IRG7PH30K10DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRG7PH30K10DPBF
型号: IRG7PH30K10DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 功率控制 栅 局域网 超快软恢复二极管 快速软恢复二极管
文件: 总10页 (文件大小:438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97403  
IRG7PH30K10DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
C
• Low VCE (ON) Trench IGBT Technology  
• Low switching losses  
• 10 µS short circuit SOA  
• SquareRBSOA  
VCES = 1200V  
IC = 16A, TC = 100°C  
• 100% of the parts tested for ILM  

G
tSC 10µs, TJ(max) = 150°C  
• Positive VCE (ON) Temperature co-efficient  
• Ultra fast soft Recovery Co-Pak Diode  
• Tightparameterdistribution  
E
VCE(on) typ. = 2.05V  
n-channel  
• LeadFreePackage  
C
Benefits  
• High Efficiency in a wide range of applications  
• Suitable for a wide range of switching frequencies due to  
Low VCE (ON) and Low Switching losses  
• RuggedtransientPerformanceforincreasedreliability  
• ExcellentCurrentsharinginparalleloperation  
E
C
G
TO-247AC  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
Collector-to-Emitter Voltage  
1200  
V
VCES  
Continuous Collector Current  
Continuous Collector Current  
Nominal Current  
30  
IC @ TC = 25°C  
16  
IC @ TC = 100°C  
9.0  
INOMINAL  
Pulse Collector Current, Vge = 15V  
Clamped Inductive Load Current, Vge = 20V  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
27  
A
ICM  
36  
ILM  
30  
16  
IF @ TC = 25°C  
IF @ TC = 100°C  
36  
IFM  
±30  
V
VGE  
180  
W
PD @ TC = 25°C  
71  
PD @ TC = 100°C  
-55 to +150  
TJ  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
TSTG  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.24  
40  
Max.  
0.70  
1.44  
–––  
Units  
RθJC (IGBT)  
Thermal Resistance Junction-to-Case-(each IGBT)  
Rθ (Diode)  
JC  
Thermal Resistance Junction-to-Case-(each Diode)  
°C/W  
Rθ  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
CS  
Rθ  
JA  
–––  
1
www.irf.com  
08/14/09  
IRG7PH30K10DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 250µA  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Saturation Voltage  
1200  
1.11  
2.05  
2.56  
V
V(BR)CES/TJ  
VCE(on)  
V
GE = 0V, IC = 1mA (25°C-150°C)  
CT6  
V/°C  
IC = 9.0A, VGE = 15V, TJ = 25°C  
IC = 9.0A, VGE = 15V, TJ = 150°C  
VCE = VGE, IC = 400µA  
5,6,7  
2.35  
V
V
9,10,11  
9,10  
VGE(th)  
VGE(th)/TJ  
gfe  
Gate Threshold Voltage  
5.0  
7.5  
V
CE = VGE, IC = 400µA (25°C - 150°C)  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-15  
6.2  
1.0  
400  
2.0  
2.1  
mV/°C  
S
11,12  
VCE = 50V, IC = 9.0A, PW = 80µs  
VGE = 0V, VCE = 1200V  
VGE = 0V, VCE = 1200V, TJ = 150°C  
IF = 9.0A  
ICES  
Collector-to-Emitter Leakage Current  
25  
µA  
VFM  
IGES  
Diode Forward Voltage Drop  
3.0  
V
8
IF = 9.0A, TJ = 150°C  
VGE = ±30V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
24  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 9.0A  
45  
8.7  
20  
68  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
V
V
GE = 15V  
CT1  
13  
nC  
µJ  
ns  
CC = 600V  
30  
IC = 9.0A, VCC = 600V, VGE = 15V  
CT4  
CT4  
530  
380  
910  
14  
760  
600  
1360  
31  
RG = 22 , L = 1.0mH, LS = 150nH, TJ = 25°C  
Energy losses include tail & diode reverse recovery  
IC = 9.0A, VCC = 600V, VGE = 15V  
R
G = 22, L = 1.0mH, LS = 150nH, TJ = 25°C  
24  
41  
td(off)  
tf  
Turn-Off delay time  
Fall time  
110  
38  
130  
56  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 9.0A, VCC = 600V, VGE=15V  
13,15  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
810  
680  
1490  
11  
RG=22, L=1.0mH, LS=150nH, TJ = 150°C  
Energy losses include tail & diode reverse recovery  
IC = 9.0A, VCC = 600V, VGE = 15V  
µJ  
ns  
pF  
WF1, WF2  
14,16  
