IRFB3607GPBF [INFINEON]

Power Field-Effect Transistor, 80A I(D), 75V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN FREE AND LEAD FREE, PLASTIC PACKAGE-3;
IRFB3607GPBF
型号: IRFB3607GPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 80A I(D), 75V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN FREE AND LEAD FREE, PLASTIC PACKAGE-3

局域网 开关 脉冲 晶体管
文件: 总8页 (文件大小:285K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96329  
IRFB3607GPbF  
Applications  
l High Efficiency Synchronous Rectification in  
HEXFET® Power MOSFET  
SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
75V  
RDS(on) typ.  
max.  
ID  
7.34m  
9.0m  
80A  
G
Benefits  
l Improved Gate, Avalanche and Dynamic  
dv/dt Ruggedness  
D
l Fully Characterized Capacitance and  
Avalanche SOA  
l Enhanced body diode dV/dt and dI/dt  
Capability  
l Lead-Free  
S
D
G
l Halogen-Free  
TO-220AB  
IRFB3607GPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
80  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
56  
A
310  
PD @TC = 25°C  
W
140  
Maximum Power Dissipation  
Linear Derating Factor  
0.96  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
27  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
120  
46  
mJ  
A
Avalanche Current  
IAR  
Repetitive Avalanche Energy  
EAR  
mJ  
14  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
Units  
RθJC  
Junction-to-Case  
1.045  
–––  
62  
RθCS  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface, TO-220  
Junction-to-Ambient, TO-220  
www.irf.com  
1
08/12/10  
IRFB3607GPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.096 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
––– 7.34 9.0  
VGS = 10V, ID = 46A  
mΩ  
VGS(th)  
2.0  
–––  
4.0  
20  
V
VDS = VGS, ID = 100µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA VDS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
VGS = -20V  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 46A  
nC ID = 46A  
DS = 38V  
VGS = 10V  
ID = 46A, VDS =0V, VGS = 10V  
115 ––– –––  
S
–––  
–––  
–––  
–––  
56  
13  
16  
40  
84  
Qgs  
Qgd  
Qsync  
Gate-to-Source Charge  
–––  
–––  
–––  
V
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
RG(int)  
td(on)  
tr  
Internal Gate Resistance  
Turn-On Delay Time  
Rise Time  
––– 0.55 –––  
––– 16 –––  
––– 110 –––  
ns VDD = 49V  
ID = 46A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
43  
96  
–––  
–––  
RG = 6.8Ω  
VGS = 10V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 3070 –––  
––– 280 –––  
––– 130 –––  
––– 380 –––  
––– 610 –––  
pF VGS = 0V  
VDS = 50V  
ƒ = 1.0MHz  
Coss eff. (ER)  
VGS = 0V, VDS = 0V to 60V  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 60V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
Continuous Source Current  
––– –––  
A
D
S
80  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 310  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
50  
V
TJ = 25°C, IS = 46A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
–––  
–––  
–––  
33  
39  
32  
47  
1.9  
ns  
IF = 46A  
di/dt = 100A/µs  
59  
Qrr  
Reverse Recovery Charge  
48  
nC  
A
71  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
„ ISD 46A, di/dt 1920A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calculated continuous current based on maximum allowable junction  
temperature. Note that current limitations arising from heating of the  
device leads may occur with some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
as Coss while VDS is rising from 0 to 80% VDSS  
.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.12mH  
ˆ Rθ is measured at TJ approximately 90°C.  
RG = 25, IAS = 46A, VGS =10V. Part not recommended for use  
above this value.  
2
www.irf.com  
IRFB3607GPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 80A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
100000  
10000  
1000  
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 46A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
C
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
gd  
V
V
= 24V  
= 15V  
DS  
DS  
C
= C + C  
ds gd  
oss  
C
C
iss  
oss  
C
rss  
100  
0
10  
Q
20  
30  
40  
50  
60  
1
10  
, Drain-to-Source Voltage (V)  
100  
, Total Gate Charge (nC)  
V
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB3607GPbF  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100  
100µsec  
T
= 175°C  
J
1msec  
10  
1
T
= 25°C  
J
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
DC  
GS  
1
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
100  
95  
90  
85  
80  
75  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
Id = 5mA  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
1.20  
500  
I
D
450  
400  
350  
300  
250  
200  
150  
100  
50  
TOP  
5.6A  
11A  
BOTTOM 46A  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0
-10  
0
10 20 30 40 50 60 70 80  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB3607GPbF  
10.00  
1.00  
0.10  
0.01  
0.00  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.01109 0.000003  
0.26925 0.000130  
0.49731 0.001301  
0.26766 0.008693  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
0.02  
0.01  
τ
τ
2 τ2  
3τ3  
4τ4  
Notes:  
SINGLE PULSE  
( THERMAL RESPONSE )  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
∆Τ  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
150  
125  
100  
75  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1.0% Duty Cycle  
= 46A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
50  
tav = Average time in avalanche.  
25  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB3607GPbF  
4.5  
4.0  
3.5  
3.0  
20  
15  
10  
5
I = 31A  
F
V
= 64V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
I
= 100µA  
= 250µA  
= 1.0mA  
= 1.0A  
2.5  
2.0  
1.5  
1.0  
D
D
D
D
0
-75 -50 -25  
0
25 50 75 100125 150175 200  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/µs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
560  
20  
I = 46A  
I = 31A  
F
F
480  
400  
320  
240  
160  
80  
V
= 64V  
V
= 64V  
R
R
T = 25°C  
T = 25°C  
J
J
15  
10  
5
T = 125°C  
J
T = 125°C  
J
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
560  
I = 46A  
F
V
480  
400  
320  
240  
160  
80  
= 64V  
R
T = 25°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB3607GPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB3607GPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRFB4310GPBF  
PART NUMBER  
DAT E CODE:  
INTERNATIONAL  
RECTIFIER  
LOGO  
Note: "G" suffix in part number  
indicates "Halogen - F ree"  
Y= LAST DIGIT OF  
CAL E NDAR YE AR  
Note: "P" in assembly lineposition  
indicates "Lead - F ree"  
ASSEMBLY  
LOT CODE  
WW= WORK WE E K  
X= FACTORY CODE  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 08/2010  
8
www.irf.com  

相关型号:

IRFB3607PBF

HEXFET Power MOSFET
INFINEON

IRFB3806

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.
INFINEON

IRFB3806PBF

HEXFETPower MOSFET
INFINEON

IRFB38N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.054ohm, Id=44A)
INFINEON

IRFB38N20DPBF

HEXFET Power MOSFET
INFINEON

IRFB4019PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB4020

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4020PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB4103PBF

DIGITAL AUDIO MOSFET
INFINEON

IRFB4110

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4110GPBF

HEXFET Power MOSFET
INFINEON

IRFB4110PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON