IRG7PSH50UDPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRG7PSH50UDPBF
型号: IRG7PSH50UDPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 双极性晶体管 栅 超快软恢复二极管 快速软恢复二极管
文件: 总10页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97548  
IRG7PSH50UDPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
C
• Low VCE (ON) trench IGBT technology  
• Low switching losses  
• SquareRBSOA  
VCES = 1200V  
I NOMINAL = 50A  
• 100% of the parts tested for ILM  

• Positive VCE (ON) temperature co-efficient  
• Ultra fast soft recovery co-pak diode  
• Tightparameterdistribution  
• Lead-Free  
G
TJ(max) = 150°C  
E
VCE(on) typ. = 1.7V  
n-channel  
Benefits  
• High efficiency in a wide range of applications  
• Suitable for a wide range of switching frequencies due to  
low VCE (ON) and low switching losses  
C
• Ruggedtransientperformanceforincreasedreliability  
• Excellent current sharing in parallel operation  
E
C
G
Applications  
• U.P.S.  
Super-247  
• Welding  
• SolarInverter  
• InductionHeating  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
1200  
116  
Units  
Collector-to-Emitter Voltage  
V
VCES  
Continuous Collector Current (Silicon Limited)  
Continuous Collector Current (Silicon Limited)  
Nominal Current  
IC @ TC = 25°C  
70  
IC @ TC = 100°C  
50  
INOMINAL  
Pulse Collector Current, VGE = 15V  
Clamped Inductive Load Current, VGE = 20V  
ICM  
150  
A
ILM  
200  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Maximum Power Dissipation  
116  
IF @ TC = 25°C  
70  
IF @ TC = 100°C  
200  
IFM  
±30  
V
VGE  
462  
W
PD @ TC = 25°C  
Maximum Power Dissipation  
185  
PD @ TC = 100°C  
Operating Junction and  
-55 to +150  
TJ  
Storage Temperature Range  
°C  
TSTG  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.24  
40  
Max.  
0.27  
0.37  
–––  
Units  
Thermal Resistance Junction-to-Case-(each IGBT)  
Rθ (IGBT)  
JC  
Thermal Resistance Junction-to-Case-(each Diode)  
Rθ (Diode)  
JC  
°C/W  
Rθ  
CS  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
Rθ  
JA  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
–––  
1
www.irf.com  
07/28/2010  
IRG7PSH50UDPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)CES  
VGE = 0V, IC = 100µA  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Saturation Voltage  
1200  
1.0  
1.7  
2.0  
V
V(BR)CES/TJ  
VCE(on)  
VGE = 0V, IC = 1.0mA (25°C-150°C)  
IC = 50A, VGE = 15V, TJ = 25°C  
IC = 50A, VGE = 15V, TJ = 150°C  
VCE = VGE, IC = 2.0mA  
V/°C  
2.0  
V
V
VGE(th)  
Gate Threshold Voltage  
3.0  
6.0  
VGE(th)/TJ  
VCE = VGE, IC = 1.0mA (25°C - 150°C)  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-17  
55  
mV/°C  
S
V
CE = 50V, IC = 50A, PW = 30µs  
VGE = 0V, VCE = 1200V  
GE = 0V, VCE = 1200V, TJ = 150°C  
gfe  
ICES  
Collector-to-Emitter Leakage Current  
2.0  
3700  
3.0  
2.7  
100  
µA  
V
VFM  
IGES  
IF = 50A  
Diode Forward Voltage Drop  
3.9  
V
IF = 50A, TJ = 150°C  
VGE = ±30V  
Gate-to-Emitter Leakage Current  
±200  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 50A  
290  
440  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
VCC = 600V  
40  
60  
nC  
µJ  
ns  
110  
170  
IC = 50A, VCC = 600V, VGE = 15V  
3600 4600  
2200 3200  
5800 7800  
RG = 5.0 , L = 200µH,TJ = 25°C  
Energy losses include tail & diode reverse recovery  
35  
40  
55  
60  
500  
65  
td(off)  
tf  
Turn-Off delay time  
Fall time  
430  
45  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 50A, VCC = 600V, VGE=15V  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
5080  
3370  
8450  
30  
RG=5.0 , L=200µH, TJ = 150°C  
µJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
40  
td(off)  
tf  
Turn-Off delay time  
Fall time  
480  
170  
6000  
300  
130  
Cies  
Coes  
Cres  
VGE = 0V  
Input Capacitance  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 150°C, IC = 200A  
VCC = 960V, Vp =1200V  
RBSOA  
Reverse Bias Safe Operating Area  
FULL SQUARE  
Rg = 5.0 , VGE = +20V to 0V  
TJ = 150°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
1510  
190  
µJ  
ns  
A
VCC = 600V, IF = 5.0A  
Rg = 5.0 , L =1.0mH  
Irr  
Peak Reverse Recovery Current  
5760  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 5.0.  
‚ Pulse width limited by max. junction temperature.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
„ Rθ is measured at TJ of approximately 90°C.  
2
www.irf.com  
IRG7PSH50UDPbF  
120  
100  
80  
60  
40  
20  
0
Duty cycle : 50%  
Tj = 150°C  
Tc = 100°C  
Vcc = 600V  
Gate drive as specified  
Power Dissipation = 183W  
Square Wave:  
VCC  
I
Diode as specified  
0.1  
1
10  
100  
f , Frequency ( kHz )  
Fig. 1 - Typical Load Current vs. Frequency  
(Load Current = IRMS of fundamental)  
120  
100  
80  
60  
40  
20  
0
500  
400  
300  
200  
100  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
(°C)  
125  
150  
T
T
(°C)  
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
CaseTemperature  
Temperature  
1000  
1000  
100  
10µsec  
100  
10  
1
10  
100µsec  
1msec  
1
DC  
0.1  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.01  
10  
100  
1000  
10000  
1
10  
100  
(V)  
1000  
10000  
V
(V)  
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 150°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 150°C; VGE = 20V  
www.irf.com  
3
IRG7PSH50UDPbF  
200  
200  
150  
100  
50  
150  
100  
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
V
GE  
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
V
V
V
V
GE  
GE  
GE  
GE  
50  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 30µs  
TJ = 25°C; tp = 30µs  
200  
150  
100  
200  
150  
100  
V
V
V
V
V
= 18V  
= 15V  
= 12V  
= 10V  
= 8.0V  
GE  
GE  
GE  
GE  
GE  
50  
50  
0
-40°C  
25°C  
150°C  
0
0.0  
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
6.0  
0
2
4
6
8
10  
V
V
(V)  
F
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 150°C; tp = 30µs  
tp = 30µs  
12  
10  
12  
10  
8
I
I
I
= 25A  
= 50A  
= 100A  
8
6
4
2
0
CE  
CE  
CE  
I
I
I
= 25A  
= 50A  
= 100A  
CE  
CE  
CE  
6
4
2
0
0
5
10  
15  
20  
0
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
4
www.irf.com  
IRG7PSH50UDPbF  
12  
10  
8
200  
150  
100  
50  
I
I
I
= 25A  
= 50A  
= 100A  
CE  
CE  
CE  
6
T = 25°C  
J
T
= 150°C  
J
4
2
0
0
0
2
4
6
8
10  
0
5
10  
15  
20  
V
, Gate-to-Emitter Voltage (V)  
GE  
V
(V)  
GE  
Fig. 12 - Typ. Transfer Characteristics  
Fig. 11 - Typical VCE vs. VGE  
VCE = 50V; tp = 30µs  
TJ = 150°C  
12000  
10000  
8000  
6000  
4000  
2000  
0
1000  
td  
OFF  
t
E
F
ON  
100  
td  
ON  
t
E
OFF  
R
10  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
I
(A)  
C
I
(A)  
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L = 200µH; VCE = 600V, RG = 5.0; VGE = 15V  
TJ = 150°C; L = 200µH; VCE = 600V, RG = 5.0; VGE = 15V  
16000  
10000  
14000  
E
OFF  
td  
12000  
OFF  
1000  
10000  
E
ON  
8000  
6000  
4000  
2000  
0
t
F
100  
t
R
td  
ON  
10  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
()  
80  
100  
R
G
Rg ()  
Fig. 16 - Typ. Switching Time vs. RG  
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 50A; VGE = 15V  
www.irf.com  
5
IRG7PSH50UDPbF  
70  
70  
60  
50  
40  
30  
20  
10  
60  
5.0  
R
G =  
50  
40  
30  
20  
10  
R
10Ω  
47Ω  
G =  
G =  
R
R
= 100Ω  
G
0
20  
40  
60  
80  
100  
0
20  
40  
60  
(Ω)  
80  
100  
I
(A)  
R
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 150°C  
TJ = 150°C  
60  
50  
40  
30  
20  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
5.0  
10  
100A  
47  
50A  
25A  
100  
0
200  
400  
600  
800  
1000  
200  
300  
400  
500  
600  
700  
800  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 19 - Typ. Diode IRR vs. diF/dt  
