IRFH7440TRPBF [INFINEON]

HEXFETPower MOSFET;
IRFH7440TRPBF
型号: IRFH7440TRPBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET

文件: 总11页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRFH7440PbF  
HEXFET® Power MOSFET  
Applications  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l PWM Inverterized topologies  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Electronic ballast applications  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
VDSS  
RDS(on) typ.  
max.  
40V  
1.8m  
2.4m  
159A  
ID (Silicon Limited)  
ID  
85A  
(Package Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l RoHS Compliant containing no Lead, no Bromide,  
and no Halogen  
PQFN 5X6 mm  
Base Part Number  
Package Type  
Standard Pack  
Form  
Tape and Reel  
Tape and Reel  
Orderable Part Number  
Quantity  
4000  
IRFH7440PBF  
PQFN 5mm x 6mm  
PQFN 5mm x 6mm  
IRFH7440TRPBF  
IRFH7440TR2PBF  
400  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
200  
150  
100  
50  
I
= 50A  
D
Limited By Package  
T
= 125°C  
J
T = 25°C  
J
0
4
6
8
10  
12 14 16  
18 20  
25  
50  
T
75  
100  
125  
150  
, Case Temperature (°C)  
C
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com © 2012 International Rectifier  
October 11, 2012  
1
IRFH7440PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
159  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
101  
A
85  
624  
104  
PD @TC = 25°C  
Maximum Power Dissipation  
W
0.83  
Linear Derating Factor  
W/°C  
V
± 20  
VGS  
Gate-to-Source Voltage  
3.0  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 150  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
121  
273  
mJ  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
–––  
–––  
Max.  
1.2  
31  
Units  
Junction-to-Case  
RJC (Bottom)  
Junction-to-Case  
RJC (Top)  
°C/W  
Junction-to-Ambient  
Junction-to-Ambient  
35  
R  
JA  
22  
RJA (<10s)  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
–––  
–––  
V
VGS = 0V, ID = 250μA  
V/°C Reference to 25°C, ID = 1.0mA  
mGS = 10V, ID = 50A  
mVGS = 6.0V, ID = 25A  
VDS = VGS, ID = 100μA  
μA VDS = 40V, VGS = 0V  
V(BR)DSS/TJ  
RDS(on)  
––– 0.031 –––  
–––  
–––  
2.2  
1.8  
2.7  
2.4  
–––  
3.9  
V
VGS(th)  
IDSS  
Gate Threshold Voltage  
–––  
–––  
–––  
–––  
–––  
2.6  
V
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
1.0  
150  
100  
-100  
–––  
V
V
DS = 40V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
Notes:  
 Calculated continuous current based on maximum allowable junction  
temperature. Current is limited to 85A by source bond technology.  
Note that current limitations arising from heating of the  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
device leads may occur with some lead mounting arrangements.  
(Refer to AN-1140)  
.
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ˆ When mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of  
FR-4 material.  
‰ Ris measured at TJ approximately 90°C.  
Š This value determined from sample failure population,  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.097mH  
RG = 50, IAS = 50A, VGS =10V.  
„ ISD 50A, di/dt 1126A/μs, VDD V(BR)DSS, TJ 150°C.  
starting TJ = 25°C, L= 0.097mH, RG = 50, IAS = 50A, VGS =10V.  
www.irf.com © 2012 International Rectifier  
October 11, 2012  
2
IRFH7440PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
gfs  
Qg  
Forward Transconductance  
149  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
138  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
VDS = 10V, ID = 50A  
Total Gate Charge  
92  
nC ID = 50A  
VDS =20V  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
22  
29  
V
GS = 10V  
ID = 50A, VDS =0V, VGS = 10V  
ns VDD = 20V  
Qsync  
td(on)  
tr  
63  
12  
Rise Time  
45  
ID = 30A  
RG = 2.7  
VGS = 10V  
td(off)  
tf  
Turn-Off Delay Time  
53  
Fall Time  
42  
Ciss  
Coss  
Crss  
Input Capacitance  
4574  
700  
466  
863  
1229  
pF VGS = 0V  
VDS = 25V  
Output Capacitance  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0 MHz  
C
C
oss eff. (ER)  
oss eff. (TR)  
V
GS = 0V, VDS = 0V to 32V  
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
showing the  
D
S
IS  
Continuous Source Current  
–––  
–––  
85  
A
A
V
(Body Diode)  
G
ISM  
Pulsed Source Current  
–––  
–––  
745  
integral reverse  
(Body Diode)  
p-n junction diode.  
TJ = 25°C, IS = 50A, VGS = 0V  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
–––  
–––  
0.9  
25  
27  
16  
17  
1.2  
1.3  
–––  
–––  
–––  
–––  
–––  
ns TJ = 25°C  
TJ = 125°C  
VR = 34V,  
IF = 50A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC TJ = 25°C  
TJ = 125°C  
IRRM  
A
TJ = 25°C  
3
www.irf.com © 2012 International Rectifier  
October 11, 2012  
IRFH7440PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
60μs PULSE WIDTH  
Tj = 150°C  
4.5V  
V
60μs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
1000  
100  
10  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 50A  
D
V
= 10V  
GS  
T
= 150°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60μs PULSE WIDTH  
1.0  
3
4
5
6
7
8
9
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 50A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 32V  
= 20V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
C
oss  
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20  
40  
60  
80  
100  
120  
V
Q
, Total Gate Charge (nC)  
G
DS  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2012 International Rectifier  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
October 11, 2012  
4
IRFH7440PbF  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 150°C  
J
100μsec  
1msec  
Limited by  
package  
T
= 25°C  
J
10msec  
DC  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1.0  
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
50  
48  
46  
44  
42  
40  
Id = 1.0mA  
-5  
0
5
10 15 20 25 30 35 40  
Drain-to-Source Voltage (V)  
-60 -40 -20  
0
20 40 60 80 100 120140 160  
T , Temperature ( °C )  
J
V
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
40  
V
V
V
V
V
= 5.0V  
GS  
= 6.0V  
= 7.0V  
= 8.0V  
=10V  
GS  
GS  
GS  
GS  
30  
20  
10  
0
0
100  
200  
300  
400  
500  
I , Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
www.irf.com © 2012 International Rectifier  
5
October 11, 2012  
IRFH7440PbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 125°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 125°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
140  
120  
100  
80  
TOP  
BOTTOM 1.0% Duty Cycle  
= 50A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
60  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
40  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
20  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
0
25  
50  
75  
100  
125  
150  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 16. Maximum Avalanche Energy vs. Temperature  
www.irf.com © 2012 International Rectifier  
October 11, 2012  
6
IRFH7440PbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
10  
8
I = 30A  
F
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
6
I
I
I
= 100μA  
= 1.0mA  
= 1.0A  
D
D
D
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150  
0
200  
400  
600  
800  
1000  
T
, Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
200  
10  
I = 30A  
F
I = 50A  
F
V
= 34V  
V
= 34V  
R
R
8
6
4
2
0
T = 25°C  
T = 25°C  
J
J
150  
100  
50  
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
200  
I = 50A  
F
V
= 34V  
R
T = 25°C  
J
150  
100  
50  
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
www.irf.com © 2012 International Rectifier  
7
October 11, 2012  
IRFH7440PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width µs  
Duty Factor   
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50K  
.2F  
12V  
.3F  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
www.irf.com © 2012 International Rectifier  
Fig 24b. Gate Charge Waveform  
October 11, 2012  
8
IRFH7440PbF  
PQFN 5x6 Outline "E" Package Details  
For more information on board mounting, including footprint and stencil recommendation, please refer to application note  
AN-1136:http://www.irf.com/technical-info/appnotes/an-1136.pdf  
For more information on package inspection techniques, please refer to application note AN-1154:  
http://www.irf.com/technical-info/appnotes/an-1154.pdf  
PQFN 5x6 Outline "E" Part Marking  
INTERNATIONAL  
RECTIFIER LOGO  
DATE CODE  
PART NUMBER  
XXXX  
XYWWX  
XXXXX  
(“4 or 5 digits”)  
ASSEMBLY  
SITE CODE  
(Per SCOP 200-002)  
MARKING CODE  
(Per Marking Spec)  
PIN 1  
IDENTIFIER  
LOT CODE  
(Eng Mode - Min last 4 digits of EATI#)  
(Prod Mode - 4 digits of SPN code)  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
9
www.irf.com © 2012 International Rectifier  
October 11, 2012  
IRFH7440PbF  
PQFN 5x6 Outline "E" Tape and Reel  
NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts.  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
TR1 OPTION (QTY 400)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MAX  
178.5  
21.5  
13.8  
2.3  
IMPERIAL  
MIN  
MIN  
MAX  
7.028  
0.846  
0.543  
0.091  
2.598  
CODE  
MIN  
MAX  
13.011 177.5  
MIN  
A
B
C
D
E
F
12.972  
0.823  
0.504  
0.067  
3.819  
6.988  
0.823  
0.520  
0.075  
2.350  
329.5 330.5  
20.9  
12.8  
1.7  
0.846  
0.532  
0.091  
3.898  
20.9  
13.2  
1.9  
21.5  
13.5  
2.3  
97  
99  
65  
66  
Ref  
13  
17.4  
14.5  
Ref  
13  
12  
G
0.512  
0.512  
0.571  
0.571  
14.5  
www.irf.com © 2012 International Rectifier  
October 11, 2012  
10  
IRFH7440PbF  
Qualification information†  
Industrial  
(per JEDEC JE S D47F guidelines)††  
Qualification level  
MS L1  
Moisture Sensitivity Level  
RoHS compliant  
PQFN 5mm x 6mm  
(per JE DE C J-S TD-020D††  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Applicable version of JEDEC standard at the time of product release.  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.  
11  
www.irf.com © 2012 International Rectifier  
October 11, 2012  

相关型号:

IRFH7446

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFH7446PBF

HEXFETPower MOSFET
INFINEON

IRFH7446TR2PBF

HEXFETPower MOSFET
INFINEON

IRFH7446TRPBF

HEXFETPower MOSFET
INFINEON

IRFH7545

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFH7545PBF

Brushed Motor drive applications
INFINEON

IRFH7545PBF_15

Brushed Motor drive applications
INFINEON

IRFH7545TRPBF

Power Field-Effect Transistor
INFINEON

IRFH7787PBF

Brushed motor drive applications
INFINEON

IRFH7787PBF_15

Brushed motor drive applications
INFINEON

IRFH7882PBF

Optimized for Secondary Side Synchronous Rectification
INFINEON

IRFH7882PBF_15

Optimized for Secondary Side Synchronous Rectification
INFINEON