IRFB3307ZGPBF [INFINEON]

HEXFETPower MOSFET; HEXFETPower MOSFET
IRFB3307ZGPBF
型号: IRFB3307ZGPBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
HEXFETPower MOSFET

文件: 总8页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96212  
IRFB3307ZGPbF  
Applications  
l High Efficiency Synchronous Rectification in  
SMPS  
HEXFET® Power MOSFET  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
75V  
4.6m  
5.8m  
120A  
120A  
G
Benefits  
l Improved Gate, Avalanche and Dynamic  
dv/dt Ruggedness  
l Fully Characterized Capacitance and  
Avalanche SOA  
D
l Enhanced body diode dV/dt and dI/dt  
Capability  
l Lead-Free  
S
D
G
l Halogen-Free  
TO-220AB  
IRFB3307ZGPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
120  
Units  
A
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
84  
120  
480  
PD @TC = 25°C  
W
230  
Maximum Power Dissipation  
1.5  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
6.7  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
°C  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lbf in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
140  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.65  
–––  
62  
Units  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220  
www.irf.com  
1
01/06/09  
IRFB3307ZGPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.094 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
4.6  
5.8  
4.0  
VGS = 10V, ID = 75A  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 150µA  
RG(int)  
IDSS  
Internal Gate Resistance  
Drain-to-Source Leakage Current  
––– 0.70 –––  
––– ––– 20  
µA VDS = 75V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
V
V
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
GS = 20V  
GS = -20V  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
320 ––– –––  
S
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
79  
19  
24  
55  
15  
64  
38  
65  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ID = 75A  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
VDS = 38V  
nC  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 10V  
ID = 75A, VDS =0V, VGS = 10V  
VDD = 49V  
Turn-On Delay Time  
Rise Time  
ID = 75A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
RG = 2.6Ω  
VGS = 10V  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 4750 –––  
––– 420 –––  
––– 190 –––  
––– 440 –––  
––– 410 –––  
V
GS = 0V  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz  
pF  
Coss eff. (ER)  
oss eff. (TR)  
V
GS = 0V, VDS = 0V to 60V  
GS = 0V, VDS = 0V to 60V  
C
V
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
Continuous Source Current  
––– –––  
D
S
120  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
A
G
ISM  
––– ––– 480  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
50  
V
TJ = 25°C, IS = 75A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
–––  
–––  
–––  
33  
39  
42  
56  
2.2  
ns  
IF = 75A  
di/dt = 100A/µs  
59  
Qrr  
Reverse Recovery Charge  
63  
nC  
84  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 120A. Note that current  
limitations arising from heating of the device leads may occur with  
„ ISD 75A, di/dt 1570A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.050mH  
ˆ Rθ is measured at TJ approximately 90°C.  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
2
www.irf.com  
IRFB3307ZGPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 72A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 72A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
= C  
10.0  
rss  
oss  
gd  
V
V
V
= 60V  
= 38V  
= 15V  
DS  
DS  
DS  
= C + C  
ds  
gd  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
oss  
C
rss  
100  
0
10 20 30 40 50 60 70 80 90  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
G
V
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB3307ZGPbF  
10000  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
T
= 25°C  
J
1msec  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
0.1  
0.1  
1
10  
, Drain-to-Source Voltage (V)  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
V
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
120  
Id = 5mA  
100  
80  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
1.2  
600  
I
D
TOP  
15A  
26A  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
500  
400  
300  
200  
100  
0
BOTTOM 75A  
20  
30  
V
40  
50  
60  
70  
80  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB3307ZGPbF  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
τ
J τJ  
τ
τ
Cτ  
0.1164 0.000088  
0.3009 0.001312  
0.2313 0.009191  
0.02  
0.01  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
Ci= τi/Ri  
/
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
0.01  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle =  
Single Pulse  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
150  
125  
100  
75  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1.0% Duty Cycle  
= 75A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
50  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
25  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB3307ZGPbF  
20  
15  
10  
5
4.5  
4.0  
3.5  
3.0  
2.5  
I = 48A  
F
V
= 64V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
2.0  
1.5  
1.0  
0.5  
D
D
D
D
0
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150175 200  
di /dt (A/µs)  
T , Temperature ( °C )  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
20  
420  
I = 72A  
I = 48A  
F
F
V
= 64V  
V
= 64V  
R
R
340  
260  
180  
100  
20  
T = 25°C  
T = 25°C  
J
J
15  
10  
5
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
420  
I = 72A  
F
V
= 64V  
R
340  
260  
180  
100  
20  
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB3307ZGPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB3307ZGPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.01/2009  
www.irf.com  
8

相关型号:

IRFB3307ZPBF

HEXFET Power MOSFET
INFINEON

IRFB33N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.056ohm, Id=33A)
INFINEON

IRFB33N15DPBF

High frequency DC-DC converters
INFINEON

IRFB3407ZPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRFB3507

HEXFET Power MOSFET
INFINEON

IRFB3507PBF

HEXFET㈢Power MOSFET
INFINEON

IRFB3607GPBF

Power Field-Effect Transistor, 80A I(D), 75V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN FREE AND LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRFB3607PBF

HEXFET Power MOSFET
INFINEON

IRFB3806

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.
INFINEON

IRFB3806PBF

HEXFETPower MOSFET
INFINEON

IRFB38N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.054ohm, Id=44A)
INFINEON

IRFB38N20DPBF

HEXFET Power MOSFET
INFINEON