IRLR8743 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRLR8743
型号: IRLR8743
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总12页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96123  
IRLR8743PbF  
IRLU8743PbF  
HEXFET® Power MOSFET  
Applications  
l High Frequency Synchronous Buck  
Converters for Computer Processor Power  
l High Frequency Isolated DC-DC  
Converters with Synchronous Rectification  
for Telecom and Industrial Use  
l Lead-Free  
VDSS RDS(on) max  
Qg  
39nC  
3.1m  
30V  
D
Benefits  
S
S
D
l Very Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
G
G
D-Pak  
I-Pak  
IRLR8743PbF  
IRLU8743PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Parameter  
Max.  
30  
Units  
V
VDS  
Drain-to-Source Voltage  
V
Gate-to-Source Voltage  
± 20  
160  
113  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TC = 25°C  
@ TC = 100°C  
D
D
A
640  
135  
68  
DM  
Maximum Power Dissipation  
Maximum Power Dissipation  
P
P
@TC = 25°C  
@TC = 100°C  
W
D
D
Linear Derating Factor  
Operating Junction and  
0.90  
-55 to + 175  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
300 (1.6mm from case)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
–––  
–––  
Max.  
1.11  
50  
Units  
RθJC  
RθJA  
RθJA  
Junction-to-Ambient (PCB Mount)  
°C/W  
Junction-to-Ambient  
110  
Notes  through are on page 11  
www.irf.com  
1
08/15/07  
IRLR/U8743PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
∆Β  
RDS(on)  
30  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
89  
–––  
–––  
V
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
V
DSS/ TJ  
20  
––– mV/°C Reference to 25°C, ID = 1mA  
2.4  
3.0  
1.9  
-6.4  
–––  
–––  
–––  
–––  
–––  
39  
3.1  
3.9  
VGS = 10V, ID = 25A  
VGS = 4.5V, ID = 20A  
VDS = VGS, ID = 100µA  
m
VGS(th)  
2.35  
V
Gate Threshold Voltage  
V
GS(th)/ TJ  
––– mV/°C  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
IDSS  
1.0  
µA  
VDS = 24V, VGS = 0V  
VDS = 24V, VGS = 0V, TJ = 125°C  
VGS = 20V  
150  
IGSS  
100  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
-100  
VGS = -20V  
gfs  
Qg  
–––  
59  
S
V
DS = 15V, ID = 20A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
10  
–––  
–––  
–––  
–––  
–––  
–––  
V
DS = 15V  
GS = 4.5V  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
Qgs2  
Qgd  
3.9  
13  
nC  
V
ID = 20A  
Qgodr  
12  
See Fig. 16  
Qsw  
17  
Qoss  
21  
nC VDS = 16V, VGS = 0V  
RG  
td(on)  
tr  
Gate Resistance  
–––  
–––  
–––  
–––  
–––  
0.85  
19  
1.5  
–––  
–––  
–––  
–––  
VDD = 15V, VGS = 4.5V  
Turn-On Delay Time  
35  
ID = 20A  
ns  
Rise Time  
td(off)  
tf  
21  
R = 1.8  
Turn-Off Delay Time  
G
17  
See Fig. 14  
Fall Time  
Ciss  
Coss  
Crss  
––– 4880 –––  
VGS = 0V  
Input Capacitance  
–––  
–––  
950  
470  
–––  
–––  
VDS = 15V  
ƒ = 1.0MHz  
pF  
Output Capacitance  
Reverse Transfer Capacitance  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
250  
20  
Units  
mJ  
A
EAS  
Single Pulse Avalanche Energy  
IAR  
Avalanche Current  
EAR  
13.5  
mJ  
Repetitive Avalanche Energy  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
–––  
–––  
MOSFET symbol  
Continuous Source Current  
160  
(Body Diode)  
showing the  
integral reverse  
A
ISM  
–––  
–––  
Pulsed Source Current  
640  
(Body Diode)  
p-n junction diode.  
VSD  
–––  
–––  
–––  
–––  
18  
1.0  
27  
48  
V
T = 25°C, I = 20A, V = 0V  
J S GS  
Diode Forward Voltage  
trr  
ns T = 25°C, I = 20A, VDD = 15V  
Reverse Recovery Time  
J
F
Qrr  
di/dt = 300A/µs  
32  
nC  
Reverse Recovery Charge  
ton  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Forward Turn-On Time  
2
www.irf.com  
IRLR/U8743PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
2.5V  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
2.5V  
BOTTOM  
BOTTOM  
2.5V  
1
2.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 25A  
D
V
= 10V  
GS  
100  
10  
1
T
= 175°C  
J
T
= 25°C  
V
J
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
0
2
4
6
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRLR/U8743PbF  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
100000  
V
= 0V,  
= C  
f = 1 MHZ  
I = 20A  
GS  
D
V
V
= 24V  
= 15V  
C
C
C
+ C , C  
SHORTED  
DS  
DS  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
100  
C
iss  
C
oss  
C
rss  
0
5
10 15 20 25 30 35 40 45 50  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
10000  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
10msec  
T
J
= 25°C  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
, Source-to-Drain Voltage (V)  
0
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRLR/U8743PbF  
180  
160  
140  
120  
100  
80  
2.5  
2.0  
1.5  
1.0  
0.5  
Limited By Package  
I
= 100µA  
D
60  
40  
20  
0
-75 -50 -25  
0
25 50 75 100 125 150175 200  
25  
50  
75  
100  
125  
150  
175  
T , Temperature ( °C )  
J
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
Case Temperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
Ri (°C/W) τi (sec)  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.02879  
0.000017  
τ
τ
J τJ  
τ
C
0.25773  
0.000143  
0.02  
0.01  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.48255 0.001411  
0.34135 0.010617  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRLR/U8743PbF  
15V  
1200  
1000  
800  
600  
400  
200  
0
I
D
TOP  
2.7A  
3.7A  
DRIVER  
+
L
V
DS  
BOTTOM 20A  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
VGS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
I
AS  
RD  
Fig 12b. Unclamped Inductive Waveforms  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
Current Regulator  
Same Type as D.U.T.  
VGS  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
50KΩ  
.2µF  
12V  
.3µF  
Fig 14a. Switching Time Test Circuit  
+
V
DS  
V
D.U.T.  
DS  
-
90%  
V
GS  
3mA  
10%  
I
I
D
G
V
GS  
Current Sampling Resistors  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRLR/U8743PbF  
Driver Gate Drive  
P.W.  
Period  
D.U.T  
Period  
D =  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRLR/U8743PbF  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFETdata sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRLR/U8743PbF  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak (TO-252AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRLR/U8743PbF  
I-Pak (TO-251AA) Package Outline  
Dimensions are shown in millimeters (inches)  
I-Pak (TO-251AA) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
IRLR/U8743PbF  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
11.9 ( .469 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Notes:  
„ Calculated continuous current based on maximum allowable  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
junction temperature. Package limitation current is 50A.  
‚ Starting TJ = 25°C, L = 1.252mH, RG = 25,  
IAS = 20A.  
ƒ Pulse width 400µs; duty cycle 2%.  
When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques refer to  
application note #AN-994.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.08/2007  
www.irf.com  
11  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement  
of intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may  
contain dangerous substances. For information on  
the types in question please contact your nearest  
Infineon Technologies office.  
In addition, any information given in this document  
is subject to customers compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and  
standards concerning customers products and any  
use of the product of Infineon Technologies in  
customers applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of  
the product or any consequences of the use thereof  
can reasonably be expected to result in personal  
injury.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customers technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

IRLR8743PBF

HEXFET㈢Power MOSFET
INFINEON

IRLR8743TRPBF

Power Field-Effect Transistor, 160A I(D), 30V, 0.0031ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
INFINEON

IRLR8743_19

Isc N-Channel MOSFET Transistor
ISC

IRLR9343

DIGITAL AUDIO MOSFET
INFINEON

IRLR9343PBF

DIGITAL AUDIO MOSFET
INFINEON

IRLR9343PBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
VISHAY

IRLR9343TR

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK-3
INFINEON

IRLR9343TRL

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, DPAK-3
INFINEON

IRLR9343TRLPBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
VISHAY

IRLR9343TRLPBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, PLASTIC, DPAK-3
INFINEON

IRLR9343TRPBF

key parameters optimlzed for class-d audio amplifier applications
INFINEON

IRLR9343TRPBF

Power Field-Effect Transistor, 20A I(D), 55V, 0.105ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
VISHAY