IRFP4768 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRFP4768
型号: IRFP4768
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总9页 (文件大小:470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFP4768PbF  
HEXFET® Power MOSFET  
Application  
High Efficiency Synchronous Rectification in SMPS  
Uninterruptible Power Supply  
High Speed Power Switching  
VDSS  
RDS(on) typ.  
max  
250V  
14.5m  
17.5m  
93A  
Hard Switched and High Frequency Circuits  
ID  
D
Benefits  
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness  
Fully Characterized Capacitance and Avalanche SOA  
Enhanced body diode dV/dt and dI/dt Capability  
Lead-Free, RoHS Compliant  
S
D
G
TO-247AC  
G
D
S
Gate  
Drain  
Source  
Standard Pack  
Form  
Base part number Package Type  
Orderable Part Number  
Quantity  
IRFP4768PbF  
TO-247AC  
Tube  
25  
IRFP4768PbF  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
93  
66  
370  
520  
3.4  
± 20  
24  
A
PD @TC = 25°C  
Maximum Power Dissipation  
Linear Derating Factor  
W
W/°C  
V
VGS  
Gate-to-Source Voltage  
dv/dt  
Peak Diode Recovery dv/dt  
V/ns  
TJ  
TSTG  
Operating Junction and  
-55 to + 175  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
Mounting Torque, 6-32 or M3 Screw  
10 lbf·in (1.1 N·m)  
Avalanche Characteristics  
EAS (Thermally limited)  
770  
Single Pulse Avalanche Energy   
mJ  
A
IAR  
Avalanche Current   
See Fig. 14, 15, 22a, 22b  
EAR  
Repetitive Avalanche Energy   
mJ  
Thermal Resistance  
Parameter  
Typ.  
–––  
0.24  
–––  
Max.  
0.29  
–––  
40  
Units  
Junction-to-Case   
RJC  
RCS  
RJA  
Case-to-Sink, Flat Greased Surface  
°C/W  
Junction-to-Ambient   
1
2016-12-12  
IRFP4768PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
250 ––– –––  
––– 0.20 ––– V/°C Reference to 25°C, ID = 5mA   
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
––– 14.5 17.5  
3.0 ––– 5.0  
V
GS = 10V, ID = 56A   
m  
V
VGS(th)  
VDS = VGS, ID = 250µA  
––– –––  
20  
V
V
V
V
DS = 250 V, VGS = 0V  
DS = 250V,VGS = 0V,TJ =125°C  
GS = 20V  
IDSS  
Drain-to-Source Leakage Current  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
––– 0.71 –––  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Resistance  
IGSS  
RG  
nA  
GS = -20V  
  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
gfs  
Qg  
Forward Transconductance  
Total Gate Charge  
Gate-to-Source Charge  
Gate-to-Drain Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
Turn-Off Delay Time  
Fall Time  
Input Capacitance  
100 ––– –––  
––– 180 270  
S
VDS = 50V, ID =56A  
ID = 56A  
VDS = 125V  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
td(off)  
tf  
Ciss  
Coss  
–––  
–––  
52  
72  
–––  
–––  
nC  
VGS = 10V   
––– 108 –––  
––– 36 –––  
––– 160 –––  
––– 57 –––  
––– 110 –––  
––– 10880 –––  
––– 700 –––  
VDD = 163V  
ID = 56A  
RG= 1.0  
VGS = 10V   
VGS = 0V  
ns  
Output Capacitance  
VDS = 50V  
Crss  
Reverse Transfer Capacitance  
––– 210 –––  
ƒ = 1.0MHz, See Fig. 5  
pF  
Coss eff.(ER)  
Coss eff.(TR)  
Diode Characteristics  
Parameter  
Effective Output Capacitance (Energy Related) ––– 510 –––  
VGS = 0V, VDS = 0V to 200V  
VGS = 0V, VDS = 0V to 200V  
Output Capacitance (Time Related)  
––– 830 –––  
Min. Typ. Max. Units  
Conditions  
D
Continuous Source Current  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
MOSFET symbol  
showing the  
integral reverse  
p-n junction diode.  
IS  
––– –––  
93  
G
A
ISM  
––– ––– 370  
––– ––– 1.3  
S
VSD  
Diode Forward Voltage  
V
TJ = 25°C,IS = 56A,VGS = 0V   
––– 180 –––  
––– 200 –––  
––– 1480 –––  
––– 2260 –––  
TJ = 25°C  
VDD = 200V  
IF = 56A,  
trr  
Reverse Recovery Time  
ns  
TJ = 125°C  
TJ = 25°C di/dt = 100A/µs   
Qrr  
Reverse Recovery Charge  
nC  
A
TJ = 125°C  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
16  
–––  
TJ = 25°C  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
Limited by TJmax starting TJ = 25°C, L = 0.50mH, RG = 25, IAS = 56A, VGS =10V. Part not recommended for  
use above this value.  
ISD 56A, di/dt 950A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS  
.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS  
.
Ris measured at TJ approximately 90°C  
RJCvalue shown is at time zero.  
2
2016-12-12  
IRFP4768PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
4.5V  
0.1  
0.01  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
4.5V  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
I
= 56A  
D
V
= 10V  
GS  
100  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
10  
1
V
DS  
60µs PULSE WIDTH  
0.1  
3
4
5
6
7
8
-60 -40 -20  
T
0
20 40 60 80 100120140160180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
14.0  
100000  
I
= 56A  
V
= 0V,  
f = 1 MHZ  
D
GS  
C
C
C
= C + C , C  
SHORTED  
12.0  
10.0  
8.0  
V
V
V
= 200V  
= 125V  
= 50V  
iss  
gs  
gd  
ds  
DS  
DS  
DS  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
10000  
1000  
100  
C
oss  
6.0  
C
rss  
4.0  
2.0  
0.0  
0
30  
60  
90 120 150 180 210 240  
1
10  
100  
1000  
Q , Total Gate Charge (nC)  
G
V
DS  
, Drain-to-Source Voltage (V)  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
3
2016-12-12  
IRFP4768PbF  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
T
= 175°C  
J
1msec  
T
= 25°C  
J
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
GS  
= 0V  
0.1  
1
0.0  
0.5  
1.0  
1.5  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
320  
100  
Id = 5mA  
80  
60  
40  
20  
0
300  
280  
260  
240  
-60 -40 -20  
0
20 40 60 80 100120140160180  
, Temperature ( °C )  
25  
50  
75  
100  
125  
150  
175  
T
J
T
, Case Temperature (°C)  
C
Fig 10. Drain-to–Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
20.0  
18.0  
16.0  
14.0  
12.0  
10.0  
8.0  
3200  
I
D
2800  
2400  
2000  
1600  
1200  
800  
TOP  
12A  
17A  
BOTTOM 56A  
6.0  
4.0  
2.0  
400  
0.0  
0
-50  
0
50  
100 150 200 250 300  
25  
50  
75  
100  
125  
150  
175  
V
Drain-to-Source Voltage (V)  
DS,  
Starting T , Junction Temperature (°C)  
J
Fig 11. Typical Coss Stored Energy  
Fig 12. Maximum Avalanche Energy vs. Drain Current  
2016-12-12  
4
IRFP4768PbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
Ri (°C/W)  
0.0634  
0.1109  
0.1148  
I (sec)  
0.000278  
0.005836  
0.053606  
0.01  
0.02  
0.01  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs. Pulse  
800  
700  
600  
500  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far  
in excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a,22b.  
TOP  
BOTTOM 1.0% Duty Cycle  
= 56A  
Single Pulse  
I
D
4.  
PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6.  
Iav = Allowable avalanche current.  
7. T=Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Iav = 2T/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
E
AS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
5
2016-12-12  
IRFP4768PbF  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
70  
60  
50  
40  
30  
20  
10  
I
= 37A  
F
V
= 200V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T
, Temperature ( °C )  
di /dt (A/µs)  
J
F
Fig 16. Threshold Voltage vs. Temperature  
Fig 17. Typical Recovery Current vs. dif/dt  
6000  
90  
I
= 37A  
I
= 56A  
F
F
80  
70  
60  
50  
40  
30  
20  
10  
V
= 200V  
V
= 200V  
R
R
5000  
4000  
3000  
2000  
1000  
T = 25°C  
J
T = 125°C  
J
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig 19. Typical Stored Charge vs. dif/dt  
Fig 18. Typical Recovery Current vs. dif/dt  
8000  
I
= 56A  
F
7000  
6000  
5000  
4000  
3000  
2000  
1000  
V
= 200V  
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig 20. Typical Stored Charge vs. dif/dt  
6
2016-12-12  
IRFP4768PbF  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
t
p
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
I
0.01  
t
p
AS  
Fig 22a. Unclamped Inductive Test Circuit  
Fig 22b. Unclamped Inductive Waveforms  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24b. Gate Charge Waveform  
Fig 24a. Gate Charge Test Circuit  
7
2016-12-12  
IRFP4768PbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
Notes: This part marking information applies to devices produced after 02/26/2001  
EXAMPLE: THIS IS AN IRFPE30  
WITH ASSEMBLY  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 5657  
IRFPE30  
135H  
57  
ASSEMBLED ON WW 35, 2001  
IN THE ASSEMBLY LINE "H"  
56  
DATE CODE  
YEAR 1 = 2001  
WEEK 35  
ASSEMBLY  
LOT CODE  
Note: "P" in assembly line position  
indicates "Lead-Free"  
LINE H  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
2016-12-12  
IRFP4768PbF  
Qualification Information  
Qualification Level  
Industrial  
(per JEDEC JESD47F) †  
TO-247AC  
N/A  
Yes  
Moisture Sensitivity Level  
RoHS Compliant  
Applicable version of JEDEC standard at the time of product release.  
Revision History  
Date  
Comments  
 Changed datasheet with Infineon logo-all pages  
 Corrected error on figure 9 on page 4.  
 Added disclaimer on last page.  
12/12/2016  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2015  
All Rights Reserved.  
IMPORTANT NOTICE  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any  
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and  
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third  
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this  
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of  
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of  
customer’s technical departments to evaluate the suitability of the product for the intended application and the  
completeness of the product information given in this document with respect to such application.  
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies office (www.infineon.com).  
WARNINGS  
Due to technical requirements products may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies office.  
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized  
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a  
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  
9
2016-12-12  

相关型号:

IRFP4768PBF

HEXFET Power MOSFET
INFINEON

IRFP4868PBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFP4N100Q

Transistor
IXYS

IRFP7430

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFP7430PBF

Brushed Motor drive applications
INFINEON

IRFP7530

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFP7530PBF

Power Field-Effect Transistor,
INFINEON

IRFP7537

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFP7537PBF

Power Field-Effect Transistor
INFINEON

IRFP7718PBF

Brushed Motor drive applications
INFINEON

IRFP7718PBF_15

Brushed Motor drive applications
INFINEON

IRFP90N20D

Power MOSFET(Vdss=200V, Rds(on)max=0.023ohm, Id=94A)
INFINEON