Fig. 20 - Typ. Diode QRR vs. diF/dt  
VCC = 600V; VGE = 15V; IF = 50A; TJ = 150°C  
VCC = 600V; VGE = 15V; TJ = 150°C  
2500  
2000  
1500  
R
= 10Ω  
G
R
R
= 5.0Ω  
G
G
1000  
500  
0
= 47Ω  
R
= 100Ω  
G
0
20  
40  
60  
80  
100  
I
(A)  
F
Fig. 21 - Typ. Diode ERR vs. IF  
TJ = 150°C  
6
www.irf.com  
IRG7PSH50UDPbF  
10000  
1000  
100  
16  
14  
12  
10  
8
V
V
= 600V  
= 400V  
CES  
CES  
Cies  
Coes  
6
4
Cres  
100  
2
10  
0
0
200  
300  
(V)  
400  
500  
600  
0
50  
100  
150  
200  
250  
300  
V
Q
, Total Gate Charge (nC)  
CE  
G
Fig. 23 - Typical Gate Charge vs. VGE  
Fig. 22 - Typ. Capacitance vs. VCE  
ICE = 50A  
VGE= 0V; f = 1MHz  
1
D = 0.50  
0.1  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.05  
0.01  
Ri (°C/W) τi (sec)  
0.00463 0.000008  
τ
τ
J τJ  
τ
Cτ  
0.02  
0.07251 0.000209  
0.11571 0.002880  
0.07714 0.016543  
0.01  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.01  
0.001  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.00300 0.000014  
τ
τ
J τJ  
τ
Cτ  
0.13485 0.000643  
0.16061 0.004509  
0.07121 0.023154  
τ
1τ1  
τ
τ
2 τ2  
3τ3  
4τ4  
Ci= τi/Ri  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRG7PSH50UDPbF  
L
L
80 V  
+
-
DUT  
VCC  
0
DUT  
VCC  
1K  
Rg  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
R = VCC  
ICM  
L
VCC  
-5V  
DUT  
DUT /  
DRIVER  
VCC  
Rg  
Rg  
Fig.C.T.4 - Resistive Load Circuit  
Fig.C.T.3 - Switching Loss Circuit  
C force  
100K  
D1 22K  
C sense  
DUT  
G force  
0.0075µF  
E sense  
E force  
Fig.C.T.5 - BVCES Filter Circuit  
8
www.irf.com  
IRG7PSH50UDPbF  
1200  
1000  
800  
600  
400  
200  
0
120  
1200  
1000  
800  
600  
400  
200  
0
120  
100  
80  
60  
40  
20  
0
tf  
tr  
100  
TEST  
CURRENT  
80  
90% test  
current  
60  
90% ICE  
40  
10% test  
current  
5% VCE  
5% ICE  
5% VCE  
20  
0
Eon Los s  
Eoff Loss  
-200  
-20  
-200  
-20  
-3 -2 -1  
0
1
2
3
4
5
-0.5  
0
0.5  
1
1.5  
2
time(µs)  
time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 150°C using Fig. CT.4  
@ TJ = 150°C using Fig. CT.4  
60  
50  
40  
30  
20  
10  
0
QRR  
tRR  
-10  
Peak  
IRR  
-20  
-30  
-40  
-50  
-60  
-0.40 -0.20 0.00 0.20  
0.40 0.60  
time (µS)  
Fig. WF3 - Typ. Diode Recovery Waveform  
@ TJ = 150°C using Fig. CT.4  
www.irf.com  
9
IRG7PSH50UDPbF  
Case Outline and Dimensions — Super-247  
Super-247 (TO-274AA) Part Marking Information  
EXAMPLE: THIS IS AN IRFPS37N50A WITH  
ASSEMBLY LOT CODE 1789  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
PART NUMBER  
INTERNATIONAL RECTIFIER  
IRFPS37N50A  
LOGO  
719C  
89  
17  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
LINE C  
ASSEMBLY LOT CODE  
Note: "P" in assembly line position  
indicates "Lead-Free"  
TOP  
Super-247 package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 07/2010  
10  
www.irf.com  

相关型号:

IRG7PSH54K10DPBF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode
INFINEON

IRG7PSH73K10PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRG7R313UPBF

Insulated Gate Bipolar Transistor, 40A I(C), 330V V(BR)CES, N-Channel, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRG7R313UTRLPBF

Insulated Gate Bipolar Transistor, 40A I(C), 330V V(BR)CES, N-Channel
INFINEON

IRG7R313UTRPBF

Insulated Gate Bipolar Transistor, 40A I(C), 330V V(BR)CES, N-Channel
INFINEON

IRG7R313UTRRPBF

Insulated Gate Bipolar Transistor, 40A I(C), 330V V(BR)CES, N-Channel,
INFINEON

IRG7RA13UPBF

Advanced Trench IGBT Technology
INFINEON

IRG7RA13UTRLPBF

Advanced Trench IGBT Technology
INFINEON

IRG7RA13UTRPBF

Advanced Trench IGBT Technology
INFINEON

IRG7RA13UTRRPBF

Advanced Trench IGBT Technology
INFINEON

IRG7S313U

Insulated Gate Bipolar Transistor, 40A I(C), 330V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRG7S313UPBF

PDP TRENCH IGBT
INFINEON