CT4  
G = 22 , L = 1.0mH, LS = 150nH  
R
23  
td(off)  
tf  
TJ = 150°C  
WF1  
Turn-Off delay time  
Fall time  
130  
260  
1070  
63  
WF2  
Cies  
Coes  
Cres  
VGE = 0V  
23  
Input Capacitance  
V
CC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
26  
f = 1.0Mhz  
TJ = 150°C, IC = 36A  
4
V
CC = 960V, Vp =1200V  
CT2  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
Rg = 22 , VGE = +20V to 0V  
TJ = 150°C, VCC = 600V, Vp =1200V  
Rg = 22, VGE = +15V to 0V  
TJ = 150°C  
22, CT3  
WF4  
10  
µs  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
710  
140  
12  
µJ  
ns  
A
17,18,19  
20,21  
V
CC = 600V, IF = 9.0A  
Irr  
VGE = 15V, Rg = 20 , L =1.0mH, Ls = 150nH  
WF3  
Peak Reverse Recovery Current  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 36µH, RG = 33.  
‚ Pulse width limited by max. junction temperature.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
„ R is measured at TJ of approximately 90°C.  
θ
2
www.irf.com  
IRG7PH30K10DPbF  
30  
25  
20  
15  
10  
5
200  
150  
100  
50  
0
0
25  
50  
75  
100  
(°C)  
125  
150  
0
20 40 60 80 100 120 140 160  
T
C
T
(°C)  
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
CaseTemperature  
Temperature  
100  
100  
10µsec  
100µsec  
10  
1msec  
10  
DC  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.1  
1
1
10  
100  
(V)  
1000  
10000  
10  
100  
1000  
10000  
V
V
(V)  
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 150°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 150°C; VGE = 20V  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
V
= 18V  
V
= 18V  
GE  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRG7PH30K10DPbF  
50  
50  
40  
30  
20  
10  
0
V
= 18V  
40  
30  
20  
10  
0
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
-40°C  
25°C  
150°C  
0
2
4
6
8
10  
0.0  
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
V
(V)  
V
CE  
F
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 150°C; tp = 80µs  
tp = 80µs  
12  
10  
8
12  
10  
8
I
I
I
= 4.5A  
= 9.0A  
= 18A  
I
I
I
= 4.5A  
= 9.0A  
= 18A  
CE  
CE  
CE  
CE  
CE  
CE  
6
4
2
0
6
4
2
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
GE  
V
(V)  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
40  
30  
20  
10  
0
12  
10  
8
I
I
I
= 4.5A  
CE  
CE  
CE  
= 9.0A  
= 18A  
6
T = 25°C  
J
T
= 150°C  
J
4
2
0
4
6
8
10  
12  
14  
16  
5
10  
15  
20  
V
, Gate-to-Emitter Voltage (V)  
GE  
V
(V)  
GE  
Fig. 12 - Typ. Transfer Characteristics  
Fig. 11 - Typical VCE vs. VGE  
VCE = 50V  
TJ = 150°C  
4
www.irf.com  
IRG7PH30K10DPbF  
1000  
100  
10  
2000  
1600  
1200  
800  
400  
0
t
F
td  
E
OFF  
ON  
t
R
E
td  
OFF  
ON  
1
0
5
10  
(A)  
15  
20  
5
10  
15  
20  
I
I
(A)  
C
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L = 1.0mH; VCE = 600V, RG = 22; VGE = 15V  
TJ = 150°C; L = 1.0mH; VCE = 600V, RG = 22; VGE = 15V  
1600  
1000  
t
F
1400  
E
ON  
1200  
1000  
800  
100  
td  
OFF  
t
R
10  
td  
ON  
E
OFF  
600  
400  
1
0
20  
40  
60  
()  
80  
100  
0
20  
40  
60  
()  
80  
100  
R
R
G
G
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V  
TJ = 150°C; L = 1.0mH; VCE = 600V, ICE = 9.0A; VGE = 15V  
18  
18  
R
5.0Ω  
10Ω  
G =  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
R
G =  
R
20Ω  
G =  
R
47Ω  
G =  
6
4
6
8
10 12 14 16 18 20  
(A)  
0
10  
20  
30  
(Ω)  
40  
50  
I
R
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 150°C  
TJ = 150°C  
www.irf.com  
5
IRG7PH30K10DPbF  
18  
3000  
2500  
2000  
1500  
1000  
16  
14  
12  
10  
8
5.0Ω  
18A  
10Ω  
20Ω  
47Ω  
9.0A  
4.5A  
0
100  
200  
di /dt (A/µs)  
300  
400  
0
100  
200  
300  
400  
di /dt (A/µs)  
F
F
Fig. 19 - Typ. Diode IRR vs. diF/dt  
