and Reel  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.5mH  
RG = 25, IAS = 14A.  
„ When mounted on 1 inch square copper board  
Rθ is measured at TJ approximately 90°C  
ƒ Pulse width 400µs; duty cycle 2%.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.4/04  
www.irf.com  
9

相关型号:

IRF7842PBF

HEXFET Power MOSFET
INFINEON

IRF7842TRPBF

Synchronous MOSFET for Notebook Processor Power
INFINEON

IRF7853PBF

HEXFET Power MOSFET
INFINEON

IRF7853TRPBF

Primary Side Switch in Bridge Topology
INFINEON

IRF7854

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRF7854PBF

HEXFET Power MOSFET
INFINEON

IRF7854TRPBF

Primary Side Switch in Bridge or two switch forward topologies using 48V ETSI range inputs
INFINEON

IRF7855

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRF7855PBF

HEXFETPower MOSFET
INFINEON

IRF7855TRPBF

Primary Side Switch in Bridge Topology in Isolated DC-DC Converters
INFINEON

IRF7862PBF

HEXFET Power MOSFET
INFINEON

IRF7862PBF_09

HEXFETPower MOSFET
INFINEON