IRFB3507 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFB3507
型号: IRFB3507
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96903A  
IRFB3507  
IRFS3507  
IRFSL3507  
HEXFET® Power MOSFET  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
75V  
7.0m  
8.8m  
:
:
G
Benefits  
ID  
97A  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
G D S  
G D S  
G D S  
D2Pak  
IRFS3507  
TO-262  
IRFSL3507  
TO-220AB  
IRFB3507  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current d  
Max.  
97c  
Units  
A
69c  
390  
PD @TC = 25°C  
190  
W
Maximum Power Dissipation  
Linear Derating Factor  
1.3  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
5.0  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
280  
mJ  
A
Avalanche Currentꢀc  
IAR  
See Fig. 14, 15, 16a, 16b  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.77  
–––  
62  
Units  
RθJC  
Junction-to-Case k  
RθCS  
RθJA  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 k  
2
–––  
40  
Junction-to-Ambient (PCB Mount) , D Pak  
jk  
www.irf.com  
1
11/04/04  
IRFB3507/IRFS3507/IRFSL3507  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.070 ––– V/°C Reference to 25°C, ID = 1mAd  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
7.0  
8.8  
4.0  
20  
VGS = 10V, ID = 58A g  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 100µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
VDS = 75V, VGS = 0V  
––– ––– 250  
––– ––– 200  
––– ––– -200  
V
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Input Resistance  
nA VGS = 20V  
GS = -20V  
f = 1MHz, open drain  
V
RG  
–––  
1.3  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 58A  
86  
––– –––  
S
–––  
–––  
–––  
–––  
–––  
–––  
–––  
88  
24  
36  
20  
81  
52  
49  
130  
–––  
–––  
–––  
–––  
–––  
–––  
nC ID = 58A  
VDS = 60V  
VGS = 10V g  
ns VDD = 48V  
ID = 58A  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
Qgd  
td(on)  
tr  
td(off)  
Turn-Off Delay Time  
Fall Time  
RG = 5.6Ω  
VGS = 10V g  
tf  
Ciss  
Input Capacitance  
––– 3540 –––  
––– 340 –––  
––– 210 –––  
––– 460 –––  
––– 520 –––  
pF VGS = 0V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 50V  
Crss  
ƒ = 1.0MHz  
Coss eff. (ER)  
V
GS = 0V, VDS = 0V to 60V i, See Fig.11  
GS = 0V, VDS = 0V to 60V h, See Fig. 5  
Effective Output Capacitance (Energy Related)  
Coss eff. (TR)  
V
Effective Output Capacitance (Time Related)  
h
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
97  
c
(Body Diode)  
Pulsed Source Current  
(Body Diode)ꢀd  
showing the  
integral reverse  
G
ISM  
––– ––– 390  
A
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
56  
V
TJ = 25°C, IS = 58A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
–––  
–––  
–––  
37  
45  
32  
51  
1.7  
ns  
IF = 58A  
di/dt = 100A/µs g  
68  
Qrr  
Reverse Recovery Charge  
48  
nC  
77  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.17mH,  
RG = 25, IAS = 58A, VGS =10V. Part not recommended for use  
above this value.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
„ ISD 58A, di/dt 390A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRFB3507/IRFS3507/IRFSL3507  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
100  
10  
1
BOTTOM  
BOTTOM  
4.5V  
4.5V  
1
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 97A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10  
-60 -40 -20  
T
0
20 40 60 80 100120140160180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
12.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 58A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
V
V
= 60V  
= 38V  
= 15V  
DS  
DS  
DS  
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20  
40  
60  
80  
100  
V
Q
Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB3507/IRFS3507/IRFSL3507  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100  
10  
1
T
= 175°C  
100µsec  
1msec  
J
10msec  
DC  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
V
= 0V  
GS  
0.1  
0.01  
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
95  
90  
85  
80  
75  
70  
100  
Limited By Package  
80  
60  
40  
20  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Temperature ( °C )  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
T
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1200  
I
D
TOP  
8.9A  
12A  
BOTTOM 58A  
1000  
800  
600  
400  
200  
0
0
10 20 30 40 50 60 70 80  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB3507/IRFS3507/IRFSL3507  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.2963 0.000504  
τ
J τJ  
τ
τ
Cτ  
0.02  
0.01  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.01  
0.001  
0.0001  
0.4738 0.013890  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
0.01  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 58A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB3507/IRFS3507/IRFSL3507  
4.5  
4.0  
3.5  
3.0  
14  
12  
10  
8
I
I
I
I
= 100µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
2.5  
2.0  
1.5  
1.0  
6
4
I
= 19A  
= 64V  
F
V
R
T
= 25°C _____  
= 125°C ----------  
2
J
T
J
0
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
J
di /dt (A/µs)  
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
14  
350  
300  
250  
200  
150  
100  
50  
12  
10  
8
6
4
I
= 19A  
= 64V  
I
= 39A  
= 64V  
F
F
V
T
V
R
R
= 25°C _____  
= 125°C ----------  
T
= 25°C _____  
= 125°C ----------  
2
J
J
T
T
J
J
0
0
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/µs)  
f
di /dt (A/µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
300  
250  
200  
150  
100  
50  
I
= 39A  
= 64V  
F
V
T
R
= 25°C _____  
= 125°C ----------  
J
T
J
0
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB3507/IRFS3507/IRFSL3507  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
D.U.T  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB3507/IRFS3507/IRFSL3507  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
Note: "P" in assembly line  
position indicates "Lead-Free"  
TO-220AB packages are not recommended for Surface Mount Application.  
8
www.irf.com  
IRFB3507/IRFS3507/IRFSL3507  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
IGBT  
1- GATE  
2- COLLECTOR  
3- EMITTER  
4- COLLECTOR  
TO-262 Part Marking Information  
OR  
www.irf.com  
9
IRFB3507/IRFS3507/IRFSL3507  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
OR  
10  
www.irf.com  
IRFB3507/IRFS3507/IRFSL3507  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 11/04  
www.irf.com  
11  

相关型号:

IRFB3507PBF

HEXFET㈢Power MOSFET
INFINEON

IRFB3607GPBF

Power Field-Effect Transistor, 80A I(D), 75V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN FREE AND LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRFB3607PBF

HEXFET Power MOSFET
INFINEON

IRFB3806

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.
INFINEON

IRFB3806PBF

HEXFETPower MOSFET
INFINEON

IRFB38N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.054ohm, Id=44A)
INFINEON

IRFB38N20DPBF

HEXFET Power MOSFET
INFINEON

IRFB4019PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB4020

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4020PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB4103PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB4110

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON