IRFB3307ZPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFB3307ZPBF
型号: IRFB3307ZPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:836K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97214B  
IRFB3307ZPbF  
IRFS3307ZPbF  
IRFSL3307ZPbF  
Applications  
l High Efficiency Synchronous Rectification in  
SMPS  
HEXFET® Power MOSFET  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
75V  
4.6m  
5.8m  
120A  
:
:
c
G
Benefits  
75A  
l Improved Gate, Avalanche and Dynamic  
dv/dt Ruggedness  
l Fully Characterized Capacitance and  
Avalanche SOA  
D
D
D
l Enhanced body diode dV/dt and dI/dt  
Capability  
S
S
D
S
D
G
G
G
D2Pak  
TO-262  
TO-220AB  
IRFB3307ZPbF  
IRFS3307ZPbF  
IRFSL3307ZPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
120c  
88c  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current d  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
A
75  
480  
PD @TC = 25°C  
230  
W
Maximum Power Dissipation  
1.5  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
6.7  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
140  
75  
mJ  
A
Avalanche Currentꢀc  
IAR  
Repetitive Avalanche Energy g  
EAR  
23  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.65  
–––  
62  
Units  
RθJC  
Junction-to-Case k  
RθCS  
RθJA  
RθJA  
0.50  
–––  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 k  
Junction-to-Ambient (PCB Mount) , D2Pak jk  
40  
www.irf.com  
1
05/31/07  
IRFB/S/SL3307ZPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.094 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
–––  
4.6  
5.8  
4.0  
VGS = 10V, ID = 75A g  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 150µA  
RG(int)  
IDSS  
Internal Gate Resistance  
Drain-to-Source Leakage Current  
0.70 –––  
20  
––– –––  
µA VDS = 75V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
V
V
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
GS = 20V  
GS = -20V  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
320 ––– –––  
Conditions  
VDS = 50V, ID = 75A  
S
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
79  
19  
24  
55  
15  
64  
38  
65  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
nC ID = 75A  
VDS = 38V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Qgd  
VGS = 10V g  
Qsync  
ID = 75A, VDS =0V, VGS = 10V  
td(on)  
ns VDD = 49V  
ID = 75A  
tr  
Rise Time  
td(off)  
Turn-Off Delay Time  
RG = 2.6Ω  
VGS = 10V g  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 4750 –––  
––– 420 –––  
––– 190 –––  
––– 440 –––  
––– 410 –––  
pF VGS = 0V  
Coss  
Output Capacitance  
V
DS = 50V  
ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 60V j  
Crss  
Reverse Transfer Capacitance  
Coss eff. (ER)  
Coss eff. (TR)  
V
Effective Output Capacitance (Energy Related)  
i
VGS = 0V, VDS = 0V to 60V h  
Effective Output Capacitance (Time Related)  
h
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
120  
c
(Body Diode)  
showing the  
integral reverse  
G
ISM  
Pulsed Source Current  
(Body Diode)ꢀdi  
Diode Forward Voltage  
Reverse Recovery Time  
––– ––– 480  
p-n junction diode.  
TJ = 25°C, IS = 75A, VGS = 0V g  
VSD  
trr  
––– –––  
1.3  
50  
V
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
–––  
–––  
–––  
33  
39  
42  
56  
2.2  
ns  
IF = 75A  
59  
di/dt = 100A/µs g  
Qrr  
Reverse Recovery Charge  
63  
nC  
84  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.050mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
„ ISD 75A, di/dt 1570A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRFB/S/SL3307ZPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 72A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 72A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
V
V
V
= 60V  
= 38V  
= 15V  
DS  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
10 20 30 40 50 60 70 80 90  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
G
V
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB/S/SL3307ZPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
T
= 25°C  
J
1msec  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
, Source-to-Drain Voltage (V)  
V
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
120  
100  
95  
90  
85  
80  
75  
70  
65  
Id = 5mA  
Limited By Package  
100  
80  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
1.2  
600  
I
D
TOP  
15A  
26A  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
500  
400  
300  
200  
100  
0
BOTTOM 75A  
20  
30  
V
40  
50  
60  
70  
80  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Drain-to-Source Voltage (V)  
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
4
www.irf.com  
IRFB/S/SL3307ZPbF  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.1164 0.000088  
τ
JτJ  
τ
τ
Cτ  
0.02  
0.01  
τ
1τ1  
τ
2 τ2  
3τ3  
0.3009 0.001312  
0.2313 0.009191  
0.01  
Ci= τi/Ri  
τ /  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
0.01  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle =  
Single Pulse  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
150  
125  
100  
75  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1.0% Duty Cycle  
= 75A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
50  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
25  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB/S/SL3307ZPbF  
4.5  
4.0  
3.5  
3.0  
2.5  
20  
15  
10  
5
I
= 48A  
= 64V  
F
V
R
T = 25°C  
J
T = 125°C  
J
I
I
I
I
= 150µA  
= 250µA  
= 1.0mA  
= 1.0A  
2.0  
1.5  
1.0  
0.5  
D
D
D
D
0
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/µs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
20  
420  
I = 72A  
I = 48A  
F
F
V
= 64V  
V
= 64V  
R
R
340  
260  
180  
100  
20  
T = 25°C  
T = 25°C  
J
J
15  
10  
5
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
420  
I
= 72A  
= 64V  
F
V
R
340  
260  
180  
100  
20  
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB/S/SL3307ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
www.irf.com  
7
IRFB/S/SL3307ZPbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
Note: "P" in assembly line  
position indicates "Lead-Free"  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
8
www.irf.com  
IRFB/S/SL3307ZPbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
25  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
www.irf.com  
9
IRFB/S/SL3307ZPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
25  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
10  
www.irf.com  
IRFB/S/SL3307ZPbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 05/07  
www.irf.com  
11  

相关型号:

IRFB33N15D

Power MOSFET(Vdss=150V, Rds(on)max=0.056ohm, Id=33A)
INFINEON

IRFB33N15DPBF

High frequency DC-DC converters
INFINEON

IRFB3407ZPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRFB3507

HEXFET Power MOSFET
INFINEON

IRFB3507PBF

HEXFET㈢Power MOSFET
INFINEON

IRFB3607GPBF

Power Field-Effect Transistor, 80A I(D), 75V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, HALOGEN FREE AND LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRFB3607PBF

HEXFET Power MOSFET
INFINEON

IRFB3806

The IR MOSFET™ family of power MOSFETs utilizes proven silicon processes offering designers a wide portfolio of devices to support various applications such as DC motors, inverters, SMPS, lighting, load switches as well as battery powered applications. The devices are available in a variety of surface mount and through-hole packages with industry standard footprints for ease of design. The optimized gate drive options enables designers the flexibility of selecting super, logic or normal level drives.
INFINEON

IRFB3806PBF

HEXFETPower MOSFET
INFINEON

IRFB38N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.054ohm, Id=44A)
INFINEON

IRFB38N20DPBF

HEXFET Power MOSFET
INFINEON

IRFB4019PBF

DIGITAL AUDIO MOSFET
INFINEON