CC = 600V; VGE = 15V; IF = 9.0A; TJ = 150°C  
Fig. 20 - Typ. Diode QRR vs. diF/dt  
V
V
CC = 600V; VGE = 15V; TJ = 150°C  
60  
1200  
1000  
800  
48  
40  
32  
24  
16  
8
= 5.0  
R
R
G
50  
40  
30  
20  
10  
= 10  
= 20  
= 47  
G
T
sc  
R
G
R
G
I
sc  
600  
400  
0
5
10  
(A)  
15  
20  
8
10  
12  
(V)  
14  
16  
I
V
F
GE  
Fig. 22 - VGE vs. Short Circuit Time  
Fig. 21 - Typ. Diode ERR vs. IF  
VCC = 600V; TC = 150°C  
TJ = 150°C  
16  
14  
12  
10  
8
10000  
1000  
100  
10  
V
V
= 600V  
= 400V  
CES  
CES  
Cies  
6
Coes  
Cres  
4
2
0
1
0
10  
Q
20  
30  
40  
50  
0
100  
200  
V
300  
(V)  
400  
500  
, Total Gate Charge (nC)  
G
CE  
Fig. 24 - Typical Gate Charge vs. VGE  
Fig. 23 - Typ. Capacitance vs. VCE  
ICE = 9.0A; L = 600µH  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRG7PH30K10DPbF  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
Ri (°C/W) τi (sec)  
R4  
0.0107  
0.1816  
0.3180  
0.1910  
0.000005  
0.000099  
0.001305  
0.009113  
τ
τ
J τJ  
τ
Cτ  
0.02  
0.01  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.1  
Ri (°C/W) τi (sec)  
0.0103  
0.4761  
0.5749  
0.3390  
0.000005  
0.000451  
0.001910  
0.012847  
τ
τ
J τJ  
τ
Cτ  
0.02  
0.01  
τ
1τ1  
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.001  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1 1  
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRG7PH30K10DPbF  
L
L
80 V  
+
-
DUT  
VCC  
0
DUT  
VCC  
1K  
Rg  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4X  
-5V  
Rg  
DC  
DUT  
VCC  
DUT /  
DRIVER  
VCC  
SCSOA  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
C force  
R = VCC  
ICM  
100K  
D1 22K  
C sense  
VCC  
DUT  
DUT  
G force  
Rg  
0.0075µF  
E sense  
E force  
Fig.C.T.6 - BVCES Filter Circuit  
Fig.C.T.5 - Resistive Load Circuit  
8
www.irf.com  
IRG7PH30K10DPbF  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
45  
40  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
18  
16  
14  
12  
10  
8
tf  
35  
tr  
30  
25  
90% ICE  
TEST CURRENT  
90% test  
current  
20  
15  
10  
5
6
5% ICE  
5% VCE  
10% test  
current  
4
5% VCE  
2
0
0
Eon Loss  
Eoff Loss  
-100  
-5  
-100  
-2  
-1.8 -0.8 0.2  
1.2  
2.2  
3.2  
-5  
0
5
10  
time (µs)  
time(µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
@ TJ = 150°C using Fig. CT.4  
800  
80  
100  
0
12.5  
10  
700  
70  
VCE  
QRR  
t
RR  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
7.5  
5
600  
60  
500  
400  
300  
200  
100  
0
ICE  
50  
40  
30  
20  
10  
0
2.5  
0
-2.5  
-5  
Peak  
IRR  
-7.5  
-10  
-12.5  
10%  
Peak  
IRR  
-100  
-10  
-2.50  
0.00  
2.50  
5.00  
-5  
0
5
10  
Time (uS)  
time (µS)  
Fig. WF3 - Typ. Diode Recovery Waveform  
Fig. WF4 - Typ. S.C. Waveform  
@ TJ = 150°C using Fig. CT.3  
@ TJ = 150°C using Fig. CT.4  
www.irf.com  
9
IRG7PH30K10DPbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 08/2009  
10  
www.irf.com  

相关型号:

IRG7PH30K10PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35U-EP

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35UD-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH35UD1-EP

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRG7PH35UD1MPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
INFINEON

IRG7PH35UD1MPBF_15

Low Switching Losses
INFINEON

IRG7PH35UD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRG7PH35UDPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRG7PH35UPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH35UPBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7PH37K10D-EPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PH37K10DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON