IRFS4310ZPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFS4310ZPBF
型号: IRFS4310ZPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97115A  
IRFB4310ZPbF  
IRFS4310ZPbF  
IRFSL4310ZPbF  
HEXFET® Power MOSFET  
Applications  
D
VDSS  
RDS(on) typ.  
max.  
100V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
4.8m  
6.0m  
:
:
G
ID  
127A  
c
(Silicon Limited)  
ID  
75A  
S
S
(Package Limited)  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
D
Ruggedness  
D
D
l Fully Characterized Capacitance and Avalanche  
SOA  
S
D
S
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D
D
G
G
G
D2Pak  
IRFS4310ZPbF  
TO-262  
IRFSL4310ZPbF  
TO-220AB  
IRFB4310ZPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
127c  
90c  
Units  
A
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current d  
75  
560  
PD @TC = 25°C  
250  
Maximum Power Dissipation  
W
1.7  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
18  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
130  
mJ  
A
Avalanche Currentꢀc  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy g  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.6  
Units  
RθJC  
Junction-to-Case k  
RθCS  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220 k  
0.50  
–––  
–––  
62  
°C/W  
RθJA  
Junction-to-Ambient (PCB Mount) , D2Pak jk  
RθJA  
–––  
40  
www.irf.com  
1
4/27/07  
IRFB/S/SL4310ZPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.11 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250μA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V
ΔV(BR)DSS/ΔTJ  
RDS(on)  
–––  
2.0  
4.8  
6.0  
4.0  
20  
mΩ VGS = 10V, ID = 75A g  
VDS = VGS, ID = 150μA  
VGS(th)  
–––  
V
IDSS  
Drain-to-Source Leakage Current  
––– –––  
μA VDS = 100V, VGS = 0V  
VDS = 80V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = -20V  
–––  
0.7  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
150 ––– –––  
S
Qg  
––– 120 170  
nC ID = 75A  
VDS =50V  
Qgs  
Gate-to-Source Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
29  
35  
85  
20  
60  
55  
57  
–––  
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
V
GS = 10V g  
ID = 75A, VDS =0V, VGS = 10V  
VDD = 65V  
Qsync  
–––  
–––  
–––  
–––  
–––  
td(on)  
ns  
tr  
Rise Time  
ID = 75A  
td(off)  
Turn-Off Delay Time  
RG = 2.7Ω  
VGS = 10V g  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 6860 –––  
––– 490 –––  
––– 220 –––  
––– 570 –––  
––– 920 –––  
pF VGS = 0V  
VDS = 50V  
Coss  
Output Capacitance  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)h  
ƒ = 1.0MHz, See Fig. 5  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 80V i, See Fig. 11  
VGS = 0V, VDS = 0V to 80V h  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
127c  
D
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 560  
A
S
(Body Diode)ꢀd  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
V
TJ = 25°C, IS = 75A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
–––  
40  
49  
58  
89  
2.5  
ns  
IF = 75A  
di/dt = 100A/μs g  
Qrr  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.047mH  
RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C  
.
.
„ ISD 75A, di/dt 600A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
2
www.irf.com  
IRFB/S/SL4310ZPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
1
0.1  
1
10  
100  
0.1  
1
10  
, Drain-to-Source Voltage (V)  
DS  
100  
V
, Drain-to-Source Voltage (V)  
V
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
1
V
DS  
60μs PULSE WIDTH  
0.1  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12000  
10000  
8000  
6000  
4000  
2000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
I = 75A  
D
GS  
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 80V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 50V  
VDS= 20V  
C
= C + C  
oss  
ds  
gd  
Ciss  
4
Coss  
Crss  
0
0
40  
80  
120  
160  
200  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB/S/SL4310ZPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100  
10  
1
1msec  
100μsec  
T
= 25°C  
J
10msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
DC  
0.1  
0.1  
0.1  
1
10  
100  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
130  
120  
110  
100  
90  
140  
120  
100  
80  
I
= 5mA  
LIMITED BY PACKAGE  
D
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T , Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
600  
I
D
TOP  
11A  
19A  
75A  
500  
400  
300  
200  
100  
0
BOTTOM  
0
20  
40  
60  
80  
100  
25  
50  
75  
100  
125  
150  
175  
V
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFB/S/SL4310ZPbF  
1
D = 0.50  
0.20  
0.10  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
0.05  
R4  
R4  
Ri (°C/W) τι (sec)  
0.018756 0.000373  
0.159425 0.000734  
0.320725 0.005665  
0.101282 0.115865  
τJ  
τC  
0.02  
0.01  
τJ  
τ1  
τ
τ
τ
3 τ3  
τ4  
2τ2  
τ1  
τ4  
0.01  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
140  
120  
100  
80  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
60  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14).  
40  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
20  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB/S/SL4310ZPbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
24  
20  
16  
12  
8
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
ID = 150μA  
I
= 30A  
= 85V  
F
V
R
4
T
= 125°C  
= 25°C  
J
T
J
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
di / dt - (A / μs)  
J
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
600  
500  
400  
300  
200  
24  
20  
16  
12  
8
I
= 30A  
= 85V  
I
= 45A  
= 85V  
F
F
V
T
V
T
R
R
100  
0
4
0
= 125°C  
= 25°C  
= 125°C  
= 25°C  
J
J
T
T
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
di / dt - (A / μs)  
f
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
600  
500  
400  
300  
200  
100  
0
I
= 45A  
F
V
= 85V  
R
T
= 125°C  
= 25°C  
J
J
T
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / μs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB/S/SL4310ZPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
V***  
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
„
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20
GS  
0.01  
Ω
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
10%  
VGS  
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFB/S/SL4310ZPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 0 = 2000  
WE E K 19  
Note: "P" in assembly lineposition  
indicates "Lead- Free"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
8
www.irf.com  
IRFB/S/SL4310ZPbF  
TO-262 Package Outline (Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
ASSEMBLED ON WW 19, 1997  
RECTIFIER  
IN THE ASSEMBLY LINE "C"  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEE K 19  
A = AS S E MB L Y S IT E CODE  
www.irf.com  
9
IRFB/S/SL4310ZPbF  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEEK 02  
ASSEMBLY  
LOT CODE  
LINE L  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
For GB Production  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
LOT CODE  
10  
www.irf.com  
IRFB/S/SL4310ZPbF  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/07  
www.irf.com  
11  

相关型号:

IRFS4310ZTRLPBF

暂无描述
INFINEON

IRFS4310ZTRRPBF

Power Field-Effect Transistor, 120A I(D), 100V, 0.006ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRFS4321-7PPBF

Motion Control Applications
INFINEON

IRFS4321-7PPBF_15

Motion Control Applications
INFINEON

IRFS4321PBF

HEXFET Power MOSFET
INFINEON

IRFS4321TRL7PP

Power Field-Effect Transistor, 86A I(D), 150V, 0.0147ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, D2PAK-7/6
INFINEON

IRFS4321TRLPBF

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRFS4321TRRPBF

Power Field-Effect Transistor, 75A I(D), 150V, 0.015ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRFS433

Power Field-Effect Transistor, 2.8A I(D), 450V, 2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-3PF, 3 PIN
SAMSUNG

IRFS440

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 5.5A I(D) | SOT-186VAR
ETC

IRFS440A

Advanced Powre MOSFET
FAIRCHILD

IRFS440B

500V N-Channel MOSFET
FAIRCHILD